1
|
Cilek N, Ugurel E, Goksel E, Yalcin O. Signaling mechanisms in red blood cells: A view through the protein phosphorylation and deformability. J Cell Physiol 2024; 239:e30958. [PMID: 36748950 DOI: 10.1002/jcp.30958] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Intracellular signaling mechanisms in red blood cells (RBCs) involve various protein kinases and phosphatases and enable rapid adaptive responses to hypoxia, metabolic requirements, oxidative stress, or shear stress by regulating the physiological properties of the cell. Protein phosphorylation is a ubiquitous mechanism for intracellular signal transduction, volume regulation, and cytoskeletal organization in RBCs. Spectrin-based cytoskeleton connects integral membrane proteins, band 3 and glycophorin C to junctional proteins, ankyrin and Protein 4.1. Phosphorylation leads to a conformational change in the protein structure, weakening the interactions between proteins in the cytoskeletal network that confers a more flexible nature for the RBC membrane. The structural organization of the membrane and the cytoskeleton determines RBC deformability that allows cells to change their ability to deform under shear stress to pass through narrow capillaries. The shear stress sensing mechanisms and oxygenation-deoxygenation transitions regulate cell volume and mechanical properties of the membrane through the activation of ion transporters and specific phosphorylation events mediated by signal transduction. In this review, we summarize the roles of Protein kinase C, cAMP-Protein kinase A, cGMP-nitric oxide, RhoGTPase, and MAP/ERK pathways in the modulation of RBC deformability in both healthy and disease states. We emphasize that targeting signaling elements may be a therapeutic strategy for the treatment of hemoglobinopathies or channelopathies. We expect the present review will provide additional insights into RBC responses to shear stress and hypoxia via signaling mechanisms and shed light on the current and novel treatment options for pathophysiological conditions.
Collapse
Affiliation(s)
- Neslihan Cilek
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
- School of Medicine, Koc University, Istanbul, Turkey
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Elif Ugurel
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
- School of Medicine, Koc University, Istanbul, Turkey
| | - Evrim Goksel
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
- School of Medicine, Koc University, Istanbul, Turkey
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Ozlem Yalcin
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
- School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
2
|
Heme oxygenase-1, carbon monoxide, and malaria – The interplay of chemistry and biology. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Cai L, Zhang J, Hongyun W, Zhu Y, Zhang X, Liang W. Rab11B participates in erythrocyte storage lesion of under-collected whole blood. Transfus Apher Sci 2020; 60:103034. [PMID: 33341364 DOI: 10.1016/j.transci.2020.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES The storage lesion of the red blood cell affects the life span of RBC and the quality of blood component. The elucidation of this mechanism is helpful to reduce the storage damage of RBC and improve the efficacy and safety of blood transfusion. The aim of this study was to discover the potential molecular mechanism of erythrocyte storage lesion with Under-collected whole blood (UC-WB) model. METHODS The label-free MS/MS quantitative method was used to identify the differential proteins of erythrocyte membrane proteins and the difference of Rab11B, V-ATPase and plasma GDI2 protein expression were further verified by western blot at the end of blood storage. RESULTS A total of 12 Rab proteins and 3 interacting effector proteins were identified among the membrane protein of normal WB and UC-WB, including 5 differential Rab proteins and 2 interacting effector proteins. Compared with normal WB, the expression of membrane Rab11B protein and ATP6V1B1/2 subunit of V-ATPases protein as well as the plasma GDI2 protein of UC-WB increased at the end of storage period. CONCLUSION Rab protein might be related to RBC storage lesions, Rab11B participates in the RBC storage lesion through Rab11B/V-ATPases pathways.
Collapse
Affiliation(s)
- Li Cai
- Jiangsu Province Blood Center, China
| | - Jingjing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | | | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Xiongfei Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, China.
| | | |
Collapse
|
4
|
The Effect of Bee Venom Peptides Melittin, Tertiapin, and Apamin on the Human Erythrocytes Ghosts: A Preliminary Study. Metabolites 2020; 10:metabo10050191. [PMID: 32413967 PMCID: PMC7281017 DOI: 10.3390/metabo10050191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Red blood cells (RBCs) are the most abundant cells in the human blood that have been extensively studied under morphology, ultrastructure, biochemical and molecular functions. Therefore, RBCs are excellent cell models in the study of biologically active compounds like drugs and toxins on the structure and function of the cell membrane. The aim of the present study was to explore erythrocyte ghost’s proteome to identify changes occurring under the influence of three bee venom peptides-melittin, tertiapin, and apamin. We conducted preliminary experiments on the erythrocyte ghosts incubated with these peptides at their non-hemolytic concentrations. Such preparations were analyzed using liquid chromatography coupled with tandem mass spectrometry. It was found that when higher concentrations of melittin and apamin were used, fewer proteins were identified. Moreover, the results clearly indicated that apamin demonstrates the greatest influence on the RBCs ghosts proteome. Interestingly, the data also suggest that tertiapin exerted a stabilizing effect on the erythrocyte membrane. The experiments carried out show the great potential of proteomic research in the projects focused on the toxin’s properties as membrane active agents. However, to determine the specificity of the effect of selected bee venom peptides on the erythrocyte ghosts, further proteomic research should be focused on the quantitative analysis.
