1
|
Kusakabe K, Inoue A, Ohnishi T, Nakamura Y, Ohtsuka Y, Nishikawa M, Yano H, Choudhury ME, Murata M, Matsumoto S, Suehiro S, Yamashita D, Shigekawa S, Watanabe H, Kunieda T. Hypoxia-Regulated CD44 and xCT Expression Contributes to Late Postoperative Epilepsy in Glioblastoma. Biomedicines 2025; 13:372. [PMID: 40002787 PMCID: PMC11853413 DOI: 10.3390/biomedicines13020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Late epilepsy occurring in the late stage after glioblastoma (GBM) resection is suggested to be caused by increased extracellular glutamate (Glu). To elucidate the mechanism underlying postoperative late epilepsy, the present study aimed to investigate the expressions and relations of molecules related to Glu metabolism in tumor tissues from GBM patients and cultured glioma stem-like cells (GSCs). METHODS Expressions of CD44, xCT and excitatory amino acid transporter (EAAT) 2 and extracellular Glu concentration in GBM patients with and without epilepsy were examined and their relationships were analyzed. For the study using GSCs, expressions and relationships of the same molecules were analyzed and the effects of CD44 knock-down on xCT, EAAT2, and Glu were investigated. In addition, the effects of hypoxia on the expressions of these molecules were investigated. RESULTS Tumor tissues highly expressed CD44 and xCT in the periphery of GBM with epilepsy, whereas no significant difference in EAAT2 expression was seen between groups with and without epilepsy. Extracellular Glu concentration was higher in patients with epilepsy than those without epilepsy. GSCs displayed reciprocal expressions of CD44 and xCT. Concentrations of extracellular Glu coincided with the degree of xCT expression, and CD44 knock-down elevated xCT expression and extracellular Glu concentrations. Hypoxia of 1% O2 elevated expression of CD44, while 5% O2 increased xCT and extracellular Glu concentration. CONCLUSIONS Late epilepsy after GBM resection was related to extracellular Glu concentrations that were regulated by reciprocal expression of CD44 and xCT, which were stimulated by differential hypoxia for each molecule.
Collapse
Affiliation(s)
- Kosuke Kusakabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (K.K.); (Y.N.); (Y.O.); (M.N.); (S.M.); (S.S.); (D.Y.); (S.S.); (H.W.); (T.K.)
| | - Akihiro Inoue
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (K.K.); (Y.N.); (Y.O.); (M.N.); (S.M.); (S.S.); (D.Y.); (S.S.); (H.W.); (T.K.)
| | - Takanori Ohnishi
- Department of Neurosurgery, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama 790-0052, Ehime, Japan;
| | - Yawara Nakamura
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (K.K.); (Y.N.); (Y.O.); (M.N.); (S.M.); (S.S.); (D.Y.); (S.S.); (H.W.); (T.K.)
| | - Yoshihiro Ohtsuka
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (K.K.); (Y.N.); (Y.O.); (M.N.); (S.M.); (S.S.); (D.Y.); (S.S.); (H.W.); (T.K.)
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (K.K.); (Y.N.); (Y.O.); (M.N.); (S.M.); (S.S.); (D.Y.); (S.S.); (H.W.); (T.K.)
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (H.Y.); (M.E.C.)
| | - Mohammed E. Choudhury
- Department of Molecular and Cellular Physiology, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (H.Y.); (M.E.C.)
| | - Motoki Murata
- Division of Genetic Research, ADRES, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Ehime, Japan;
| | - Shirabe Matsumoto
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (K.K.); (Y.N.); (Y.O.); (M.N.); (S.M.); (S.S.); (D.Y.); (S.S.); (H.W.); (T.K.)
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (K.K.); (Y.N.); (Y.O.); (M.N.); (S.M.); (S.S.); (D.Y.); (S.S.); (H.W.); (T.K.)
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (K.K.); (Y.N.); (Y.O.); (M.N.); (S.M.); (S.S.); (D.Y.); (S.S.); (H.W.); (T.K.)
| | - Seiji Shigekawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (K.K.); (Y.N.); (Y.O.); (M.N.); (S.M.); (S.S.); (D.Y.); (S.S.); (H.W.); (T.K.)
