1
|
Karthikeyan SK, Chandrashekar DS, Sahai S, Shrestha S, Aneja R, Singh R, Kleer CG, Kumar S, Qin ZS, Nakshatri H, Manne U, Creighton CJ, Varambally S. MammOnc-DB, an integrative breast cancer data analysis platform for target discovery. NPJ Breast Cancer 2025; 11:35. [PMID: 40251157 PMCID: PMC12008238 DOI: 10.1038/s41523-025-00750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/27/2025] [Indexed: 04/20/2025] Open
Abstract
Breast cancer (BCa), a leading malignancy among women, is characterized by morphological and molecular heterogeneity. While early-stage, hormone receptor, and HER2-positive BCa are treatable, triple-negative BCa and metastatic BCa remains largely untreatable. Advances in sequencing and proteomic technologies have improved our understanding of the molecular alterations that occur during BCa initiation and progression and enabled identification of subclass-specific biomarkers and therapeutic targets. Despite the availability of abundant omics data in public repositories, user-friendly tools for multi-omics data analysis and integration are scarce. To address this, we developed a comprehensive BCa data analysis platform called MammOnc-DB ( http://resource.path.uab.edu/MammOnc-Home.html ), comprising data from more than 20,000 BCa samples. MammOnc-DB facilitates hypothesis generation and testing, biomarker discovery, and therapeutic targets identification. The platform also includes pre- and post-treatment data, which can help users identify treatment resistance markers and support combination therapy strategies, offering researchers and clinicians a comprehensive tool for BCa data analysis and visualization.
Collapse
Affiliation(s)
| | | | - Snigdha Sahai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadeep Shrestha
- Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Ritu Aneja
- School of Health Professions, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sidharth Kumar
- Department of Computer Science, University of Illinois Chicago, Chicago, IL, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | | | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad J Creighton
- Department of Medicine and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Pinto RJ, Ferreira D, Salamanca P, Miguel F, Borges P, Barbosa C, Costa V, Lopes C, Santos LL, Pereira L. Coding and regulatory somatic profiling of triple-negative breast cancer in Sub-Saharan African patients. Sci Rep 2025; 15:10325. [PMID: 40133516 PMCID: PMC11937512 DOI: 10.1038/s41598-025-94707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
The burden of triple-negative breast cancer (TNBC) may be shaped by genetic factors, particularly inherited and somatic mutation profiles. However, data on this topic remain limited, especially for the African continent, where a higher TNBC incidence is observed. In the age of precision medicine, cataloguing TNBC diversity in African patients becomes imperative. We performed whole exome sequencing, including untranslated regions, on 30 samples from Angola and Cape Verde, which allowed to ascertain on potential regulatory mutations in TNBC for the first time. A high somatic burden was observed for the African cohort, with 86% of variants being so far unreported. Recurring to predictive functional algorithms, 17% of the somatic single nucleotide variants were predicted to be deleterious at the protein level, and 20% overlapped with candidate cis-regulatory elements controlling gene expression. Several of these somatic functionally-impactful mutations and copy number variation (mainly in 1q, 8q, 6 and 10p) occur in known BC- and all cancer-driver genes, enriched for several cancer mechanisms, including response to radiation and related DNA repair mechanisms. TP53 is the top of these known BC-driver genes, but our results identified possible novel TNBC driver genes that may play a main role in the African context, as TTN, CEACAM7, DEFB132, COPZ2 and GAS1. These findings emphasize the need to expand cancer omics screenings across the African continent, the region of the globe with highest genomic diversity, accelerating the discovery of new somatic mutations and cancer-related pathways.
Collapse
Affiliation(s)
- Ricardo J Pinto
- i3S, Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Dylan Ferreira
- Research Center of IPO-Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.CCC) Raquel Seruca, Porto, Portugal
| | | | | | - Pamela Borges
- Hospital Universitário Agostinho Neto, Praia, Cabo Verde
| | - Carla Barbosa
- Hospital Universitário Agostinho Neto, Praia, Cabo Verde
| | - Vitor Costa
- Hospital Universitário Agostinho Neto, Praia, Cabo Verde
| | - Carlos Lopes
- Unilabs | Laboratório Anatomia Patológica, Porto, Portugal
| | - Lúcio Lara Santos
- Research Center of IPO-Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.CCC) Raquel Seruca, Porto, Portugal
- FP-I3ID, University Fernando Pessoa, Porto, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences, University Fernando Pessoa, Gondomar, Portugal
| | - Luisa Pereira
- i3S, Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Smith LA, Cahill JA, Lee JH, Graim K. Equitable machine learning counteracts ancestral bias in precision medicine. Nat Commun 2025; 16:2144. [PMID: 40064867 PMCID: PMC11894161 DOI: 10.1038/s41467-025-57216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Gold standard genomic datasets severely under-represent non-European populations, leading to inequities and a limited understanding of human disease. Therapeutics and outcomes remain hidden because we lack insights that could be gained from analyzing ancestrally diverse genomic data. To address this significant gap, we present PhyloFrame, a machine learning method for equitable genomic precision medicine. PhyloFrame corrects for ancestral bias by integrating functional interaction networks and population genomics data with transcriptomic training data. Application of PhyloFrame to breast, thyroid, and uterine cancers shows marked improvements in predictive power across all ancestries, less model overfitting, and a higher likelihood of identifying known cancer-related genes. Validation in fourteen ancestrally diverse datasets demonstrates that PhyloFrame is better able to adjust for ancestry bias across all populations. The ability to provide accurate predictions for underrepresented groups, in particular, is substantially increased. Analysis of performance in the most diverse continental ancestry group, African, illustrates how phylogenetic distance from training data negatively impacts model performance, as well as PhyloFrame's capacity to mitigate these effects. These results demonstrate how equitable artificial intelligence (AI) approaches can mitigate ancestral bias in training data and contribute to equitable representation in medical research.
