1
|
Araiza-Atanacio I, Sáez-de-Ocariz M, Orozco-Covarrubias L. Transfusion-Associated Graft-Versus-Host Disease in Pediatric Patients: Clinical Features and Outcomes. Pediatr Dermatol 2025; 42:267-272. [PMID: 39581878 DOI: 10.1111/pde.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/06/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Transfusion-associated graft-versus-host disease (TA-GVHD) is a rare, usually fatal complication of blood transfusion. OBJECTIVE To describe the characteristics of TA-GVHD in children. METHODS The clinical records of pediatric patients diagnosed with TA-GVHD between January 2007 and December 2021 were reviewed. RESULTS We analyzed 94 clinical records of pediatric patients (0-18 years) with a diagnosis of GVHD, of whom 6 (6.38%) were associated with TA-GVHD; both genders being equally affected. The median age at diagnosis of the underlying disorder was 9 years, 1 month (range 2 months-15 years, 3 months); the median age at diagnosis of TA-GVHD was 9 years, 5.5 months (range 1 year, 7 months-15 years, 7 months). There were 27 grafts; 8 were irradiated and 12 were filtered. All patients presented with Stage 3 cutaneous TA-GVHD and histopathological Grade 2. All cases corresponded to classic acute TA-GVHD with global clinical Grade I-II. Mortality rate was 67%. The median follow-up of our patients was 2 years and 2 months (range 4 months-3 years, 4 months). CONCLUSIONS TA-GVHD, although less frequently encountered than in previous years, is still a concern. Early suspicion of TA-GVHD is mandatory due to its high mortality rates and rapid progression. Prevention by using irradiated blood products is the sole effective measure against this condition. Failing to identify and preempt TA-GVHD not only jeopardizes patient survival but also underscores the critical importance of vigilant monitoring and proactive intervention in at-risk patients.
Collapse
|
2
|
Aguilar R, López‐Vergès S, Quintana A, Morris J, Lopez L, Cooke A, Quiel D, Buitron N, Pérez Y, Lobo L, Ballesteros M, Pitti Y, Diaz Y, Saenz L, Franco D, Castillo D, Valdespino E, Blanco I, Romero E, Villarreal A, Cubilla‐Batista I. Experiences in the use of multiple doses of convalescent plasma in critically ill patients with COVID-19: An early phase 1 descriptive study. Health Sci Rep 2024; 7:e1949. [PMID: 38463033 PMCID: PMC10920941 DOI: 10.1002/hsr2.1949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Background At the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, transfusion of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) emerged as a potential therapeutic strategy to help patients severely afflicted by COVID-19. The efficacy of CCP has been controversial as it depends on many variables pertaining to the plasma donor and the patient with COVID-19, for example, time of convalescence or symptoms onset. This feasibility and descriptive study aimed to assess the safety of multiple doses of CCP in mechanically ventilated, intubated patients with respiratory failure due to COVID-19. Methods A cohort of 30 patients all experiencing severe respiratory failure and undergoing invasive mechanical ventilation in an intensive care unit, received up to five doses of 300-600 mL of CCP on alternate days (0, 2, 4, 6, and 8) until extubation, futility, or death. Results Nineteen patients received five doses, seven received four, and four received two or three doses. At 28-day follow-up mark, 57% of patients recovered and were sent home, and the long-term mortality rate was 27%. Ten severe adverse events reported in the study were unrelated to CCP transfusion. Independent of the number of transfused doses, most patients had detectable levels of total and neutralizing antibodies in plasma. Conclusion This study suggests that transfusion of multiple doses of CCP is safe. This strategy may represent a viable option for future studies, given the potential benefit of CCP transfusions during the early stages of infection in unvaccinated populations and in settings where monoclonal antibodies or antivirals are contraindicated or unavailable.