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (K.K.); (Y.N.); (Y.O.); (M.N.); (S.M.); (S.S.); (D.Y.); (S.S.); (H.W.); (T.K.)
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (K.K.); (Y.N.); (Y.O.); (M.N.); (S.M.); (S.S.); (D.Y.); (S.S.); (H.W.); (T.K.)
| |
Collapse
|
2
|
Makela AV, Tundo A, Liu H, Schneider D, Hermiston T, Khodakivskyi P, Goun E, Contag CH. Targeted intracellular delivery of molecular cargo to hypoxic human breast cancer stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575071. [PMID: 39605477 PMCID: PMC11601403 DOI: 10.1101/2024.01.12.575071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cancer stem cells (CSCs) drive tumorigenesis, are responsible for metastasis, and resist conventional therapies thus posing significant treatment challenges. CSCs reside in hypoxic tumor regions and therefore, effective therapies must target CSCs within this specific microenvironment. CSCs are characterized by limited distinguishable features, however, surface displayed phosphatidylserine (PS) appears to be characteristic of stem cells and offers a potential target. GlaS, a truncated coagulation protein that is internalized after binding PS, was investigated for intracellular delivery of molecular payloads to CSCs. Intracellular delivery via GlaS was enhanced in patient-derived CD44+ mammary CSCs under hypoxic conditions relative to physoxia or hyperoxia. In vivo, GlaS successfully targeted hypoxic tumor regions, and functional delivery of molecular cargo was confirmed using luciferin conjugated to GlaS via a disulfide linkage (GlaS-SS-luc), which releases luciferin upon intracellular glutathione reduction. Bioluminescence imaging demonstrated effective GlaS-mediated delivery of luciferin, a model drug, to CSCs in culture and in vivo. These findings offer the promise of directed delivery of therapeutic agents to intracellular targets in CSCs.
Collapse
Affiliation(s)
- Ashley V Makela
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
| | - Anthony Tundo
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
| | - Huiping Liu
- Department of Pharmacology and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | - Elena Goun
- Department of Chemistry, University of Missouri, Columbia, MO
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
- Departments of Biomedical Engineering, and Microbiology, Genetics, and Immunology, Michigan State University, East Lansing MI
| |
Collapse
|
3
|
Alshehade SA, Almoustafa HA, Alshawsh MA, Chik Z. Flow cytometry-based quantitative analysis of cellular protein expression in apoptosis subpopulations: A protocol. Heliyon 2024; 10:e33665. [PMID: 39040270 PMCID: PMC11260931 DOI: 10.1016/j.heliyon.2024.e33665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Flow cytometry techniques utilizing dual staining with annexin V and propidium iodide (PI) provide a robust method for quantitatively analyzing apoptosis induction. Annexin V binds phosphatidylserine exposed on the outer leaflet of the plasma membrane during early apoptosis, while PI permeates late apoptotic/necrotic cells. Simultaneous staining allows differentiation of viable, early apoptotic, and late apoptotic/necrotic populations. This approach can be enhanced by using fluorochrome-conjugated antibodies to stain specific proteins, enabling the simultaneous tracking of protein expression changes in defined cell subpopulations during apoptosis. This multiparametric approach provides key insights into signaling regulation and the mechanisms underlying the apoptotic response to cytotoxic treatments. Here we present a protocol that combines annexin V-FITC/PI staining with APC-conjugated antibody labeling in MDA-MB-231 breast cancer cells treated with doxorubicin. This protocol enables both the quantitative assessment of apoptosis induction and the tracking of decreased CD44 expression from viable to apoptotic cells. This protocol also provides guidelines for appropriate filter selection, compensation controls, gating strategies, and troubleshooting. This robust protocol holds significant potential for elucidating signaling networks involved in apoptosis and therapeutic resistance across various cellular models.