Collapse
Affiliation(s)
- Leslie A Smith
- Department of Computer & Information Science & Engineering, University of Florida, 1889 Museum Rd, Gainesville, 32611, FL, USA
| | - James A Cahill
- Environmental Engineering Sciences Department, University of Florida, 365 Weil Hall, Gainesville, 32611, FL, USA
- UF Genetics Institute, University of Florida, 2033 Mowry Rd, Gainesville, 32610, FL, USA
| | - Ji-Hyun Lee
- Department of Biostatistics, University of Florida, 2004 Mowry Rd, Gainesville, Gainesville, 32603, FL, USA
- UF Health Cancer Center, University of Florida, 2033 Mowry Rd, Gainesville, 32610, FL, USA
| | - Kiley Graim
- Department of Computer & Information Science & Engineering, University of Florida, 1889 Museum Rd, Gainesville, 32611, FL, USA.
- UF Genetics Institute, University of Florida, 2033 Mowry Rd, Gainesville, 32610, FL, USA.
- UF Health Cancer Center, University of Florida, 2033 Mowry Rd, Gainesville, 32610, FL, USA.
| |
Collapse
|
4
|
Li Y, Zeng M, Qin Y, Feng F, Wei H. The role of KRT18 in lung adenocarcinoma development: integrative bioinformatics and experimental validation. Discov Oncol 2024; 15:841. [PMID: 39729139 DOI: 10.1007/s12672-024-01728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Lung adenocarcinoma (LUAD) represents one of the most common subtypes of lung cancer with high rates of incidence and mortality, which contributes to substantial health and economic demand across the globe. Treatment today mainly consists of surgery, radiotherapy, and chemotherapy, but their efficacy in advanced stages is often suboptimal and emphasizes the clear need for new biomarkers and therapeutic targets. Using comprehensive bioinformatics analyses consisting of the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Human Protein Atlas (HPA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), immune infiltration analysis and functional enrichment analysis, and single-cell analysis, we examined the potential of keratin 18 (KRT18) as a candidate biomarker in advanced LUAD. KRT18 was significantly elevated in LUAD tissue relative to normal adjacent tissue (p < 0.05), and its expression was correlated with poor clinical-pathological features and inferior prognostic outcome. Furthermore, KRT18 expression was associated with several populations of immune cells, suggesting KRT18 may contribute to the local tumor microenvironment and potentially pathways of immune evasion. Survival analysis indicated that elevated KRT18 expression correlated with poor overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI), reinforcing its legitimacy as a prognostic tool (AUC = 0.846). Importantly, gene enrichment analysis found KRT18-associated genes enriched for pathways associated with lymphocyte differentiation and immune response pathways, which provides mechanistic insight into biological effects attributed to KRT18. Notably, NU.1025 has demonstrated the capability of reversing KRT18-modulated oncogenic features, and targeted therapeutic strategies can be developed moving forward. In conclusion, our data demonstrate that KRT18 has utility as a potential biomarker but may also serve as a therapeutic target in LUAD and merit further investigation into underlying mechanistic functions and potential therapeutic roles in the clinic.
Collapse
Affiliation(s)
- Yongjie Li
- School of Pharmacy, Shaoyang University, Shaoyang, 422000, Hunan, China
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, Shaoyang, 422000, Hunan, China
| | - Min Zeng
- Department of Respiratory and Critical Care Medicine, The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, Shaoyang, 422000, Hunan, China.
| | - Yinan Qin
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang, China
| | - Fen Feng
- School of Pharmacy, Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Hailiang Wei
- School of Pharmacy, Shaoyang University, Shaoyang, 422000, Hunan, China
| |
Collapse
|
5
|
Varambally S, Karthikeyan SK, Chandrashekar D, Sahai S, Shrestha S, Aneja R, Singh R, Kleer C, Kumar S, Qin Z, Nakshatri H, Manne U, Creighton C. MammOnc-DB, an integrative breast cancer data analysis platform for target discovery. RESEARCH SQUARE 2024:rs.3.rs-4926362. [PMID: 39399665 PMCID: PMC11469468 DOI: 10.21203/rs.3.rs-4926362/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Breast cancer (BCa) is one of the most common malignancies among women worldwide. It is a complex disease that is characterized by morphological and molecular heterogeneity. In the early stages of the disease, most BCa cases are treatable, particularly hormone receptor-positive and HER2-positive tumors. Unfortunately, triple-negative BCa and metastases to distant organs are largely untreatable with current medical interventions. Recent advances in sequencing and proteomic technologies have improved our understanding of the molecular changes that occur during breast cancer initiation and progression. In this era of precision medicine, researchers and clinicians aim to identify subclass-specific BCa biomarkers and develop new targets and drugs to guide treatment. Although vast amounts of omics data including single cell sequencing data, can be accessed through public repositories, there is a lack of user-friendly platforms that integrate information from multiple studies. Thus, to meet the need for a simple yet effective and integrative BCa tool for multi-omics data analysis and visualization, we developed a comprehensive BCa data analysis platform called MammOnc-DB (http://resource.path.uab.edu/MammOnc-Home.html), comprising data from more than 20,000 BCa samples. MammOnc-DB was developed to provide a unique resource for hypothesis generation and testing, as well as for the discovery of biomarkers and therapeutic targets. The platform also provides pre- and post-treatment data, which can help users identify treatment resistance markers and patient groups that may benefit from combination therapy.