Collapse
|
5
|
Nigra AD, Casale CH, Santander VS. Human erythrocytes: cytoskeleton and its origin. Cell Mol Life Sci 2020; 77:1681-1694. [PMID: 31654099 PMCID: PMC11105037 DOI: 10.1007/s00018-019-03346-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
In the last few years, erythrocytes have emerged as the main determinant of blood rheology. In mammals, these cells are devoid of nuclei and are, therefore, unable to divide. Consequently, all circulating erythrocytes come from erythropoiesis, a process in the bone marrow in which several modifications are induced in the expression of membrane and cytoskeletal proteins, and different vertical and horizontal interactions are established between them. Cytoskeleton components play an important role in this process, which explains why they and the interaction between them have been the focus of much recent research. Moreover, in mature erythrocytes, the cytoskeleton integrity is also essential, because the cytoskeleton confers remarkable deformability and stability on the erythrocytes, thus enabling them to undergo deformation in microcirculation. Defects in the cytoskeleton produce changes in erythrocyte deformability and stability, affecting cell viability and rheological properties. Such abnormalities are seen in different pathologies of special interest, such as different types of anemia, hypertension, and diabetes, among others. This review highlights the main findings in mammalian erythrocytes and their progenitors regarding the presence, conformation and function of the three main components of the cytoskeleton: actin, intermediate filaments, and tubulin.
Collapse
Affiliation(s)
- Ayelén D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Cesar H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Verónica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
6
|
Rafea M, Elkafrawy P, Nasef MM, Elnemr R, Jamal AT. Applying Machine Learning of Erythrocytes Dynamic Antigens Store in Medicine. Front Mol Biosci 2019; 6:19. [PMID: 31001536 PMCID: PMC6456707 DOI: 10.3389/fmolb.2019.00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Erythrocytes Dynamic Antigens Store (EDAS) is a new discovery. EDAS consists of self-antigens and foreign (non-self) antigens. In patients with infectious diseases or malignancies, antigens of infection microorganism or malignant tumor exist in EDAS. Storing EDAS of normal individuals and patients in a database has, at least, two benefits. First, EDAS can be mined to determine biomarkers representing diseases which can enable researchers to develop a new line of laboratory diagnostic tests and vaccines. Second, EDAS can be queried, directly, to reach a precise diagnosis without the need to do many laboratory tests. The target is to find the minimum set of proteins that can be used as biomarkers for a particular disease. A hypothetical EDAS is created. Hundred-thousand records are randomly generated. The mathematical model of hypothetical EDAS together with the proposed techniques for biomarker discovery and direct diagnosis are described. The different possibilities that may occur in reality are experimented. Biomarkers' proteins are identified for pathogens and malignancies, which can be used to diagnose conditions that are difficult to diagnose. The presented tool can be used in clinical laboratories to diagnose disease disorders.
Collapse
Affiliation(s)
- Mahmoud Rafea
- Central Lab of Agriculture Expert Systems, Giza, Egypt
| | - Passant Elkafrawy
- Mathematics and Computer Science Department, Faculty of Science, Menoufia University, Shibin El Kom, Egypt
| | - Mohammed M Nasef
- Mathematics and Computer Science Department, Faculty of Science, Menoufia University, Shibin El Kom, Egypt
| | - Rasha Elnemr
- Central Lab of Agriculture Expert Systems, Giza, Egypt
| | - Amani Tariq Jamal
- Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
da Silva DGH, Chaves NA, Miyamoto S, de Almeida EA. Prolonged erythrocyte auto-incubation as an alternative model for oxidant generation system. Toxicol In Vitro 2019; 56:62-74. [PMID: 30654084 DOI: 10.1016/j.tiv.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022]
Abstract
This study investigated the effects of incubation period and melatonin treatment on red blood cell (RBC) metabolism in an auto-incubation model of H2O2-induced oxidative stress. The study was carried out on three healthy adult donors by incubating RBCs in their own plasma at 37 °C, or under the influence of 1 mM H2O2 with and without 100 μM melatonin at different times (0, 1, 3 and 6 h). We assessed incubation period, treatment, as well as any interaction effects between these predictors on erythrocyte osmoregulation, hemolytic rate, oxidative stress markers, and adenylate nucleotide levels. We did not find any relevant effects of both incubation period and treatments on osmotic, antioxidant and adenylate parameters. On the other hand, hemolysis degree and biomolecule oxidation levels in the plasma increased over time, 3-fold and about 25%, respectively, regardless any treatment influence. H2O2 treatment more than doubled protein carbonyl groups, regardless time in plasma, and in a time-depending way in erythrocyte membrane extract, effects that were neutralized by melatonin treatment. Through multivariate analyses, we could expand the understanding of energy and redox metabolisms in the maintenance of cellular integrity and metabolic homeostasis. Another interesting observation was the 65-75% contribution of the oxidative lesion markers on hemolysis. Hence, these findings suggested a new and more intuitive RBC suspension model and reinforced the beneficial use of melatonin in human disorders.