Collapse
Affiliation(s)
- Salah Abdalrazak Alshehade
- Department of Pharmacology, Faculty of Pharmacy & Bio Medical Sciences, MAHSA University, 42610, Selangor, Malaysia
| | - Hassan A. Almoustafa
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Universiti Malaya Bioequivalence and Testing Centre (UBAT), Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Universiti Malaya Bioequivalence and Testing Centre (UBAT), Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Panda VK, Mishra B, Nath AN, Butti R, Yadav AS, Malhotra D, Khanra S, Mahapatra S, Mishra P, Swain B, Majhi S, Kumari K, Radharani NNV, Kundu GC. Osteopontin: A Key Multifaceted Regulator in Tumor Progression and Immunomodulation. Biomedicines 2024; 12:1527. [PMID: 39062100 PMCID: PMC11274826 DOI: 10.3390/biomedicines12071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is composed of various cellular components such as tumor cells, stromal cells including fibroblasts, adipocytes, mast cells, lymphatic vascular cells and infiltrating immune cells, macrophages, dendritic cells and lymphocytes. The intricate interplay between these cells influences tumor growth, metastasis and therapy failure. Significant advancements in breast cancer therapy have resulted in a substantial decrease in mortality. However, existing cancer treatments frequently result in toxicity and nonspecific side effects. Therefore, improving targeted drug delivery and increasing the efficacy of drugs is crucial for enhancing treatment outcome and reducing the burden of toxicity. In this review, we have provided an overview of how tumor and stroma-derived osteopontin (OPN) plays a key role in regulating the oncogenic potential of various cancers including breast. Next, we dissected the signaling network by which OPN regulates tumor progression through interaction with selective integrins and CD44 receptors. This review addresses the latest advancements in the roles of splice variants of OPN in cancer progression and OPN-mediated tumor-stromal interaction, EMT, CSC enhancement, immunomodulation, metastasis, chemoresistance and metabolic reprogramming, and further suggests that OPN might be a potential therapeutic target and prognostic biomarker for the evolving landscape of cancer management.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Ramesh Butti
- Division of Hematology and Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX 75235, USA;
| | - Amit Singh Yadav
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - N. N. V. Radharani
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
5
|
Liu N, Zheng Q, Zhang Y, Wang H, Zhang Z, He L, Wei C, Xia H, Liu Y, Wang X. Hypoxia differently regulates the proportion of ALDH hi cells in lung squamous carcinoma H520 and adenocarcinoma A549 cells via the Wnt/β-catenin pathway. Thorac Cancer 2024; 15:1419-1428. [PMID: 38736300 PMCID: PMC11194122 DOI: 10.1111/1759-7714.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a specific subpopulation of cancer cells with the ability of self-renewal, infinite proliferation, multidifferentiation and tumorigenicity, and play critical roles in cancer progression and treatment resistance. CSCs are tightly regulated by the tumor microenvironment, such as hypoxia; however, how hypoxia regulates CSCs in non-small cell lung cancer (NSCLC) remains unclear. METHODS The proportion of ALDHhi cells was examined using the Aldefluor assay. Tankyrase inhibitor XAV939 and siRNA were used to inhibit β-catenin while pcDNA3-β-catenin (S33Y) plasmid enhanced the expression of β-catenin. Western blot was administered for protein detection. The mRNA expression was measured by quantitative real-time PCR. RESULTS We found that hypoxia led to an increase in the proportion of ALDHhi cells in lung squamous carcinoma (LUSC) H520 cells, while causing a decrease in the ALDHhi cell proportion in lung adenocarcinoma (LUAD) A549 cells. Similarly, β-catenin expression was upregulated in H520 cells but downregulated in A549 cells upon exposure to hypoxia. Mechanically, the proportion of ALDHhi cells in both cell lines was decreased by β-catenin inhibitor or siRNA knockdown, whereas increased after β-catenin overexpression. Furthermore, hypoxia treatment suppressed E-cadherin expression in H520 cells and enhanced N-cadherin and β-catenin expression, while this effect was completely opposite in A549 cells. CONCLUSION The hypoxia-EMT-β-catenin axis functions as an important regulator for the proportion of CSCs in NSCLC and could potentially be explored as therapeutic targets in the future.