Collapse
|
6
|
Mótyán JA, Tőzsér J. The human retroviral-like aspartic protease 1 (ASPRV1): From in vitro studies to clinical correlations. J Biol Chem 2024; 300:107634. [PMID: 39098535 PMCID: PMC11402058 DOI: 10.1016/j.jbc.2024.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
The human retroviral-like aspartic protease 1 (ASPRV1) is a retroviral-like protein that was first identified in the skin due to its expression in the stratum granulosum layer of the epidermis. Accordingly, it is also referred to as skin-specific aspartic protease. Similar to the retroviral polyproteins, the full-length ASPRV1 also undergoes self-proteolysis, the processing of the precursor is necessary for the autoactivation of the protease domain. ASPRV1's functions are well-established at the level of the skin: it is part of the epidermal proteolytic network and has a significant contribution to skin moisturization via the limited proteolysis of filaggrin; it is only natural protein substrate identified so far. Filaggrin and ASPRV1 are also specific for mammalians, these proteins provide unique features for the skins of these species, and the importance of filaggrin processing in hydration is proved by the fact that some ASPRV1 mutations are associated with skin diseases such as ichthyosis. ASPRV1 was also found to be expressed in macrophage-like neutrophil cells, indicating that its functions are not limited to the skin. In addition, differential expression of ASPRV1 was detected in many diseases, with yet unknown significance. The currently known enzymatic characteristics-that had been revealed mainly by in vitro studies-and correlations with pathogenic phenotypes imply potentially important functions in multiple cell types, which makes the protein a promising target of functional studies. In this review we describe the currently available knowledge and future perspective in regard to ASPRV1.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Bajpai P, Agarwal S, Afaq F, Al Diffalha S, Chandrashekar DS, Kim HG, Shelton A, Miller CR, Singh SK, Singh R, Varambally S, Nagaraju GP, Manne A, Paluri R, Khushman M, Manne U. Combination of dual JAK/HDAC inhibitor with regorafenib synergistically reduces tumor growth, metastasis, and regorafenib-induced toxicity in colorectal cancer. J Exp Clin Cancer Res 2024; 43:192. [PMID: 38992681 PMCID: PMC11238352 DOI: 10.1186/s13046-024-03106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Treatment with regorafenib, a multiple-kinase inhibitor, to manage metastatic colorectal cancers (mCRCs) shows a modest improvement in overall survival but is associated with severe toxicities. Thus, to reduce regorafenib-induced toxicity, we used regorafenib at low concentration along with a dual JAK/HDAC small-molecule inhibitor (JAK/HDACi) to leverage the advantages of both JAK and HDAC inhibition to enhance antitumor activity. The therapeutic efficacy and safety of the combination treatment was evaluated with CRC models. METHODS The cytotoxicity of JAK/HDACi, regorafenib, and their combination were tested with normal colonic and CRC cells exhibiting various genetic backgrounds. Kinomic, ATAC-seq, RNA-seq, cell cycle, and apoptosis analyses were performed to evaluate the cellular functions/molecular alterations affected by the combination. Efficacy of the combination was assessed using patient-derived xenograft (PDX) and experimental metastasis models of CRC. To evaluate the interplay between tumor, its microenvironment, and modulation of immune response, MC38 syngeneic mice were utilized. RESULTS The combination therapy decreased cell viability; phosphorylation of JAKs, STAT3, EGFR, and other key kinases; and inhibited deacetylation of histone H3K9, H4K8, and alpha tubulin proteins. It induced cell cycle arrest at G0-G1 phase and apoptosis of CRC cells. Whole transcriptomic analysis showed that combination treatment modulated molecules involved in apoptosis, extracellular matrix-receptor interaction, and focal adhesion pathways. It synergistically reduces PDX tumor growth and experimental metastasis, and, in a syngeneic mouse model, the treatment enhances the antitumor immune response as evidenced by higher infiltration of CD45 and cytotoxic cells. Pharmacokinetic studies showed that combination increased the bioavailability of regorafenib. CONCLUSIONS The combination treatment was more effective than with regorafenib or JAK/HDACi alone, and had minimal toxicity. A clinical trial to evaluate this combination for treatment of mCRCs is warranted.