Collapse
Affiliation(s)
- Ricardo Aguilar
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Hospital Punta PacíficaPacífica SaludPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Sandra López‐Vergès
- Gorgas Memorial Institute of Health StudiesPanamaPanama
- Sistema Nacional de InvestigaciónSNI, SENACYTPanamaPanama
| | - Anarellys Quintana
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
- Hospital Santo TomasPanamaPanama
| | - Johanna Morris
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Lineth Lopez
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Ana Cooke
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Dimas Quiel
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Natalie Buitron
- Hospital Punta PacíficaPacífica SaludPanamaPanama
- Sociedad Panameña de HematologíaPanamaPanama
| | - Yaseikiry Pérez
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
| | - Lesbia Lobo
- Complejo Hospitalario Metropolitano Arnulfo Arias MadridCaja de Seguro SocialPanamaPanama
| | | | - Yaneth Pitti
- Gorgas Memorial Institute of Health StudiesPanamaPanama
| | - Yamilka Diaz
- Gorgas Memorial Institute of Health StudiesPanamaPanama
| | - Lisseth Saenz
- Gorgas Memorial Institute of Health StudiesPanamaPanama
| | - Danilo Franco
- Gorgas Memorial Institute of Health StudiesPanamaPanama
| | | | | | - Isabel Blanco
- Centro de Investigación Médica Pacífica SaludPanamaPanama
| | | | - Alcibiades Villarreal
- Sistema Nacional de InvestigaciónSNI, SENACYTPanamaPanama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT‐AIP)City of KnowledgePanamaPanama
| | - Idalina Cubilla‐Batista
- Sistema Nacional de InvestigaciónSNI, SENACYTPanamaPanama
- Centro de Investigación Médica Pacífica SaludPanamaPanama
- Hospital Rafael EstévezCaja de Seguro SocialAguadulcePanama
| |
Collapse
|
3
|
Bansal N, Khajuria K, Kaur Cheema R, Sharma A, Singh Bajwa B. Implementation of Indian National plasma policy at blood bank of a tertiary care hospital: A step towards strengthening of blood transfusion services. Transfus Clin Biol 2024; 31:3-6. [PMID: 37865157 DOI: 10.1016/j.tracli.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION The World Health Organization has advocated that every country should make its own policy for ensuring safe and adequate supply of plasma derived medicinal products through mobilization and usage of locally collected plasma. The National Plasma Policy (NPP) of India was published in 2014 with a dual objective to achieve self sufficiency in the production of plasma derived medicinal products and at the same time to augment the component preparation facilities in India and overall upliftment of blood transfusion services in the country. Thus the present study was done to access the impact of implementation of NPP in our blood bank on the blood transfusion services in our hospital. MATERIALS AND METHODS The present study was a retrospective observational study conducted in the department of transfusion medicine of a tertiary care hospital in India involving analysis of data from 1st January 2019 till 31st December 2022. For the purpose of data analysis the time period was divided into 2 periods: (i) Pre-NPP implementation period from 1st January 2019 till 31st December 2020; (ii) Post-NPP period from 1st January 2021 till 31st December 2022. The following parameters were compared for the two periods: (i) component preparation rate; (ii) percentage of component therapy; (iii) total number of FFP transferred to plasma fractionation centers; (iv) total amount of exchange amount generated in lieu of transferred FFP to plasma fractionation centers. RESULTS The component preparation rate after NPP implementation was significantly higher as compared to the pre NPP implementation period (93.81% vs 56.70%; p = 0.007). The percentage of component therapy in the patients was also significantly higher as compared to the pre-NPP implementation period (97.9% vs 73.6%; p = 0.005). The total amount of exchange amount generation in Indian rupee (INR) after NPP implementation was INR 1419462 (15835€) while it was INR 636898 (7105€) in the pre NPP implementation period. This amount was utilized for procurement of various blood bank equipment, in addition 2 lab technicians were also hired for the blood bank. CONCLUSIONS The implementation of NPP resulted in upliftment of blood transfusion services in our hospital. Other low and middle income countries can benefit from implementation of similar plasma policy in their countries.
Collapse
Affiliation(s)
- Naveen Bansal
- Department of Transfusion Medicine, MM Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, India.
| | - Kajal Khajuria
- Department of Transfusion Medicine, MM Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, India
| | - Rajbir Kaur Cheema
- Department of Transfusion Medicine, MM College of Medical Sciences and Research, Sadopur, Ambala, Haryana, India
| | - Ashish Sharma
- Department of Transfusion Medicine, MM Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, India
| | - Baltaran Singh Bajwa
- MBBS Student, MM Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, India
| |
Collapse
|
4
|
Pirenne F, Facon T. Platelet transfusion in adults: more to know? Transfus Clin Biol 2023; 30:3-4. [PMID: 36028152 DOI: 10.1016/j.tracli.2022.08.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- France Pirenne
- French Society of Blood Transfusion (SFTS), University Paris Est Créteil, INSERM U955, Etablissement Francais du Sang, Créteil, France.