Collapse
Affiliation(s)
- Ni Liu
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Qi Zheng
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Yuqing Zhang
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Huimin Wang
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
- Department of OncologyYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Zhihui Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Long He
- Department of OncologyThe Third Hospital of JinanJinanChina
| | - Chenxi Wei
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Handai Xia
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Yanguo Liu
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Xiuwen Wang
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
6
|
Begagić E, Bečulić H, Džidić-Krivić A, Kadić Vukas S, Hadžić S, Mekić-Abazović A, Šegalo S, Papić E, Muchai Echengi E, Pugonja R, Kasapović T, Kavgić D, Nuhović A, Juković-Bihorac F, Đuričić S, Pojskić M. Understanding the Significance of Hypoxia-Inducible Factors (HIFs) in Glioblastoma: A Systematic Review. Cancers (Basel) 2024; 16:2089. [PMID: 38893207 PMCID: PMC11171068 DOI: 10.3390/cancers16112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The study aims to investigate the role of hypoxia-inducible factors (HIFs) in the development, progression, and therapeutic potential of glioblastomas. METHODOLOGY The study, following PRISMA guidelines, systematically examined hypoxia and HIFs in glioblastoma using MEDLINE (PubMed), Web of Science, and Scopus. A total of 104 relevant studies underwent data extraction. RESULTS Among the 104 studies, global contributions were diverse, with China leading at 23.1%. The most productive year was 2019, accounting for 11.5%. Hypoxia-inducible factor 1 alpha (HIF1α) was frequently studied, followed by hypoxia-inducible factor 2 alpha (HIF2α), osteopontin, and cavolin-1. Commonly associated factors and pathways include glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3) receptors, vascular endothelial growth factor (VEGF), phosphoinositide 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) pathway, and reactive oxygen species (ROS). HIF expression correlates with various glioblastoma hallmarks, including progression, survival, neovascularization, glucose metabolism, migration, and invasion. CONCLUSION Overcoming challenges such as treatment resistance and the absence of biomarkers is critical for the effective integration of HIF-related therapies into the treatment of glioblastoma with the aim of optimizing patient outcomes.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina;
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina (S.K.V.)
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina (S.K.V.)
| | - Semir Hadžić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Alma Mekić-Abazović
- Department of Oncology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Sabina Šegalo
- Department of Laboratory Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (S.Š.); (E.P.)
| | - Emsel Papić
- Department of Laboratory Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (S.Š.); (E.P.)
| | - Emmanuel Muchai Echengi
- College of Health Sciences, School of Medicine, Kenyatta University, Nairobi 43844-00100, Kenya
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Tarik Kasapović
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Dalila Kavgić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Adem Nuhović
- Department of General Medicine, School of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Fatima Juković-Bihorac
- Department of Pathology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
- Department of Pathology, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Slaviša Đuričić
- Department of Pathology, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, 35033 Marburg, Germany
| |
Collapse
|
7
|
Peñate L, Carrillo-Beltrán D, Spichiger C, Cuevas-Zhbankova A, Torres-Arévalo Á, Silva P, Richter HG, Ayuso-Sacido Á, San Martín R, Quezada-Monrás C. The Impact of A3AR Antagonism on the Differential Expression of Chemoresistance-Related Genes in Glioblastoma Stem-like Cells. Pharmaceuticals (Basel) 2024; 17:579. [PMID: 38794149 PMCID: PMC11124321 DOI: 10.3390/ph17050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GB) is the most aggressive and common primary malignant tumor of the brain and central nervous system. Without treatment, the average patient survival time is about six months, which can be extended to fifteen months with multimodal therapies. The chemoresistance observed in GB is, in part, attributed to the presence of a subpopulation of glioblastoma-like stem cells (GSCs) that are characterized by heightened tumorigenic capacity and chemoresistance. GSCs are situated in hypoxic tumor niches, where they sustain and promote the stem-like phenotype and have also been correlated with high chemoresistance. GSCs have the particularity of generating high levels of extracellular adenosine (ADO), which causes the activation of the A3 adenosine receptor (A3AR) with a consequent increase in the expression and activity of genes related to chemoresistance. Therefore, targeting its components is a promising alternative for treating GB. This analysis determined genes that were up- and downregulated due to A3AR blockades under both normoxic and hypoxic conditions. In addition, possible candidates associated with chemoresistance that were positively regulated by hypoxia and negatively regulated by A3AR blockades in the same condition were analyzed. We detected three potential candidate genes that were regulated by the A3AR antagonist MRS1220 under hypoxic conditions: LIMD1, TRIB2, and TGFB1. Finally, the selected markers were correlated with hypoxia-inducible genes and with the expression of adenosine-producing ectonucleotidases. In conclusion, we detected that hypoxic conditions generate extensive differential gene expression in GSCs, increasing the expression of genes associated with chemoresistance. Furthermore, we observed that MRS1220 could regulate the expression of LIMD1, TRIB2, and TGFB1, which are involved in chemoresistance and correlate with a poor prognosis, hypoxia, and purinergic signaling.