Collapse
Affiliation(s)
- Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abigail Shelton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Ryan Miller
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Santosh K Singh
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ashish Manne
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ravi Paluri
- Department of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Moh'd Khushman
- Department of Medicine, Washington University in St. Louis/Siteman Cancer Center, St. Louis, MO, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Ahmed SA, Mendonca P, Messeha SS, Oriaku ET, Soliman KFA. The Anticancer Effects of Marine Carotenoid Fucoxanthin through Phosphatidylinositol 3-Kinase (PI3K)-AKT Signaling on Triple-Negative Breast Cancer Cells. Molecules 2023; 29:61. [PMID: 38202644 PMCID: PMC10779870 DOI: 10.3390/molecules29010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks specific targets such as estrogen, progesterone, and HER2 receptors. TNBC affects one in eight women in the United States, making up 15-20% of breast cancer cases. Patients with TNBC can develop resistance to chemotherapy over time, leading to treatment failure. Therefore, finding other options like natural products is necessary for treatment. The advantages of using natural products sourced from plants as anticancer agents are that they are less toxic, more affordable, and have fewer side effects. These products can modulate several cellular processes of the tumor microenvironment, such as proliferation, migration, angiogenesis, cell cycle arrest, and apoptosis. The phosphatidyl inositol 3-kinase (PI3K)-AKT signaling pathway is an important pathway that contributes to the survival and growth of the tumor microenvironment and is associated with these cellular processes. This current study examined the anticancer effects of fucoxanthin, a marine carotenoid isolated from brown seaweed, in the MDA-MB-231 and MDA-MB-468 TNBC cell lines. The methods used in this study include a cytotoxic assay, PI3K-AKT signaling pathway PCR arrays, and Wes analysis. Fucoxanthin (6.25 µM) + TNF-α (50 ng/mL) and TNF-α (50 ng/mL) showed no significant effect on cell viability compared to the control in both MDA-MB-231 and MDA-MB-468 cells after a 24 h treatment period. PI3K-AKT signaling pathway PCR array studies showed that in TNF-α-stimulated (50 ng/mL) MDA-MB-231 and MDA-MB-468 cells, fucoxanthin (6.25 µM) modulated the mRNA expression of 12 genes, including FOXO1, RASA1, HRAS, MAPK3, PDK2, IRS1, EIF4EBP1, EIF4B, PTK2, TIRAP, RHOA, and ELK1. Additionally, fucoxanthin significantly downregulated the protein expression of IRS1, EIF4B, and ELK1 in MDA-MB-231 cells, and no change in the protein expression of EIF4B and ELK1 was shown in MDA-MB-468 cells. Fucoxanthin upregulated the protein expression of RHOA in both cell lines. The modulation of the expression of genes and proteins of the PI3K-AKT signaling pathway may elucidate fucoxanthin's effects in cell cycle progression, apoptotic processes, migration, and proliferation, which shows that PI3K-AKT may be the possible molecular mechanism for fucoxanthin's effects. In conclusion, the results obtained in this study elucidate fucoxanthin's molecular mechanisms and indicate that fucoxanthin may be considered a promising candidate for breast cancer-targeted therapy.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Samia S. Messeha
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Ebenezer T. Oriaku
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| |
Collapse
|
9
|
Sudhakaran M, Navarrete TG, Mejía-Guerra K, Mukundi E, Eubank TD, Grotewold E, Arango D, Doseff AI. Transcriptome reprogramming through alternative splicing triggered by apigenin drives cell death in triple-negative breast cancer. Cell Death Dis 2023; 14:824. [PMID: 38092740 PMCID: PMC10719380 DOI: 10.1038/s41419-023-06342-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Triple-negative breast cancer (TNBC) is characterized by its aggressiveness and resistance to cancer-specific transcriptome alterations. Alternative splicing (AS) is a major contributor to the diversification of cancer-specific transcriptomes. The TNBC transcriptome landscape is characterized by aberrantly spliced isoforms that promote tumor growth and resistance, underscoring the need to identify approaches that reprogram AS circuitry towards transcriptomes, favoring a delay in tumorigenesis or responsiveness to therapy. We have previously shown that flavonoid apigenin is associated with splicing factors, including heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2). Here, we showed that apigenin reprograms TNBC-associated AS transcriptome-wide. The AS events affected by apigenin were statistically enriched in hnRNPA2 substrates. Comparative transcriptomic analyses of human TNBC tumors and non-tumor tissues showed that apigenin can switch cancer-associated alternative spliced isoforms (ASI) to those found in non-tumor tissues. Apigenin preferentially affects the splicing of anti-apoptotic and proliferation factors, which are uniquely observed in cancer cells, but not in non-tumor cells. Apigenin switches cancer-associated aberrant ASI in vivo in TNBC xenograft mice by diminishing proliferation and increasing pro-apoptotic ASI. In accordance with these findings, apigenin increased apoptosis and reduced tumor proliferation, thereby halting TNBC growth in vivo. Our results revealed that apigenin reprograms transcriptome-wide TNBC-specific AS, thereby inducing apoptosis and hindering tumor growth. These findings underscore the impactful effects of nutraceuticals in altering cancer transcriptomes, offering new options to influence outcomes in TNBC treatments.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, East Lansing, MI, USA
| | - Tatiana García Navarrete
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | - Eric Mukundi
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Timothy D Eubank
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Daniel Arango
- Department of Pharmacology and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Andrea I Doseff
- Department of Physiology and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Tang W, Zhang F, Byun JS, Dorsey TH, Yfantis HG, Ajao A, Liu H, Pichardo MS, Pichardo CM, Harris AR, Yang XR, Figueroa JD, Sayed S, Makokha FW, Ambs S. Population-specific Mutation Patterns in Breast Tumors from African American, European American, and Kenyan Patients. CANCER RESEARCH COMMUNICATIONS 2023; 3:2244-2255. [PMID: 37902422 PMCID: PMC10629394 DOI: 10.1158/2767-9764.crc-23-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Women of African descent have the highest breast cancer mortality in the United States and are more likely than women from other population groups to develop an aggressive disease. It remains uncertain to what extent breast cancer in Africa is reminiscent of breast cancer in African American or European American patients. Here, we performed whole-exome sequencing of genomic DNA from 191 breast tumor and non-cancerous adjacent tissue pairs obtained from 97 African American, 69 European American, 2 Asian American, and 23 Kenyan patients. Our analysis of the sequencing data revealed an elevated tumor mutational burden in both Kenyan and African American patients, when compared with European American patients. TP53 mutations were most prevalent, particularly in African American patients, followed by PIK3CA mutations, which showed similar frequencies in European American, African American, and the Kenyan patients. Mutations targeting TBX3 were confined to European Americans and those targeting the FBXW7 tumor suppressor to African American patients whereas mutations in the ARID1A gene that are known to confer resistance to endocrine therapy were distinctively enriched among Kenyan patients. A Kyoto Encyclopedia of Genes and Genomes pathway analysis could link FBXW7 mutations to an increased mitochondrial oxidative phosphorylation capacity in tumors carrying these mutations. Finally, Catalogue of Somatic Mutations in Cancer (COSMIC) mutational signatures in tumors correlated with the occurrence of driver mutations, immune cell profiles, and neighborhood deprivation with associations ranging from being mostly modest to occasionally robust. To conclude, we found mutational profiles that were different between these patient groups. The differences concentrated among genes with low mutation frequencies in breast cancer. SIGNIFICANCE The study describes differences in tumor mutational profiles between African American, European American, and Kenyan breast cancer patients. It also investigates how these profiles may relate to the tumor immune environment and the neighborhood environment in which the patients had residence. Finally, it describes an overrepresentation of ARID1A gene mutations in breast tumors of the Kenyan patients.