| | - Thierry Facon
- French Society of Hematology (SFH), University of Lille, CHU Lille, France; French Academy of Medicine, Paris, France
| |
Collapse
|
5
|
Garraud O, Hamzeh-Cognasse H, Chalayer E, Duchez AC, Tardy B, Oriol P, Haddad A, Guyotat D, Cognasse F. Platelet transfusion in adults: An update. Transfus Clin Biol 2023; 30:147-165. [PMID: 36031180 DOI: 10.1016/j.tracli.2022.08.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many patients worldwide receive platelet components (PCs) through the transfusion of diverse types of blood components. PC transfusions are essential for the treatment of central thrombocytopenia of diverse causes, and such treatment is beneficial in patients at risk of severe bleeding. PC transfusions account for almost 10% of all the blood components supplied by blood services, but they are associated with about 3.25 times as many severe reactions (attributable to transfusion) than red blood cell transfusions after stringent in-process leukoreduction to less than 106 residual cells per blood component. PCs are not homogeneous, due to the considerable differences between donors. Furthermore, the modes of PC collection and preparation, the safety precautions taken to limit either the most common (allergic-type reactions and febrile non-hemolytic reactions) or the most severe (bacterial contamination, pulmonary lesions) adverse reactions, and storage and conservation methods can all result in so-called PC "storage lesions". Some storage lesions affect PC quality, with implications for patient outcome. Good transfusion practices should result in higher levels of platelet recovery and efficacy, and lower complication rates. These practices include a matching of tissue ABH antigens whenever possible, and of platelet HLA (and, to a lesser extent, HPA) antigens in immunization situations. This review provides an overview of all the available information relating to platelet transfusion, from donor and donation to bedside transfusion, and considers the impact of the measures applied to increase transfusion efficacy while improving safety and preventing transfusion inefficacy and refractoriness. It also considers alternatives to platelet component (PC) transfusion.
Collapse
Affiliation(s)
- O Garraud
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France.
| | | | - E Chalayer
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - A C Duchez
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - B Tardy
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - P Oriol
- CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - A Haddad
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Sacré-Cœur Hospital, Beirut, Lebanon; Lebanese American University, Beirut, Lebanon
| | - D Guyotat
- Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - F Cognasse
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| |
Collapse
|
6
|
Guillaume L, Chapelle V, Peeraer S, Streel C, Deneys V. Biological investigations of transfusion reactions: contribution of symptom-based decisional algorithms. Transfus Clin Biol 2022; 30:195-204. [PMID: 36273773 DOI: 10.1016/j.tracli.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES While transfusion is a common and safe therapeutic procedure in health care facilities, transfusion reactions can occur, whether acute or delayed, mild or life-threatening. In face of these reactions, the biological analysis laboratory plays a central role in their diagnosis. The objective of this article is to develop decisional algorithms for laboratory tests to be performed according to the clinical symptoms developed by the patient during or after transfusion. METHODS Based on the information collected by reviewing the literature and the procedures used in our hospital, we then developed biological investigation algorithms according to the symptoms presented by the patient, rather than the presumed reaction. RESULTS AND CONCLUSION We have developed symptom-based algorithms for acute transfusion reactions management that streamline laboratory testing and simplify the differential diagnosis.
Collapse
|
7
|
Garraud O, Chiaroni J. An overview of red blood cell and platelet alloimmunisation in transfusion. Transfus Clin Biol 2022; 29:297-306. [PMID: 35970488 DOI: 10.1016/j.tracli.2022.08.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Post-transfusion alloimmunisation is the main complication of all those observed after one or more transfusion episodes. Alloimmunisation is observed after the transfusion of red blood cell concentrates but also of platelet concentrates. Besides alloimmunisation due to antigens carried almost exclusively by red blood cells such as those of the Rhesus-Kell system, alloimmunisation often raises against HLA antigens; the main responsibility for that, apart from platelet transfusions, lies with residual leukocytes in the products transfused, hence the central importance of effective leukoreduction right from the blood product preparation stage. Alloimmunization is not restricted to transfusion, but it is also observed during pregnancies, carrying out microtransfusions of blood from the fetus immunizing the mother through the placenta (in a retrograde way). Preexisting maternal-fetal immunization can complicate a transfusion program and intensify the creation of alloantibodies in several blood and tissue group systems. The occurrence of autoantibodies, created by several pathogenic reasons, can also interfere with the propensity of certain recipients of blood components to produce alloantibodies. The genetic condition of individuals is in fact strongly linked to the ability or not to recognize antigenic variants foreign to their own biological program and mount an alloimmune response. Some hemoglobin diseases, in carriers of which transfusions can be iterative and lifelong, are complicated by frequent alloimmunizations and amplification of the complications of these alloimmunizations, imposing even stricter transfusion rules. This review details the mechanisms favoring the occurrence of alloimmunization and the immunological principles for the production of molecular and cellular tools for alloimmunization. It concludes with the main preventive measures available to limit the occurrence of these frequent complications of varying severity but sometimes severe.