Collapse
Affiliation(s)
- Danilo Grünig Humberto da Silva
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil.
| | - Nayara Alves Chaves
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Eduardo Alves de Almeida
- Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau (FURB), Blumenau, Brazil
| |
Collapse
|
8
|
Chakrabarti A, Halder S, Karmakar S. Erythrocyte and platelet proteomics in hematological disorders. Proteomics Clin Appl 2016; 10:403-14. [PMID: 26611378 DOI: 10.1002/prca.201500080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022]
Abstract
Erythrocytes undergo ineffective erythropoesis, hemolysis, and premature eryptosis in sickle cell disease and thalassemia. Abnormal hemoglobin variants associated with hemoglobinopathy lead to vesiculation, membrane instability, and loss of membrane asymmetry with exposal of phosphatidylserine. This potentiates thrombin generation resulting in activation of the coagulation cascade responsible for subclinical phenotypes. Platelet activation also results in the release of microparticles, which express and transfer functional receptors from platelet membrane, playing key roles in vascular reactivity and activation of intracellular signaling pathways. Over the last decade, proteomics had proven to be an important field of research in studies of blood and blood diseases. Blood cells and its fluidic components have been proven to be easy systems for studying differential expressions of proteins in hematological diseases encompassing hemoglobinopathies, different types of anemias, myeloproliferative disorders, and coagulopathies. Proteomic studies of erythrocytes and platelets reported from several groups have highlighted various factors that intersect the signaling networks in these anucleate systems. In this review, we have elaborated on the current scenario of anucleate blood cell proteomes in normal and diseased individuals and the cross-talk between the two major constituent cell types of circulating blood.
Collapse
Affiliation(s)
- Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Suchismita Halder
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Shilpita Karmakar
- Biophysics and Structural Genomics Division, Saha institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
9
|
Zaccaria A, Roux-Dalvai F, Bouamrani A, Mombrun A, Mossuz P, Monsarrat B, Berger F. Accessing to the minor proteome of red blood cells through the influence of the nanoparticle surface properties on the corona composition. Int J Nanomedicine 2015; 10:1869-83. [PMID: 25834426 PMCID: PMC4358650 DOI: 10.2147/ijn.s70503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanoparticle (NP)-protein interactions in complex samples have not yet been clearly understood. Nevertheless, several studies demonstrated that NP's physicochemical features significantly impact on the protein corona composition. Taking advantage of the NP potential to harvest different subsets of proteins, we assessed for the first time the capacity of three kinds of superparamagnetic NPs to highlight the erythrocyte minor proteome. Using both qualitative and quantitative proteomics approaches, nano-liquid chromatography-tandem mass spectrometry allowed the identification of 893 different proteins, confirming the reproducible capacity of NPs to increase the number of identified proteins, through a reduction of the sample concentration range and the capture of specific proteins on the three different surfaces. These NP-specific protein signatures revealed significant differences in their isoelectric point and molecular weight. Moreover, this NP strategy offered a deeper access to the erythrocyte proteome highlighting several signaling pathways implicated in important erythrocyte functions. The automated potentiality, the reproducibility, and the low-consuming sample demonstrate the strong compatibility of our strategy for large-scale clinical studies and may become a standardized sample preparation in future erythrocyte-associated proteomics studies.