Collapse
Affiliation(s)
- Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Data Science & Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Flora Zhang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Colgate University, Hamilton, New York
| | - Jung S. Byun
- Division of Intramural Research, National Institute of Minority Health and Health Disparities, NIH, Bethesda, Maryland
| | - Tiffany H. Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Harris G. Yfantis
- Department of Pathology, University of Maryland Medical Center and Veterans Affairs, Maryland Care System, Baltimore, Maryland
| | - Anuoluwapo Ajao
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Margaret S. Pichardo
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Department of Surgery, Hospital of the University of Pennsylvania, Penn Medicine, Philadelphia, Pennsylvania
| | - Catherine M. Pichardo
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Division of Cancer Control and Population Sciences, NCI, NIH, Rockville, Maryland
| | - Alexandra R. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Rockville, Maryland
| | - Xiaohong R. Yang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Rockville, Maryland
| | - Jonine D. Figueroa
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Rockville, Maryland
| | | | | | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
11
|
Yang J, Wang L, Ma J, Diao L, Chen J, Cheng Y, Yang J, Li L. Endometrial proteomic profile of patients with repeated implantation failure. Front Endocrinol (Lausanne) 2023; 14:1144393. [PMID: 37583433 PMCID: PMC10424929 DOI: 10.3389/fendo.2023.1144393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Successful embryo implantation, is the initiating step of pregnancy, relies on not only the high quality of the embryo but also the synergistic development of a healthy endometrium. Characterization and identification of biomarkers for the receptive endometrium is an effective method for increasing the probability of successful embryo implantation. Methods Endometrial tissues from 22 women with a history of recurrent implantation failure (RIF) and 19 fertile controls were collected using biopsy catheters on 7-9 days after the peak of luteinizing hormone. Differentially expressed proteins (DEPs) were identified in six patients with RIF and six fertile controls using isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis. Results Two hundred and sixty-three DEPs, including proteins with multiple bioactivities, such as protein translation, mitochondrial function, oxidoreductase activity, fatty acid and amino acid metabolism, were identified from iTRAQ. Four potential biomarkers for receptive endometrium named tubulin polymerization-promoting protein family member 3 TPPP3, S100 Calcium Binding Protein A13 (S100A13), 17b-hydroxysteroid dehydrogenase 2 (HSD17B2), and alpha-2-glycoprotein 1, zinc binding (AZGP1) were further verified using ProteinSimple Wes and immunohistochemical staining in all included samples (n=22 for RIF and n=19 for controls). Of the four proteins, the protein levels of TPPP3 and HSD17B2 were significantly downregulated in the endometrium of patients with RIF. Discussion Poor endometrial receptivity is considered the main reason for the decrease in pregnancy success rates in patients suffering from RIF. iTRAQ techniques based on isotope markers can identify and quantify low abundance proteomics, and may be suitable for identifying differentially expressed proteins in RIF. This study provides novel evidence that TPPP3 and HSD17B2 may be effective targets for the diagnosis and treatment of non-receptive endometrium and RIF.
Collapse
Affiliation(s)
- Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jingwen Ma
- Department of Reproductive Medicine, Chengdu XiNan Gynecological Hospital, Chengdu, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
12
|
Li Y, Wang S, Jin K, Jin W, Si L, Zhang H, Tian H. UHMK1 promotes lung adenocarcinoma oncogenesis by regulating the PI3K/AKT/mTOR signaling pathway. Thorac Cancer 2023; 14:1077-1088. [PMID: 36919755 PMCID: PMC10125785 DOI: 10.1111/1759-7714.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Effective targeted therapy for lung adenocarcinoma (LUAD), the number one cancer killer worldwide, continues to be a difficult problem because of the limitation of number of applicable patients and acquired resistance. Identifying more promising drug targets for LUAD treatment holds immense clinical significance. Recent studies have revealed that the U2 auxiliary factor (U2AF) homology motif kinase 1 (UHMK1) is a robust pro-oncogenic factor in many cancers. However, its biological functions and the underlying molecular mechanisms in LUAD have not been investigated. METHODS The UHMK1 expression in LUAD cells and tissues was evaluated by bioinformatics analysis, immunohistochemistry (IHC), western blotting (WB), and real time quantitative polymerase chain reaction (RT-qPCR) assays. A series of gain- and loss-of-function experiments for UHMK1 were carried out to investigate its biological functions in LUAD in vitro and in vivo. The mechanisms underlying UHMK1's effects in LUAD were analyzed by transcriptome sequencing and WB assays. RESULTS UHMK1 expression was aberrantly elevated in LUAD tumors and cell lines and positively correlated with tumor size and unfavorable patient prognosis. Functionally, UHMK1 displayed robust pro-oncogenic capacity in LUAD and mechanistically exerted its biological effects via the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. CONCLUSION UHMK1 is a potent oncogene in LUAD. Targeting UHMK1 may significantly improve the effect of LUAD treatment via inhibiting multiple biological ways of LUAD progression.
