1
|
Siboro P, Sharma AK, Lai PJ, Jayakumar J, Mi FL, Chen HL, Chang Y, Sung HW. Harnessing HfO 2 Nanoparticles for Wearable Tumor Monitoring and Sonodynamic Therapy in Advancing Cancer Care. ACS NANO 2024; 18:2485-2499. [PMID: 38197613 PMCID: PMC10811684 DOI: 10.1021/acsnano.3c11346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/11/2024]
Abstract
Addressing the critical requirement for real-time monitoring of tumor progression in cancer care, this study introduces an innovative wearable platform. This platform employs a thermoplastic polyurethane (TPU) film embedded with hafnium oxide nanoparticles (HfO2 NPs) to facilitate dynamic tracking of tumor growth and regression in real time. Significantly, the synthesized HfO2 NPs exhibit promising characteristics as effective sonosensitizers, holding the potential to efficiently eliminate cancer cells through ultrasound irradiation. The TPU-HfO2 film, acting as a dielectric elastomer (DE) strain sensor, undergoes proportional deformation in response to changes in the tumor volume, thereby influencing its electrical impedance. This distinctive behavior empowers the DE strain sensor to continuously and accurately monitor alterations in tumor volume, determining the optimal timing for initiating HfO2 NP treatment, optimizing dosages, and assessing treatment effectiveness. Seamless integration with a wireless system allows instant transmission of detected electrical impedances to a smartphone for real-time data processing and visualization, enabling immediate patient monitoring and timely intervention by remote medical staff. By combining the dynamic tumor monitoring capabilities of the TPU-HfO2 film with the sonosensitizer potential of HfO2 NPs, this approach propels cancer care into the realm of telemedicine, representing a significant advancement in patient treatment.
Collapse
Affiliation(s)
- Putry
Yosefa Siboro
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Amit Kumar Sharma
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Pei-Jhun Lai
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Jayachandran Jayakumar
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Fwu-Long Mi
- Department
of Biochemistry and Molecular Cell Biology, School of Medicine, College
of Medicine, Taipei Medical University, Taipei 23142, Taiwan (ROC)
| | - Hsin-Lung Chen
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Yen Chang
- Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of
Medicine, Tzu Chi University, Hualien 97004, Taiwan (ROC)
| | - Hsing-Wen Sung
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| |
Collapse
|
2
|
Kalra J, Baker J, Song J, Kyle A, Minchinton A, Bally M. Inter-Metastatic Heterogeneity of Tumor Marker Expression and Microenvironment Architecture in a Preclinical Cancer Model. Int J Mol Sci 2021; 22:6336. [PMID: 34199298 PMCID: PMC8231937 DOI: 10.3390/ijms22126336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/25/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Preclinical drug development studies rarely consider the impact of a candidate drug on established metastatic disease. This may explain why agents that are successful in subcutaneous and even orthotopic preclinical models often fail to demonstrate efficacy in clinical trials. It is reasonable to anticipate that sites of metastasis will be phenotypically unique, as each tumor will have evolved heterogeneously with respect to gene expression as well as the associated phenotypic outcome of that expression. The objective for the studies described here was to gain an understanding of the tumor heterogeneity that exists in established metastatic disease and use this information to define a preclinical model that is more predictive of treatment outcome when testing novel drug candidates clinically. METHODS Female NCr nude mice were inoculated with fluorescent (mKate), Her2/neu-positive human breast cancer cells (JIMT-mKate), either in the mammary fat pad (orthotopic; OT) to replicate a primary tumor, or directly into the left ventricle (intracardiac; IC), where cells eventually localize in multiple sites to create a model of established metastasis. Tumor development was monitored by in vivo fluorescence imaging (IVFI). Subsequently, animals were sacrificed, and tumor tissues were isolated and imaged ex vivo. Tumors within organ tissues were further analyzed via multiplex immunohistochemistry (mIHC) for Her2/neu expression, blood vessels (CD31), as well as a nuclear marker (Hoechst) and fluorescence (mKate) expressed by the tumor cells. RESULTS Following IC injection, JIMT-1mKate cells consistently formed tumors in the lung, liver, brain, kidney, ovaries, and adrenal glands. Disseminated tumors were highly variable when assessing vessel density (CD31) and tumor marker expression (mkate, Her2/neu). Interestingly, tumors which developed within an organ did not adopt a vessel microarchitecture that mimicked the organ where growth occurred, nor did the vessel microarchitecture appear comparable to the primary tumor. Rather, metastatic lesions showed considerable variability, suggesting that each secondary tumor is a distinct disease entity from a microenvironmental perspective. CONCLUSIONS The data indicate that more phenotypic heterogeneity in the tumor microenvironment exists in models of metastatic disease than has been previously appreciated, and this heterogeneity may better reflect the metastatic cancer in patients typically enrolled in early-stage Phase I/II clinical trials. Similar to the suggestion of others in the past, the use of models of established metastasis preclinically should be required as part of the anticancer drug candidate development process, and this may be particularly important for targeted therapeutics and/or nanotherapeutics.