Collapse
Affiliation(s)
- Liuba Peñate
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Diego Carrillo-Beltrán
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carlos Spichiger
- Laboratorio de Biología Molecular Aplicada, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Alexei Cuevas-Zhbankova
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ángelo Torres-Arévalo
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, Sede Talca, Universidad Santo Tomás, Talca 347-3620, Chile
| | - Pamela Silva
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Hans G Richter
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Claudia Quezada-Monrás
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
8
|
Inoue A, Ohnishi T, Nishikawa M, Ohtsuka Y, Kusakabe K, Yano H, Tanaka J, Kunieda T. A Narrative Review on CD44's Role in Glioblastoma Invasion, Proliferation, and Tumor Recurrence. Cancers (Basel) 2023; 15:4898. [PMID: 37835592 PMCID: PMC10572085 DOI: 10.3390/cancers15194898] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
High invasiveness is a characteristic of glioblastoma (GBM), making radical resection almost impossible, and thus, resulting in a tumor with inevitable recurrence. GBM recurrence may be caused by glioma stem-like cells (GSCs) that survive many kinds of therapy. GSCs with high expression levels of CD44 are highly invasive and resistant to radio-chemotherapy. CD44 is a multifunctional molecule that promotes the invasion and proliferation of tumor cells via various signaling pathways. Among these, paired pathways reciprocally activate invasion and proliferation under different hypoxic conditions. Severe hypoxia (0.5-2.5% O2) upregulates hypoxia-inducible factor (HIF)-1α, which then activates target genes, including CD44, TGF-β, and cMET, all of which are related to tumor migration and invasion. In contrast, moderate hypoxia (2.5-5% O2) upregulates HIF-2α, which activates target genes, such as vascular endothelial growth factor (VEGF)/VEGFR2, cMYC, and cyclin D1. All these genes are related to tumor proliferation. Oxygen environments around GBM can change before and after tumor resection. Before resection, the oxygen concentration at the tumor periphery is severely hypoxic. In the reparative stage after resection, the resection cavity shows moderate hypoxia. These observations suggest that upregulated CD44 under severe hypoxia may promote the migration and invasion of tumor cells. Conversely, when tumor resection leads to moderate hypoxia, upregulated HIF-2α activates HIF-2α target genes. The phenotypic transition regulated by CD44, leading to a dichotomy between invasion and proliferation according to hypoxic conditions, may play a crucial role in GBM recurrence.
Collapse
Affiliation(s)
- Akihiro Inoue
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Takanori Ohnishi
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
- Department of Neurosurgery, Advanced Brain Disease Center, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama 790-0052, Ehime, Japan
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Yoshihiro Ohtsuka
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Kosuke Kusakabe
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicene, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (H.Y.); (J.T.)
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicene, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (H.Y.); (J.T.)