Collapse
Affiliation(s)
- Yongmeng Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Shuai Wang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Kai Jin
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wenxing Jin
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Libo Si
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
13
|
Martini R, Delpe P, Chu TR, Arora K, Lord B, Verma A, Bedi D, Karanam B, Elhussin I, Chen Y, Gebregzabher E, Oppong JK, Adjei EK, Jibril Suleiman A, Awuah B, Muleta MB, Abebe E, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Chitale DA, Bensenhaver JM, Nathanson DS, Jackson L, Petersen LF, Proctor E, Stonaker B, Gyan KK, Gibbs LD, Monojlovic Z, Kittles RA, White J, Yates CC, Manne U, Gardner K, Mongan N, Cheng E, Ginter P, Hoda S, Elemento O, Robine N, Sboner A, Carpten JD, Newman L, Davis MB. African Ancestry-Associated Gene Expression Profiles in Triple-Negative Breast Cancer Underlie Altered Tumor Biology and Clinical Outcome in Women of African Descent. Cancer Discov 2022; 12:2530-2551. [PMID: 36121736 PMCID: PMC9627137 DOI: 10.1158/2159-8290.cd-22-0138] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 01/12/2023]
Abstract
Women of sub-Saharan African descent have disproportionately higher incidence of triple-negative breast cancer (TNBC) and TNBC-specific mortality across all populations. Population studies show racial differences in TNBC biology, including higher prevalence of basal-like and quadruple-negative subtypes in African Americans (AA). However, previous investigations relied on self-reported race (SRR) of primarily U.S. populations. Due to heterogeneous genetic admixture and biological consequences of social determinants, the true association of African ancestry with TNBC biology is unclear. To address this, we conducted RNA sequencing on an international cohort of AAs, as well as West and East Africans with TNBC. Using comprehensive genetic ancestry estimation in this African-enriched cohort, we found expression of 613 genes associated with African ancestry and 2,000+ associated with regional African ancestry. A subset of African-associated genes also showed differences in normal breast tissue. Pathway enrichment and deconvolution of tumor cellular composition revealed that tumor-associated immunologic profiles are distinct in patients of African descent. SIGNIFICANCE Our comprehensive ancestry quantification process revealed that ancestry-associated gene expression profiles in TNBC include population-level distinctions in immunologic landscapes. These differences may explain some differences in race-group clinical outcomes. This study shows the first definitive link between African ancestry and the TNBC immunologic landscape, from an African-enriched international multiethnic cohort. See related commentary by Hamilton et al., p. 2496. This article is highlighted in the In This Issue feature, p. 2483.
Collapse
Affiliation(s)
- Rachel Martini
- Department of Surgery, Weill Cornell Medical College, New York, New York
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Princesca Delpe
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York
| | | | | | - Brittany Lord
- Department of Surgery, Weill Cornell Medical College, New York, New York
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Akanksha Verma
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York
| | - Deepa Bedi
- Department of Biomedical Sciences, Tuskegee University, Tuskegee, Alabama
| | | | - Isra Elhussin
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Endale Gebregzabher
- Department of Biochemistry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Joseph K. Oppong
- Department of Surgery, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Ernest K. Adjei
- Department of Pathology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Aisha Jibril Suleiman
- Department of Pathology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Baffour Awuah
- Directorate of Oncology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Mahteme Bekele Muleta
- Department of Surgery, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Engida Abebe
- Department of Surgery, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Ishmael Kyei
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frances S. Aitpillah
- Department of Surgery, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael O. Adinku
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwasi Ankomah
- Directorate of Radiology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | | | | | | | | | - LaToya Jackson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | | | - Erica Proctor
- Department of Surgery, Henry Ford Health System, Detroit, Michigan
| | - Brian Stonaker
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Kofi K. Gyan
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Lee D. Gibbs
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zarko Monojlovic
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Rick A. Kittles
- Department of Population Sciences, City of Hope, Duarte, California
| | - Jason White
- Department of Biology, Tuskegee University, Tuskegee, Alabama
| | - Clayton C. Yates
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Nigel Mongan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Paula Ginter
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Syed Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York
- Institute of Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | | | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - John D. Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Melissa B. Davis
- Department of Surgery, Weill Cornell Medical College, New York, New York
- Department of Genetics, University of Georgia, Athens, Georgia
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York
- New York Genome Center, New York, New York
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
14
|