Collapse
Affiliation(s)
- Olivier Garraud
- Sainbiose-Inserm_U1059, Faculty of Medicine, University of Saint-Etienne, Saint-Etienne, France.
| | - Jacques Chiaroni
- Etablissement Français du Sang Provence-Alpes-Côte d'Azur-Corse, 13005 Marseille, France; Biologie des Groupes Sanguins, EFS, CNRS, ADES, Aix Marseille University, 13005 Marseille, France
| |
Collapse
|
8
|
Liker M, Bojanić I, Plenković F, Lukić M, Tomac G, Raos M, Ćepulić BG. Platelet transfusion practice and related transfusion reactions in a large teaching hospital. Transfus Clin Biol 2021; 29:37-43. [PMID: 34411746 DOI: 10.1016/j.tracli.2021.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Platelet transfusion practice varies widely since many aspects of platelet concentrate (PC) use have not been definitively determined. The objectives of this retrospective study were to present platelet transfusion practice and evaluate PC and patient characteristics, as well as their association with transfusion reaction (TR) rate. MATERIAL AND METHODS Platelet transfusions over a 5-year period were analysed regarding PC characteristics (the ABO and RhD compatibility, product type, and storage duration), patient characteristics (most responsible diagnosis, age, and gender), and TR type. RESULTS A total of 46,351 PCs were transfused: 76.4% whole blood-derived (WBD) and 23.6% single donor apheresis (SDA). Three thousand seven hundred seventy-six patients received platelet transfusions: 24.7% paediatric and 75.3% adult patients, 79.6% outpatients and 20.4% inpatients. As much as 63.1% of all transfused PCs were fresh (stored for≤3 days), 98.0% ABO-identical, and 87.3% of all PCs given to RhD- patients were RhD-. PCs were mainly transfused to haemato-oncology (76.8%) and cardiovascular surgery patients (6.5%). Overall, 84 (0.18%) TRs were reported, with allergic TRs (ATRs) being the most common. Although PC ABO compatibility and storage duration, as well as patient age and gender, showed differences in TR rate, only the use of PCs in platelet additive solution (PAS) showed a statistically significant reduction of TRs (P<0.001). CONCLUSION Transfusion practice at the University Hospital Centre Zagreb resulted in almost all patients receiving ABO and RhD identical PCs, and most of them were fresh PCs. The most important factor affecting the incidence of TRs was platelet storage solution. The use of PAS effectively reduced the rate of TRs, particularly allergic TRs.
Collapse
Affiliation(s)
- M Liker
- Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia.
| | - I Bojanić
- Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia; University of Applied Health Sciences, Zagreb, Croatia; School of Medicine, University of Zagreb, Croatia
| | - F Plenković
- Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - M Lukić
- Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - G Tomac
- Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - M Raos
- Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia; University of Applied Health Sciences, Zagreb, Croatia
| | - B G Ćepulić
- Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia; University of Applied Health Sciences, Zagreb, Croatia; School of Medicine, University of Zagreb, Croatia; Department of Health Studies, University of Split, Croatia
| |
Collapse
|
9
|
Godlewski M, Knudsen ML, Braman JP, Harrison AK. Perioperative Management in Reverse Total Shoulder Arthroplasty. Curr Rev Musculoskelet Med 2021; 14:282-290. [PMID: 34414560 PMCID: PMC8390714 DOI: 10.1007/s12178-021-09709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW A successful reverse total shoulder arthroplasty requires careful preoperative planning and perioperative management. Preoperative comorbidity risks, perioperative pain management, and postoperative rehabilitation are all critical components of this arthroplasty. The current review examines available literature to guide the perioperative care of the reverse total shoulder arthroplasty patient. RECENT FINDINGS One of the most important advances for shoulder arthroplasty in recent years has been heightened awareness of various modalities for perioperative pain management. A number of recent studies have focused on the options for regional blockade as a critical tool for postoperative pain relief and the use of either continuous interscalene blocks or single shot blocks are supported. Additional studies are necessary to define the best local anesthetic agent and delivery mechanism to provide appropriate pain relief with a low side effect profile. Management of the patient throughout the perioperative course is a critical component in achieving better patient outcomes delivering high quality patient care. An orthopedic surgery team focused on perioperative management is better positioned to decrease adverse events and improve patient outcomes after reverse total shoulder arthroplasty.