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| |
Collapse
|
9
|
Inoue A, Ohnishi T, Nishikawa M, Watanabe H, Kusakabe K, Taniwaki M, Yano H, Ohtsuka Y, Matsumoto S, Suehiro S, Yamashita D, Shigekawa S, Takahashi H, Kitazawa R, Tanaka J, Kunieda T. Identification of CD44 as a Reliable Biomarker for Glioblastoma Invasion: Based on Magnetic Resonance Imaging and Spectroscopic Analysis of 5-Aminolevulinic Acid Fluorescence. Biomedicines 2023; 11:2369. [PMID: 37760811 PMCID: PMC10525185 DOI: 10.3390/biomedicines11092369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Recurrent glioblastoma multiforme (GBM) is largely attributed to peritumoral infiltration of tumor cells. As higher CD44 expression in the tumor periphery correlates with higher risk of GBM invasion, the present study analyzed the relationship between CD44 expression and magnetic resonance imaging (MRI)-based invasiveness of GBM on a large scale. We also quantitatively evaluated GBM invasion using 5-aminolevulinic acid (5-ALA) spectroscopy to investigate the relationship between CD44 expression and tumor invasiveness as evaluated by intraoperative 5-ALA intensity. Based on MRI, GBM was classified as high-invasive type in 28 patients and low-invasive type in 22 patients. High-invasive type expressed CD44 at a significantly higher level than low-invasive type and was associated with worse survival. To quantitatively analyze GBM invasiveness, the relationship between tumor density in the peritumoral area and the spectroscopic intensity of 5-ALA was investigated. Spectroscopy showed that the 5-ALA intensity of infiltrating tumor cells correlated with tumor density as represented by the Ki-67 staining index. No significant correlation between CD44 and degree of 5-ALA-based invasiveness of GBM was found, but invasiveness of GBM as evaluated by 5-ALA matched the classification from MRI in all except one case, indicating that CD44 expression at the GBM periphery could provide a reliable biomarker for invasiveness in GBM.
Collapse
Affiliation(s)
- Akihiro Inoue
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.N.); (H.W.); (K.K.); (Y.O.); (S.M.); (S.S.); (D.Y.); (S.S.); (T.K.)
| | - Takanori Ohnishi
- Department of Neurosurgery, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama, Ehime 790-0052, Japan;
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.N.); (H.W.); (K.K.); (Y.O.); (S.M.); (S.S.); (D.Y.); (S.S.); (T.K.)
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.N.); (H.W.); (K.K.); (Y.O.); (S.M.); (S.S.); (D.Y.); (S.S.); (T.K.)
| | - Kosuke Kusakabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.N.); (H.W.); (K.K.); (Y.O.); (S.M.); (S.S.); (D.Y.); (S.S.); (T.K.)
| | - Mashio Taniwaki
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.T.); (R.K.)
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (H.Y.); (J.T.)
| | - Yoshihiro Ohtsuka
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.N.); (H.W.); (K.K.); (Y.O.); (S.M.); (S.S.); (D.Y.); (S.S.); (T.K.)
| | - Shirabe Matsumoto
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.N.); (H.W.); (K.K.); (Y.O.); (S.M.); (S.S.); (D.Y.); (S.S.); (T.K.)
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.N.); (H.W.); (K.K.); (Y.O.); (S.M.); (S.S.); (D.Y.); (S.S.); (T.K.)
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.N.); (H.W.); (K.K.); (Y.O.); (S.M.); (S.S.); (D.Y.); (S.S.); (T.K.)
| | - Seiji Shigekawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.N.); (H.W.); (K.K.); (Y.O.); (S.M.); (S.S.); (D.Y.); (S.S.); (T.K.)
| | - Hisaaki Takahashi
- Division of Pathophysiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Ishikawa 920-1181, Japan;
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.T.); (R.K.)
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (H.Y.); (J.T.)
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime 791-0295, Japan; (M.N.); (H.W.); (K.K.); (Y.O.); (S.M.); (S.S.); (D.Y.); (S.S.); (T.K.)
| |
Collapse
|
10
|
Vaid S, Schmidt MHH. Migration-Associated Transportome and Therapeutic Potential in Glioblastoma Multiforme (GBM). Cancers (Basel) 2023; 15:3514. [PMID: 37444623 DOI: 10.3390/cancers15133514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
GBM is a highly aggressive and very common malignant form of primary brain tumors in adults [...].