Nief CA, Swartz AM, Chelales E, Sheu LY, Crouch BT, Ramanujam N, Nair SK. Ethanol Ablation Therapy Drives Immune-Mediated Antitumor Effects in Murine Breast Cancer Models. Cancers (Basel) 2022; 14:cancers14194669. [PMID: 36230591 PMCID: PMC9564135 DOI: 10.3390/cancers14194669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Tumor ablation is the process of directly destroying tumor tissue by injecting a cytotoxic substance, in this case, ethanol ethylcellulose. In this report, we characterized the effect of ablation on local and systemic immunologic markers known to impact disease progression in several mouse models. Ablation improved overall survival in poorly invasive breast cancer models and was notable for demonstrating an increase in tumor infiltrating lymphocytes. However, in a metastatic breast cancer model, the response to ablation was more nuanced: the growth of the primary tumor was only modestly slowed compared to controls, and there was a reduction in pro-tumor granulocytic myeloid derived suppressor cells (gMDSCs) with a reduction in metastatic disease. A single ablation reduced circulating granulocytic colony stimulating factor, tumoral gMDSCs, splenic gMDSCs, and pulmonary gMDSCs, as well as the suppressive ability of MDSCs on CD4 and CD8 T cells. The immunomodulation incited by tumor ablation was utilized to recover response to checkpoint inhibitors, resulting in increased overall survival compared to checkpoint inhibitors alone, demonstrating a proof-of-concept for using ethanol ablation as an adjuvant immunomodulatory therapy. Abstract Ethanol ablation is a minimally invasive, cost-effective method of destroying tumor tissue through an intratumoral injection of high concentrations of cytotoxic alcohol. Ethyl-cellulose ethanol (ECE) ablation, a modified version of ethanol ablation, contains the phase-changing polysaccharide ethyl-cellulose to reduce ethanol leakage away from the tumor. Ablation produces tissue necrosis and initiates a wound healing process; however, the characteristic of the immunologic events after ECE ablation of tumors has yet to be explored. Models of triple-negative breast cancer (TNBC), which are classically immunosuppressive and difficult to treat clinically, were used to characterize the immunophenotypic changes after ECE ablation. In poorly invasive TNBC rodent models, the injury to the tumor induced by ECE increased tumor infiltrating lymphocytes (TILs) and reduced tumor growth. In a metastatic TNBC model (4T1), TILs did not increase after ECE ablation, though lung metastases were reduced. 4T1 tumors secrete high levels of granulocytic colony stimulating factor (G-CSF), which induces a suppressive milieu of granulocytic myeloid-derived suppressor cells (gMDSCs) aiding in the formation of metastases and suppression of antitumor immunity. We found that a single intratumoral injection of ECE normalized tumor-induced myeloid changes: reducing serum G-CSF and gMDSC populations. ECE also dampened the suppressive strength of gMDSC on CD4 and CD8 cell proliferation, which are crucial for anti-tumor immunity. To demonstrate the utility of these findings, ECE ablation was administered before checkpoint inhibitor (CPI) therapy in the 4T1 model and was found to significantly increase survival compared to a control of saline and CPI. Sixty days after tumor implant no primary tumors or metastatic lung lesions were found in 6/10 mice treated with CPI plus ECE, compared to 1/10 with ECE alone and 0/10 with CPI and saline.
Collapse
Affiliation(s)
- Corrine A. Nief
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence: (C.A.N.); (A.M.S.)
| | - Adam M. Swartz
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
- Correspondence: (C.A.N.); (A.M.S.)
| | - Erika Chelales
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lauren Y. Sheu
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Brian T. Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
- Duke Global Health Institute, Duke University, Durham, NC 27708, USA
| | - Smita K. Nair
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27708, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27708, USA
| |
Collapse
|
15
|
Sharma K, Sayed S, Saleh M. Promoting Best Practice in Cancer Care in Sub Saharan Africa. Front Med (Lausanne) 2022; 9:950309. [PMID: 35872798 PMCID: PMC9299371 DOI: 10.3389/fmed.2022.950309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Promoting best practice in the management of a cancer patient is rooted in the application of new knowledge derived through various sources including population science, laboratory advances, and translational research. Ultimately, the impact of these advances depends on their application at the patient's bedside. A close collaboration between the oncologist and the pathologist is critical in underwriting progress in the management of the cancer patient. Recent advancements have shown that more granular characteristics of the tumor and the microenvironment are defining determinants when it comes to disease course and overall outcome. Whereas, histologic features and basic immunohistochemical characterization were previously adequate to define the tumor and establish treatment recommendation, the growing capability of the pathologist to provide molecular characterization of the tumor and its microenvironment, as well as, the availability of novel therapeutic agents have revolutionized cancer treatment paradigms and improved patient-outcomes and survival. While such capacity and capability appear readily available in most developed high-income countries (HIC), it will take a concerted and collaborative effort of all stakeholders to pave the way in the same stride in the low and middle-income countries (LMIC), which bear a disproportionate burden of human illness and cancers. Patients in the LMIC present with disease at advanced stage and often display characteristics unlike those encountered in the developed world. To keep stride and avoid the disenfranchisement of patients in the LMIC will require greater participation of LMIC patients on the global clinical trial platform, and a more equitable and affordable sharing of diagnostic and therapeutic capabilities between the developed and developing world. Key to the success of this progress and improvement of patient outcomes in the developing world is the close collaboration between the oncologist and the pathologist in this new era of precision and personalized medicine.