Collapse
Affiliation(s)
- Matthew Godlewski
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MIN USA
| | - Michael L Knudsen
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MIN USA
| | - Jonathan P Braman
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MIN USA
| | - Alicia K Harrison
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MIN USA
| |
Collapse
|
10
|
Extracellular DNA in blood products and its potential effects on transfusion. Biosci Rep 2021; 40:222322. [PMID: 32150264 PMCID: PMC7098128 DOI: 10.1042/bsr20192770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/18/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023] Open
Abstract
Blood transfusions are sometimes necessary after a high loss of blood due to injury or surgery. Some people need regular transfusions due to medical conditions such as haemophilia or cancer. Studies have suggested that extracellular DNA including mitochondrial DNA present in the extracellular milieu of transfused blood products has biological actions that are capable of activating the innate immune systems and potentially contribute to some adverse reactions in transfusion. From the present work, it becomes increasingly clear that extracellular DNA encompassed mitochondrial DNA is far from being biologically inert in blood products. It has been demonstrated to be present in eligible blood products and thus can be transfused to blood recipients. Although the presence of extracellular DNA in human plasma was initially detected in 1948, some aspects have not been fully elucidated. In this review, we summarize the potential origins, clearance mechanisms, relevant structures, and potential role of extracellular DNA in the innate immune responses and its relationship with individual adverse reactions in transfusion.
Collapse
|
11
|
Cognasse F, Hally K, Fauteux-Daniel S, Eyraud MA, Arthaud CA, Fagan J, Mismetti P, Hamzeh-Cognasse H, Laradi S, Garraud O, Larsen P. Effects and Side Effects of Platelet Transfusion. Hamostaseologie 2021; 41:128-135. [PMID: 33711849 DOI: 10.1055/a-1347-6551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Kathryn Hally
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sebastien Fauteux-Daniel
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Marie-Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Charles-Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Jocelyne Fagan
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Patrick Mismetti
- SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Hind Hamzeh-Cognasse
- SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Sandrine Laradi
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Olivier Garraud
- SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Peter Larsen
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
12
|
Transfusion-associated anxiety: Recognised and overcome in an adolescent child. Transfus Clin Biol 2021; 28:217-220. [PMID: 33581309 DOI: 10.1016/j.tracli.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/23/2022]
Abstract
A 12-year-old boy presented to our palliative care cancer clinic with Ewing Sarcoma and anaemia in failure. Transfusion reactions were noted during several blood transfusions, which manifested as acute onset of breathlessness, mild chest pain, sweating, general discomfort, increased heart rate, respiratory rate, and blood pressure. All the possible causes of transfusion reaction were ruled out, other than transfusion-associated anxiety resembling transfusion reaction. In this case, adequate reassurance, counselling about the blood transfusion, distraction techniques, and the visual technique of masking the blood bag with black polythene foil helped overcome the patient's anxiety during the blood transfusion, and was uneventful henceforth. Since transfusion-associated anxiety is not an established and well-studied aspect of transfusion medicine yet, there is a need to have high clinical suspicion to recognise, assess, and forthwith prevent any such transfusion reactions without any delay.
Collapse
|
13
|
Kim YH, Seo JH, Ahn KM, Yang MS, Kim SH, Cho SH, Chang YS. Frequency and clinical characteristics of adverse transfusion reactions in hospitalized patients: A retrospective review of electronic medical records. ALLERGY ASTHMA & RESPIRATORY DISEASE 2021. [DOI: 10.4168/aard.2021.9.4.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yong-Hyun Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jang-Ho Seo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyung-Min Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Min-Suk Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-Heon Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
14
|
HaemoKBS: A knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.04.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Garraud O, Vuk T, Lozano M, Tissot JD. Transfusion medicine: Overtime paradigm changes and emerging paradoxes. Transfus Clin Biol 2020; 27:262-267. [PMID: 33035654 PMCID: PMC7537623 DOI: 10.1016/j.tracli.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This essay aims to discuss some aspects of blood transfusion in the perspective of the changes that occurred over time as well as modifications of the paradigms that transformed the activities and the organization of blood transfusion services. Without specific knowledge, pioneers envisioned precision and personalized medicine, rendering transfusion medicine operational. Transfusion medicine is like The Picture of Dorian Grey: always young despite being old and sometimes appearing old-fashioned. Over the years, the transfusion medicine discipline has evolved, and major progress has been achieved, despite some troublesome periods (for example, the tainted blood scandal, and—at the time being—the offending plasma market and the selling of human parts). Transfusion medicine has at all times implemented the rapidly developing biomedical technologies to secure blood components. The safety of blood components has now reached an exceptional level in economically wealthy countries, especially compared to other health care disciplines. Strengthening of the safety has mandated that blood donors and recipients are unrelated, an issue which has eased preservation and fractionation practices; blood is no longer arm-to-arm transfused and neither is whole blood, the commonest component. However, it is interesting to note that a revival is occurring as whole blood is back on stage for certain specific indications, which is one among the many paradoxes encountered while studying this discipline.