Collapse
Affiliation(s)
- Samir Vaid
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307 Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307 Dresden, Germany
| |
Collapse
|
11
|
Doualle C, Gouju J, Nouari Y, Wery M, Guittonneau C, Codron P, Rousseau A, Saulnier P, Eyer J, Letournel F. Dedifferentiated cells obtained from glioblastoma cell lines are an easy and robust model for mesenchymal glioblastoma stem cells studies. Am J Cancer Res 2023; 13:1425-1442. [PMID: 37168329 PMCID: PMC10164819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/12/2023] [Indexed: 05/13/2023] Open
Abstract
Glioblastoma is an aggressive brain tumor with a poor prognosis. Glioblastoma Stem Cells (GSC) are involved in glioblastoma resistance and relapse. Effective glioblastoma treatment must include GSC targeting strategy. Robust and well defined in vitroGSC models are required for new therapies evaluation. In this study, we extensively characterized 4 GSC models obtained by dedifferentiation of commercially available glioblastoma cell lines and compared them to 2 established patient derived GSC lines (Brain Tumor Initiating Cells). Dedifferentiated cells formed gliospheres, typical for GSC, with self-renewal ability. Gene expression and protein analysis revealed an increased expression of several stemness associated markers such as A2B5, integrin α6, Nestin, SOX2 and NANOG. Cells were oriented toward a mesenchymal GSC phenotype as shown by elevated levels of mesenchymal and EMT related markers (CD44, FN1, integrin α5). Dedifferentiated GSC were similar to BTIC in terms of size and heterogeneity. The characterization study also revealed that CXCR4 pathway was activated by dedifferentiation, emphasizing its role as a potential therapeutic target. The expression of resistance-associated markers and the phenotypic diversity of the 4 GSC models obtained by dedifferentiation make them relevant to challenge future GSC targeting therapies.
Collapse
Affiliation(s)
- Cécile Doualle
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Julien Gouju
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
- Département de Pathologie, CHU AngersF-49000 Angers, France
| | - Yousra Nouari
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | | | - Clélia Guittonneau
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Philippe Codron
- Département de Pathologie, CHU AngersF-49000 Angers, France
- Univ Angers, CHU Angers, Inserm, CNRS, MITOVASC, SFR ICATF-49000 Angers, France
| | - Audrey Rousseau
- Département de Pathologie, CHU AngersF-49000 Angers, France
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, SFR ICATF-49000 Angers, France
| | - Patrick Saulnier
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Joël Eyer
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Franck Letournel
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
- Département de Pathologie, CHU AngersF-49000 Angers, France
| |
Collapse
|
12
|
Erices JI, Bizama C, Niechi I, Uribe D, Rosales A, Fabres K, Navarro-Martínez G, Torres Á, San Martín R, Roa JC, Quezada-Monrás C. Glioblastoma Microenvironment and Invasiveness: New Insights and Therapeutic Targets. Int J Mol Sci 2023; 24:7047. [PMID: 37108208 PMCID: PMC10139189 DOI: 10.3390/ijms24087047] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain cancer in adults. Without treatment the mean patient survival is approximately 6 months, which can be extended to 15 months with the use of multimodal therapies. The low effectiveness of GBM therapies is mainly due to the tumor infiltration into the healthy brain tissue, which depends on GBM cells' interaction with the tumor microenvironment (TME). The interaction of GBM cells with the TME involves cellular components such as stem-like cells, glia, endothelial cells, and non-cellular components such as the extracellular matrix, enhanced hypoxia, and soluble factors such as adenosine, which promote GBM's invasiveness. However, here we highlight the role of 3D patient-derived glioblastoma organoids cultures as a new platform for study of the modeling of TME and invasiveness. In this review, the mechanisms involved in GBM-microenvironment interaction are described and discussed, proposing potential prognosis biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- José Ignacio Erices
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carolina Bizama
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Ignacio Niechi
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Daniel Uribe
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Arnaldo Rosales
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Karen Fabres
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Giovanna Navarro-Martínez
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ángelo Torres
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Talca 8370003, Chile
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Claudia Quezada-Monrás
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
13
|
Zhou X, Jin G, Zhang J, Liu F. Recruitment mechanisms and therapeutic implications of tumor-associated macrophages in the glioma microenvironment. Front Immunol 2023; 14:1067641. [PMID: 37153567 PMCID: PMC10157099 DOI: 10.3389/fimmu.2023.1067641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