Collapse
Affiliation(s)
- Jessica Kalra
- Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada;
- Applied Research Centre, Langara, Vancouver, BC V5Y 2Z6, Canada
- Department Anesthesia Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Jennifer Baker
- Integrative Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; (J.B.); (A.K.)
| | - Justin Song
- Chemical and Biomolecular Engineering Department, Vanderbilt University, Nashville, TN 37235, USA;
| | - Alastair Kyle
- Integrative Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; (J.B.); (A.K.)
| | - Andrew Minchinton
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Integrative Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; (J.B.); (A.K.)
| | - Marcel Bally
- Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada;
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Nanomedicine Innovation Network, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Liu YT, Goel S, Kai M, Moran Guerrero JA, Nguyen T, Mai J, Shen H, Ziemys A, Yokoi K. Seed- and Soil-Dependent Differences in Murine Breast Tumor Microenvironments Dictate Anti-PD-L1 IgG Delivery and Therapeutic Efficacy. Pharmaceutics 2021; 13:pharmaceutics13040530. [PMID: 33920216 PMCID: PMC8069710 DOI: 10.3390/pharmaceutics13040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
We sought to determine if Stephen Paget’s “seed and soil” hypothesis of organ-preference patterns of cancer metastasis can explain the development of heterogeneity in a tumor microenvironment (TME) as well as immunotherapeutic delivery and efficacy. We established single-cell-derived clones (clones 1 and 16) from parental 4T1 murine breast cancer cells to create orthotopic primary and liver metastasis models to deconvolute polyclonal complexity cancer cells and the difference in TME-derived heterogeneities. Tumor-bearing mice were treated with anti-PD-L1 IgG or a control antibody, and immunofluorescent imaging and quantification were then performed to evaluate the therapeutic efficacy on tumor growth, the delivery of therapy to tumors, the development of blood vessels, the expression of PD-L1, the accumulation of immune cells, and the amount of coagulation inside tumors. The quantification showed an inverse correlation between the amount of delivered therapy and therapeutic efficacy in parental-cell-derived tumors. In contrast, tumors originating from clone 16 cells accumulated a significantly greater amount of therapy and responded better than clone-1-derived tumors. This difference was greater when tumors grew in the liver than the primary site. A similar trend was found in PD-L1 expression and immune cell accumulation. However, the change in the number of blood vessels was not significant. In addition, the amount of coagulation was more abundant in clone-1-derived tumors when compared to others. Thus, our findings reconfirmed the seed- and soil-dependent differences in PD-L1 expression, therapeutic delivery, immune cell accumulation, and tumor coagulation, which can constitute a heterogeneous delivery and response of immunotherapy in polyclonal tumors growing in different organs.
Collapse
|
4
|
Zanotelli MR, Chada NC, Johnson CA, Reinhart-King CA. The Physical Microenvironment of Tumors: Characterization and Clinical Impact. ACTA ACUST UNITED AC 2020. [DOI: 10.1142/s1793048020300029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tumor microenvironment plays a critical role in tumorigenesis and metastasis. As tightly controlled extracellular matrix homeostasis is lost during tumor progression, a dysregulated extracellular matrix can significantly alter cellular phenotype and drive malignancy. Altered physical properties of the tumor microenvironment alter cancer cell behavior, limit delivery and efficacy of therapies, and correlate with tumorigenesis and patient prognosis. The physical features of the extracellular matrix during tumor progression have been characterized; however, a wide range of methods have been used between studies and cancer types resulting in a large range of reported values. Here, we discuss the significant mechanical and structural properties of the tumor microenvironment, summarizing their reported values and clinical impact across cancer type and grade. We attempt to integrate the values in the literature to identify sources of reported differences and commonalities to better understand how aberrant extracellular matrix dynamics contribute to cancer progression. An intimate understanding of altered matrix properties during malignant transformation will be crucial in effectively detecting, monitoring, and treating cancer.