Collapse
Affiliation(s)
- O Garraud
- Université de Lyon Saint-Étienne, 10, rue Tréfilerie, 42023 Saint-Etienne Cedex 2, France; Institut National de la Transfusion Sanguine, 6, rue Alexandre Cabanel, 75015 Paris, France.
| | - T Vuk
- Croatian institute of transfusion medicine, Petrova ul. 3, 10000 Zagreb, Croatia
| | - M Lozano
- Clinic university hospital Barcelona, university of Barcelona, 170C. de Villarroel, 08036 Barcelona, Spain
| | - J-D Tissot
- Faculté de biologie et de médecine, université de Lausanne, 21, rue du Bugnon, 1011 Lausanne, Switzerland
| |
Collapse
|
16
|
Abstract
The in vitro production of red blood cells and platelets is a groundbreaking technology that can-when optimized-surrogate for donated blood cells, in total or in part. Here we discuss questions that may arise when the technology is available, relative to safety issues (comprising both quantitative and qualitative parameters) and to ethics, an item often forgotten in the debates so far.
Collapse
Affiliation(s)
- Olivier Garraud
- Faculty of Medicine, University of Lyon, 42023, Saint-Etienne, France; Institut National de la Transfusion Sanguine, 75015, Paris, France; Palliative Care Unit, The Ruffec Hospital, 16700, Ruffec, France.
| |
Collapse
|
17
|
Chen B, Xia R. Pro‐inflammatory effects after platelet transfusion: a review. Vox Sang 2020; 115:349-357. [PMID: 32293034 DOI: 10.1111/vox.12879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Bin‐Zhen Chen
- Department of Transfusion Medicine Huashan Hospital Fudan University Shanghai China
| | - Rong Xia
- Department of Transfusion Medicine Huashan Hospital Fudan University Shanghai China
| |
Collapse
|
18
|
Haddad A, Elgemmezi T, Chaїb M, Bou Assi T, Abu Helu R, Hmida S, Benajiba M, Ba K, Alqudah M, Abi Hanna P, Najjar O, Garraud O. Quality and safety measures in transfusion practice: The experience of eight southern/eastern Mediterranean countries. Vox Sang 2020; 115:405-423. [PMID: 32124457 DOI: 10.1111/vox.12903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Blood transfusion is inherently associated with risks, and little is known regarding the available quality and safety measures in developing countries. No studies or census has been carried out, and therefore, no data on this compelling issue are available. MATERIALS AND METHODS Data emanating from eight Arabic eastern/southern Mediterranean countries who responded to five surveys were collected and tabulated. RESULTS Asepsis during phlebotomy, screening for serological and immuno-haematological parameters and appropriate storage conditions are maintained across all countries. Variations in blood component processing exist. Universal leucoreduction is systematically applied in Lebanon. Nucleic acid testing is only performed in Egypt. Aphaeresis procedure, leucoreduction and quality control for blood components are virtually inexistent in Mauritania. Written donor questionnaire is absent in Algeria and Tunisia. Most donor deferral periods for infectious agents are inconsistent with international standards. CONCLUSION Gaps in the processing and in the quality/safety measures applied to the manufacture of blood components are quite evident in most eastern/southern Mediterranean countries. The decision of establishing an effective collaboration network and an independent body - aside from WHO - composed of specialists that oversees all transfusion activities in these countries is certainly a crucial step towards ensuring an optimum level of blood safety.
Collapse
Affiliation(s)
- Antoine Haddad
- Department of Clinical Pathology and Blood Bank, Sacré-Coeur Hospital, Lebanese University, Beirut, Lebanon.,EA3064, Faculty of Medicine of Saint-Etienne, University of Lyon, Saint-Etienne, France
| | | | - Mohamed Chaїb
- Centre de Wilaya de Transfusion Sanguine de Blida, Blida, Algeria
| | - Tarek Bou Assi
- Department of Laboratory Medicine, Psychiatric Hospital of the Cross, Jaledib, Lebanon.,Department of Laboratory Medicine and Blood Bank, Saint Joseph Hospital, Dora, Lebanon
| | - Rasmi Abu Helu
- Department of Medical Laboratory Sciences, Al-Quds University, Abu-Deis, Palestine
| | - Slama Hmida
- Centre National de transfusion Sanguine, Tunis, Tunisia
| | - Mohamed Benajiba
- Centre National de Transfusion Sanguine et d'Hématologie, Rabat, Morocco
| | - Khadijetou Ba
- Faculté de Médicine, Centre National de Transfusion Sanguine, Nouakchott, Mauritanie
| | - Mohammad Alqudah
- Departments of Pathology and Microbiology. School of Medicine, Jordan University of Sciences and Technology, Jordan
| | - Pierre Abi Hanna