Collapse
Affiliation(s)
| | - Florence Roux-Dalvai
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France ; Université de Toulouse, UPS, IPBS, Toulouse, France
| | | | | | - Pascal Mossuz
- TIMC-THEREX UMR 5525 CNRS, UJF, CHU Grenoble, Grenoble, France
| | - Bernard Monsarrat
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France ; Université de Toulouse, UPS, IPBS, Toulouse, France
| | | |
Collapse
|
10
|
Abstract
SIGNIFICANCE The physiological mechanism(s) for recognition and removal of red blood cells (RBCs) from circulation after 120 days of its lifespan is not fully understood. Many of the processes thought to be associated with the removal of RBCs involve oxidative stress. We have focused on hemoglobin (Hb) redox reactions, which is the major source of RBC oxidative stress. RECENT ADVANCES The importance of Hb redox reactions have been shown to originate in large parts from the continuous slow autoxidation of Hb producing superoxide and its dramatic increase under hypoxic conditions. In addition, oxidative stress has been shown to be associated with redox reactions that originate from Hb reactions with nitrite and nitric oxide (NO) and the resultant formation of highly toxic peroxynitrite when NO reacts with superoxide released during Hb autoxidation. CRITICAL ISSUES The interaction of Hb, particularly under hypoxic conditions with band 3 of the RBC membrane is critical for the generating the RBC membrane changes that trigger the removal of cells from circulation. These changes include exposure of antigenic sites, increased calcium leakage into the RBC, and the resultant leakage of potassium out of the RBC causing cell shrinkage and impaired deformability. FUTURE DIRECTIONS The need to understand the oxidative damage to specific membrane proteins that result from redox reactions occurring when Hb is bound to the membrane. Proteomic studies that can pinpoint the specific proteins damaged under different conditions will help elucidate the cellular aging processes that result in cells being removed from circulation.
Collapse
Affiliation(s)
- Joseph M Rifkind
- Molecular Dynamics Section, National Institute on Aging, Baltimore, MD 21224, USA.
| | | |
Collapse
|
11
|
Ortiz A, Richa L, Defer C, Dernis D, Huart JJ, Tokarski C, Rolando C. Proteomics applied to transfusion plasma: the beginning of the story. Vox Sang 2013; 104:275-91. [PMID: 23438183 DOI: 10.1111/j.1423-0410.2012.01663.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
'Safe blood' is and has always been the major concern in transfusion medicine. Plasma can undergo virus inactivation treatments based on physicochemical, photochemical or thermal methodologies for pathogen inactivation. The validation of these treatments is essentially based on clottability assays and clotting factors' titration; however, their impact on plasma proteins at the molecular level has not yet been evaluated. Proteomics appears as particularly adapted to identify, to localize and, consequently, to correlate these modifications to the biological activity change. At the crossroads of biology and analytical sciences, proteomics is the large-scale study of proteins in tissues, physiological fluids or cells at a given moment and in a precise environment. The proteomic strategy is based on a set of methodologies involving separative techniques like mono- and bidimensional gel electrophoresis and chromatography, analytical techniques, especially mass spectrometry, and bioinformatics. Even if plasma has been extensively studied since the very beginning of proteomics, its application to transfusion medicine has just begun. In the first part of this review, we present the principles of proteomics analysis. Then, we propose a state of the art of proteomics applied to plasma analysis. Finally, the use of proteomics for the evaluation of the impact of storage conditions and pathogen inactivation treatments applied to transfusion plasma and for the evaluation of therapeutic protein fractionated is discussed.
Collapse
Affiliation(s)
- A Ortiz
- USR CNRS 3290, Miniaturisation pour la Synthèse, l'Analyse et la Protéomique (MSAP), Université de Lille 1, Sciences et Technologie, Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Walpurgis K, Kohler M, Thomas A, Wenzel F, Geyer H, Schänzer W, Thevis M. Storage-induced changes of the cytosolic red blood cell proteome analyzed by 2D DIGE and high-resolution/high-accuracy MS. Proteomics 2012; 12:3263-72. [DOI: 10.1002/pmic.201200280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Katja Walpurgis
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Germany
| | - Maxie Kohler
- Department of Chemistry; University of Cologne; Germany
| | - Andreas Thomas
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Germany
| | - Folker Wenzel
- Institute of Transplantation Diagnostics and Cell Therapeutics; University of Düsseldorf Medical School; Düsseldorf Germany
| | - Hans Geyer
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Germany
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Germany
| |
Collapse
|
13
|
Akbari A, Li Y, Kilani RT, Ghahary A. Red blood cell lysate modulates the expression of extracellular matrix proteins in dermal fibroblasts. Mol Cell Biochem 2012; 370:79-88. [DOI: 10.1007/s11010-012-1400-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/07/2012] [Indexed: 12/25/2022]
|
14
|
Protéomique et médecine transfusionnelle. Transfus Clin Biol 2011; 18:79-96. [DOI: 10.1016/j.tracli.2011.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/17/2011] [Indexed: 01/02/2023]
|