Collapse
Affiliation(s)
- Karishma Sharma
- Clinical Research Unit, Aga Khan University Cancer Center, Aga Khan University, Nairobi, Kenya
| | - Shahin Sayed
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Mansoor Saleh
- Clinical Research Unit, Aga Khan University Cancer Center, Aga Khan University, Nairobi, Kenya
- Department of Hematology and Oncology, Aga Khan University Hospital, Nairobi, Kenya
- *Correspondence: Mansoor Saleh
| |
Collapse
|
16
|
Abou-Fadel J, Bhalli M, Grajeda B, Zhang J. CmP Signaling Network Leads to Identification of Prognostic Biomarkers for Triple-Negative Breast Cancer in Caucasian Women. Genet Test Mol Biomarkers 2022; 26:198-219. [PMID: 35481969 DOI: 10.1089/gtmb.2021.0221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: Triple-negative breast cancer (TNBC) constitutes ∼15% of all diagnosed invasive breast cancer cases with limited options for treatment since immunotherapies that target ER, PR, and HER2 receptors are ineffective. Progesterone (PRG) can induce its effects through either classic, nonclassic, or combined responses by binding to classic nuclear PRG receptors (nPRs) or nonclassic membrane PRG receptors (mPRs). Under PRG-induced actions, we previously demonstrated that the CCM signaling complex (CSC) can couple both nPRs and mPRs into a CmPn signaling network, which plays an important role during nPR(+) breast cancer tumorigenesis. We recently defined the novel CmP signaling network in African American women (AAW)-derived TNBC cells, which overlapped with our previously defined CmPn network in nPR(+) breast cancer cells. Methods: Under mPR-specific steroid actions, we measured alterations to key tumorigenic pathways in Caucasian American women (CAW)- derived TNBC cells, with RNAseq/proteomic and systems biology approaches. Exemption from ethics approval from IRB: This study only utilized cultured NBC cell lines with publicly available TNBC clinical data sets. Results: Our results demonstrated that TNBCs in CAW share similar altered signaling pathways, as TNBCs in AAW, under mPR-specific steroid actions, demonstrating the overall aggressive nature of TNBCs, regardless of racial differences. Furthermore, in this report, we have deconvoluted the CmP signalosome, using systems biology approaches and CAW-TNBC clinical data, to identify 21 new CAW-TNBC-specific prognostic biomarkers that reinforce the definitive role of CSC and mPR signaling during CAW-TNBC tumorigenesis. Conclusion: This new set of potential prognostic biomarkers may revolutionize molecular mechanisms and currently known concepts of tumorigenesis in CAW-TNBCs, leading to hopeful new therapeutic strategies.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| | - Muaz Bhalli
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| |
Collapse
|
17
|
Abou-Fadel J, Grajeda B, Jiang X, Cailing-De La O AMD, Flores E, Padarti A, Bhalli M, Le A, Zhang J. CmP signaling network unveils novel biomarkers for triple negative breast cancer in African American women. Cancer Biomark 2022; 34:607-636. [DOI: 10.3233/cbm-210351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most diagnosed cancer worldwide and remains the second leading cause of cancer death. While breast cancer mortality has steadily declined over the past decades through medical advances, an alarming disparity in breast cancer mortality has emerged between African American women (AAW) and Caucasian American women (CAW). New evidence suggests more aggressive behavior of triple-negative breast cancer (TNBC) in AAW may contribute to racial differences in tumor biology and mortality. Progesterone (PRG) can exert its cellular effects through either its classic, non-classic, or combined responses through binding to either classic nuclear PRG receptors (nPRs) or non-classic membrane PRG receptors (mPRs), warranting both pathways equally important in PRG-mediated signaling. In our previous report, we demonstrated that the CCM signaling complex (CSC) consisting of CCM1, CCM2, and CCM3 can couple both nPRs and mPRs signaling cascades to form a CSC-mPRs-PRG-nPRs (CmPn) signaling network in nPR positive(+) breast cancer cells. In this report, we furthered our research by establishing the CSC-mPRs-PRG (CmP) signaling network in nPR(-) breast cancer cells, demonstrating that a common core mechanism exists, regardless of nPR(+/-) status. This is the first report stating that inducible expression patterns exist between CCMs and major mPRs in TNBC cells. Furthermore, we firstly show mPRs in TNBC cells are localized in the nucleus and participate in nucleocytoplasmic shuttling in a coordinately synchronized fashion with CCMs under steroid actions, following the same cellular distribution as other well-defined steroid hormone receptors. Finally, for the first time, we deconvoluted the CmP signalosome by using systems biology and TNBC clinical data, which helped us understand key factors within the CmP network and identify 6 specific biomarkers with potential clinical applications associated with AAW-TNBC tumorigenesis. These novel biomarkers could have immediate clinical implications to dramatically improve health disparities among AAW-TNBCs.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Xiaoting Jiang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Alyssa-Marie D. Cailing-De La O
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Esmeralda Flores
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Muaz Bhalli
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Alexander Le
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| |
Collapse
|
18
|
Comment on "comparative analysis of triple-negative breast cancer transcriptomics of Kenyan, African American and Caucasian women" by Saleh et al. Transl Oncol 2021; 14:101164. [PMID: 34171558 PMCID: PMC8243121 DOI: 10.1016/j.tranon.2021.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
Alterations to the somatic genome lead to a tumor. Different germ line genomes influence the formation of the tumor and its response to therapeutics. Germ line genetics can play a role in breast cancer. Race is an imperfect measure of germ line genetics. Black women have a higher incidence of triple negative breast cancer.
Collapse
|