- Infectious diseases Department, Sacré-Coeur Hospital, Lebanese University, Beirut, Lebanon
| | | | - Olivier Garraud
- EA3064, Faculty of Medicine of Saint-Etienne, University of Lyon, Saint-Etienne, France.,Institut National de la Transfusion Sanguine, Paris, France.,Palliative Care Unit, The Ruffec Hospital, Ruffec, France
| |
Collapse
|
19
|
Garraud O. How to reposition the benefice–risk balance to safely transfuse patients in non-vital situations? Transfus Clin Biol 2019; 26:171-173. [DOI: 10.1016/j.tracli.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 01/16/2023]
|
20
|
Boureau AS, de Decker L. Blood transfusion in older patients. Transfus Clin Biol 2019; 26:160-163. [DOI: 10.1016/j.tracli.2019.06.190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
|
21
|
Rebulla P. The long and winding road to pathogen reduction of platelets, red blood cells and whole blood. Br J Haematol 2019; 186:655-667. [PMID: 31304588 DOI: 10.1111/bjh.16093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023]
Abstract
Pathogen reduction technologies (PRTs) have been developed to further reduce the current very low risks of acquiring transfusion-transmitted infections and promptly respond to emerging infectious threats. An entire portfolio of PRTs suitable for all blood components is not available, but the field is steadily progressing. While PRTs for plasma have been used for many years, PRTs for platelets, red blood cells (RBC) and whole blood (WB) were developed more slowly, due to difficulties in preserving cell functions during storage. Two commercial platelet PRTs use ultra violet (UV) A and UVB light in the presence of amotosalen or riboflavin to inactivate pathogens' nucleic acids, while a third experimental PRT uses UVC light only. Two PRTs for WB and RBC have been tested in experimental clinical trials with storage limited to 21 or 35 days, due to unacceptably high RBC storage lesion beyond these time limits. This review summarizes pre-clinical investigations and selected outcomes from clinical trials using the above PRTs. Further studies are warranted to decrease cell storage lesions after PRT treatment and to test PRTs in different medical and surgical conditions. Affordability remains a major administrative obstacle to PRT use, particularly so in geographical regions with higher risks of transfusion-transmissible infections.
Collapse
Affiliation(s)
- Paolo Rebulla
- Department of Transfusion Medicine and Haematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
22
|
Marcoux G, Magron A, Sut C, Laroche A, Laradi S, Hamzeh-Cognasse H, Allaeys I, Cabon O, Julien AS, Garraud O, Cognasse F, Boilard E. Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions. Transfusion 2019; 59:2403-2414. [PMID: 30973972 DOI: 10.1111/trf.15300] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Whereas platelet transfusion is a common medical procedure, inflammation still occurs in a fraction of transfused individuals despite the absence of any apparent infectious agents. Platelets can shed membrane vesicles, called extracellular vesicles (EVs), some of which contain mitochondria (mito+EV). With its content of damage-associated molecular pattern (DAMP), the mitochondrion can stimulate the innate immune system. Mitochondrial DNA (mtDNA) is a recognized DAMP detected in the extracellular milieu in numerous inflammatory conditions and in platelet concentrates. We hypothesized that platelet-derived mitochondria encapsulated in EVs may represent a reservoir of mtDNA. STUDY DESIGN AND METHODS Herein, we explored the implication of mito+EVs in the occurrence of mtDNA quantified in platelet concentrate supernatants that induced or did not induce transfusion adverse reactions. RESULTS We observed that EVs were abundant in platelet concentrates, and platelet-derived mito+EVs were more abundant in platelet concentrates that induced adverse reactions. A significant correlation (rs = 0.73; p < 0.0001) between platelet-derived mito+EV levels and mtDNA concentrations was found. However, there was a nonsignificant correlation between the levels of EVs without mitochondria and mtDNA concentrations (rs = -0.11; p = 0.5112). The majority of the mtDNA was encapsulated into EVs. CONCLUSION This study suggests that platelet-derived EVs, such as those that convey mitochondrial DAMPs, may be a useful biomarker for the prediction of potential risk of adverse transfusion reactions. Moreover, our work implies that investigations are necessary to determine whether there is a causal pathogenic role of mitochondrial DAMP encapsulated in EVs as opposed to mtDNA in solution.