Collapse
Affiliation(s)
- Matthew R. Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14583, USA
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - Neil C. Chada
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - C. Andrew Johnson
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| |
Collapse
|
5
|
Arshad U, Sutton PA, Ashford MB, Treacher KE, Liptrott NJ, Rannard SP, Goldring CE, Owen A. Critical considerations for targeting colorectal liver metastases with nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1588. [PMID: 31566913 PMCID: PMC7027529 DOI: 10.1002/wnan.1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer remains a significant cause of morbidity and mortality worldwide. Half of all patients develop liver metastases, presenting unique challenges for their treatment. The shortcomings of conventional chemotherapy has encouraged the use of nanomedicines; the application of nanotechnology in the diagnosis and treatment of disease. In spite of technological improvements in nanotechnology, the complexity of biological systems hinders the prospect of nanomedicines being applied in cancer therapy at the present time. This review highlights current biological barriers and discusses aspects of tumor biology together with the physicochemical features of the nanocarrier, that need to be considered in order to develop effective nanotherapeutics for colorectal cancer patients with liver metastases. It becomes clear that incorporating an interdisciplinary approach when developing nanomedicines should assure appropriate disease-driven design and that this will form a critical step in improving their clinical translation. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Usman Arshad
- Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Paul A. Sutton
- Department of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| | - Marianne B. Ashford
- AstraZeneca, Advanced Drug Delivery, Pharmaceutical Sciences, R&DMacclesfieldUK
| | - Kevin E. Treacher
- AstraZeneca, Pharmaceutical Technology and DevelopmentMacclesfieldUK
| | - Neill J. Liptrott
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Steve P. Rannard
- Department of Chemistry, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Christopher E. Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
6
|
Nizzero S, Shen H, Ferrari M, Corradetti B. Immunotherapeutic Transport Oncophysics: Space, Time, and Immune Activation in Cancer. Trends Cancer 2019; 6:40-48. [PMID: 31952780 DOI: 10.1016/j.trecan.2019.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022]
Abstract
Immuno-oncology has gained momentum thanks to the success of strategies aimed at enhancing immune-mediated antitumor response. The field of immunotherapeutic transport oncophysics investigates the physical processes that drive cancer immunotherapies. This review discusses three main aspects that determine the outcome of an immunotherapy-based treatment from a physical point of view; (i) space, the distribution of cancer and immune cells within tumor masses, (ii) time, the temporal dynamic of immune response against tumors, and (iii) activity, the ability of immune cell populations to suppress cancer. Upon introducing these topics with examples from the literature, we investigate in detail two cases where the interplay between space, time, and activation variables determines immune response: nanodendritic cell vaccines and immunosuppression in ovarian cancer.
Collapse
Affiliation(s)
- Sara Nizzero
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Mathematics in Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; University of St. Thomas, Houston, TX 77006, USA
| | - Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Swansea University Medical School, Singleton Park, Swansea, Wales, UK.
| |
Collapse
|
7
|
Mikolajczyk A, Khosrawipour V, Kulas J, Kocielek K, Migdal P, Arafkas M, Khosrawipour T. Release of doxorubicin from its liposomal coating via high intensity ultrasound. Mol Clin Oncol 2019; 11:483-487. [PMID: 31620279 PMCID: PMC6787992 DOI: 10.3892/mco.2019.1917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022] Open
Abstract
The present ex vivo study was performed to analyze the impact of high intensity ultrasound (HIUS) on penetration depth and particle stability of liposomal doxorubicin (LD) on the peritoneal surface. Fresh post mortem swine peritoneum was cut into proportional sections and subjected to a previously established ex vivo model of pressurized intraperitoneal aerosol chemotherapy (PIPAC). Samples were treated with 50 ml NaCl (0.9%) containing 3 mg LD via PIPAC or lavage. In both groups, half of the samples received additional HIUS treatment. Samples treated via PIPAC were covered with a 30-mm-thick abdominal muscle wall tissue, fatty tissue and skin, followed by transcutaneous HIUS. Samples administered with LD via lavage received close-range contact HIUS. Doxorubicin tissue penetration was measured using fluorescence microscopy on frozen sections. Liposomal integrity on peritoneal surfaces was measured via electron microscopy (EM). Mean penetration rates of doxorubicin were significantly higher with HIUS in combination with PIPAC or lavage compared with PIPAC alone (P<0.001) or lavage alone (P<0.00001). LD was not detected on the peritoneal surface via EM analysis in either group following HIUS. The present data suggested that HIUS may be a feasible application that can facilitate the release of doxorubicin from its liposomal envelope. HIUS was effective in both close-range, in contact with the samples, and through the abdominal wall. The present approach may be used in the future for both endoscopic and open lavage of the peritoneal cavity with LD in intraperitoneal chemotherapeutic applications such as hyperthermic intraperitoneal chemotherapy or PIPAC.
Collapse
Affiliation(s)
- Agata Mikolajczyk
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-373 Wroclaw, Poland
| | - Veria Khosrawipour
- Department of Orthopedic and Trauma Surgery, Ortho-Klinik Dortmund, Dortmund D-44263, Germany
| | - Joanna Kulas
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-373 Wroclaw, Poland
| | - Klaudia Kocielek
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-373 Wroclaw, Poland
| | - Pawel Migdal
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 50-373 Wroclaw, Poland
| | - Mohamed Arafkas
- Department of Plastic Surgery, Ortho-Klinik Dortmund, Dortmund D-44263, Germany
| | - Tanja Khosrawipour
- Department of Surgery, Division of Colorectal Surgery, University of California, Irvine, Orange, CA 92868, USA
- Department of Surgery (A), University-Hospital Düsseldorf, Düsseldorf D-40225, Germany
| |
Collapse
|