Collapse
Affiliation(s)
- Genevieve Marcoux
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
| | - Audrey Magron
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
| | - Caroline Sut
- Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France.,Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Audree Laroche
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
| | - Sandrine Laradi
- Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France.,Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | | | - Isabelle Allaeys
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
| | - Ophelie Cabon
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada
| | - Anne-Sophie Julien
- Department of Mathematics and Statistic, Université Laval, Quebec City, Québec, Canada
| | - Olivier Garraud
- Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France
| | - Fabrice Cognasse
- Université de Lyon, UJM-Saint-Etienne, GIMAP, EA 3064, Saint-Étienne, France.,Département Scientifique, Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Québec, Canada.,Canadian National Transplantation Research Program, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Christaki EE, Politou M, Antonelou M, Athanasopoulos A, Simantirakis E, Seghatchian J, Vassilopoulos G. Ex vivo generation of transfusable red blood cells from various stem cell sources: A concise revisit of where we are now. Transfus Apher Sci 2019; 58:108-112. [DOI: 10.1016/j.transci.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Garraud O, Cognasse F, Moncharmont P. Immunological Features in the Process of Blood Platelet-Induced Alloimmunisation, with a Focus on Platelet Component Transfusion. Diseases 2019; 7:E7. [PMID: 30646515 PMCID: PMC6473846 DOI: 10.3390/diseases7010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
Alloimmunisation to platelet antigens is not uncommon; a large number of females, having had pregnancies, developed antibodies to Human Leukocyte Antigen (HLA) moieties harboured on their foetuses' cells (inherited from the father(s)) that may conflict with further pregnancies and transfused Platelet Components occasionally. This is possible since platelets constitutionally express HLA class I molecules (though in copy numbers that consistently differ among individuals). Platelets also express HPA moieties that are variants of naturally expressed adhesion and aggregation molecules; HPA differences between mothers and foetuses and between donors and recipients explain alloimmune conflicts and consequences. Lastly, platelets express ABO blood group antigens, which are rarely immunising, however transfusion mismatches in ABO groups seem to be related to immunisation in other blood and tissue groups. Transfusion also brings residual leukocytes that may also immunise through their copious copy numbers of HLA class I (rarely class II on activated T lymphocytes, B cells, and dendritic cells). In addition, residual red blood cells in platelet concentrates may induce anti-red blood cell allo-antibodies. This short review aims to present the main mechanisms that are commonly reported in alloimmunisation. It also critically endeavours to examine paths to either dampen alloimmunisation occurrences or to prevent them.
Collapse
Affiliation(s)
- Olivier Garraud
- EA_3064, Faculty of Medicine of Saint-Etienne, University of Lyon, 42023 Saint-Etienne, France.
- Institut National de la Transfusion Sanguine, 75015 Paris, France.
| | - Fabrice Cognasse
- EA_3064, Faculty of Medicine of Saint-Etienne, University of Lyon, 42023 Saint-Etienne, France.
- Établissement Français du Sang Auvergne-Rhône-Alpes, 69150 Décines, France.
| | - Pierre Moncharmont
- Établissement Français du Sang Auvergne-Rhône-Alpes, 69150 Décines, France.
| |
Collapse
|
25
|
Garraud O. Pathogen reduction or inactivation technologies for platelet components: Does decision making have to await further clinical trials? Transfus Apher Sci 2018; 57:797-798. [DOI: 10.1016/j.transci.2018.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Garraud O, Cognasse F, Laradi S, Hamzeh-Cognasse H, Peyrard T, Tissot JD, Fontana S. How to mitigate the risk of inducing transfusion-associated adverse reactions. Transfus Clin Biol 2018; 25:262-268. [DOI: 10.1016/j.tracli.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Garraud O, Lozano M. Pathogen inactivation/reduction technologies for platelet transfusion: Where do we stand? Transfus Clin Biol 2018; 25:165-171. [DOI: 10.1016/j.tracli.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Ma X, Su W, Chen H. Reversible splenial lesion syndrome after blood transfusion presents callosal disconnection syndrome: A case report. Medicine (Baltimore) 2018; 97:e11127. [PMID: 29901639 PMCID: PMC6023686 DOI: 10.1097/md.0000000000011127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Reversible splenial lesion syndrome (RESLES) is a reversible condition with an excellent prognosis in most patients. The clinical features include altered states of consciousness, delirium, headache, and seizures, but no callosal disconnection syndromes have been described in RESLES. PATIENT CONCERNS We presented a 57-year-old patient with alien hand syndrome, autotopagnosia, gait disorders, and left ideomotor apraxia after blood transfusion. The brain magnetic resonance imaging (MRI) showed a few regions with high signal intensity in the genu, body, and splenium of the right corpus callosum on diffusion weighted images. Cerebrovascular examination was unremarkable. DIAGNOSES He was diagnosed with RESLES and callosal disconnection syndrome. INTERVENTIONS The patient received symptomatic and supportive treatment in our hospital. OUTCOMES He recovered to baseline on following up of 6 months and abnormalities on brain MRI completely disappeared. LESSONS Neurologists should be aware of the symptoms of callosal disconnection syndrome in RESLES. In addition, caution should be taken when transfusing blood products in patients with gastrointestinal bleeding.
Collapse
|