As one of the main components of the glioma immune microenvironment, glioma-associated macrophages (GAMs) have increasingly drawn research interest. Primarily comprised of resident microglias and peripherally derived mononuclear macrophages, GAMs are influential in a variety of activities such as tumor cell resistance to chemotherapy and radiotherapy as well as facilitation of glioma pathogenesis. In addition to in-depth research of GAM polarization, study of mechanisms relevant in tumor microenvironment recruitment has gradually increased. Suppression of GAMs at their source is likely to produce superior therapeutic outcomes. Here, we summarize the origin and recruitment mechanism of GAMs, as well as the therapeutic implications of GAM inhibition, to facilitate future glioma-related research and formulation of more effective treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Fusheng Liu
- *Correspondence: Junwen Zhang, ; Fusheng Liu,
| |
Collapse
|
14
|
Nakamura Y, Inoue A, Nishikawa M, Ohnishi T, Yano H, Kanemura Y, Ohtsuka Y, Ozaki S, Kusakabe K, Suehiro S, Yamashita D, Shigekawa S, Watanabe H, Kitazawa R, Tanaka J, Kunieda T. Quantitative measurement of peritumoral concentrations of glutamate, N-acetyl aspartate, and lactate on magnetic resonance spectroscopy predicts glioblastoma-related refractory epilepsy. Acta Neurochir (Wien) 2022; 164:3253-3266. [PMID: 36107232 DOI: 10.1007/s00701-022-05363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/03/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Increased extracellular glutamate is known to cause epileptic seizures in patients with glioblastoma (GBM). However, predicting whether the seizure will be refractory is difficult. The present study investigated whether evaluation of the levels of various metabolites, including glutamate, can predict the occurrence of refractory seizure in GBM by quantitative measurement of metabolite concentrations on magnetic resonance spectroscopy (MRS). METHODS Forty patients were treated according to the same treatment protocol for primary GBM at Ehime University Hospital between April 2017 and July 2021. Of these patients, 23 underwent MRS to determine concentrations of metabolites, including glutamate, N-acetylaspartate, creatine, and lactate, in the tumor periphery by applying LC-Model. The concentration of each metabolite was expressed as a ratio to creatine concentration. Patients were divided into three groups: Type A, patients with no seizures; Type B, patients with seizures that disappeared after treatment; and Type C, patients with seizures that remained unrelieved or appeared after treatment (refractory seizures). Relationships between concentrations of metabolites and seizure types were investigated. RESULTS In 23 GBMs, seizures were confirmed in 11 patients, including Type B in four and Type C in seven. Patients with epilepsy (Type B or C) showed significantly higher glutamate and N-acetylaspartate values than did non-epilepsy patients (Type A) (p < 0.05). No significant differences in glutamate or N-acetylaspartate levels were seen between Types B and C. Conversely, Type C showed significantly higher concentrations of lactate than did Type B (p = 0.001). Cutoff values of lactate-to-creatine, glutamate-to-creatine, and N-acetylaspartate-to-creatine ratios for refractory seizure were > 1.25, > 1.09, and > 0.88, respectively. CONCLUSIONS Extracellular concentrations of glutamate, N-acetylaspartate, and lactate in the tumor periphery were significantly elevated in patients with GBM with refractory seizures. Measurement of these metabolites on MRS may predict refractory epilepsy in such patients and could be an indicator for continuing the use of antiepileptic drugs.
Collapse
Affiliation(s)
- Yawara Nakamura
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Akihiro Inoue
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama, Ehime, 790-0052, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Osaka, 540-0006, Japan.,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Osaka, 540-0006, Japan
| | - Yoshihiro Ohtsuka
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Saya Ozaki
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kosuke Kusakabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Seiji Shigekawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
15
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
16
|
Elucidating the Anti-Tumorigenic Efficacy of Oltipraz, a Dithiolethione, in Glioblastoma. Cells 2022; 11:cells11193057. [PMID: 36231019 PMCID: PMC9562012 DOI: 10.3390/cells11193057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor, displays a highly infiltrative growth pattern and remains refractory to chemotherapy. Phytochemicals carrying specificity and low cytotoxicity may serve as potent and safer alternatives to conventional chemotherapy for treating GBM. We have evaluated the anticancer effects of Oltipraz (Olt), a synthetic dithiolethione found in many vegetables, including crucifers. While Olt exposure was non-toxic to the HEK-293 cell line, it impaired the cell growth in three GBM cell lines (LN18, LN229, and U-87 MG), arresting those at the G2/M phase. Olt-exposed GBM cells induced the generation of reactive oxygen species (ROS), mitochondrial depolarization, caspase 3/7-mediated apoptosis, nuclear condensation, and DNA fragmentation, and decreased glutathione, a natural ROS scavenger, as well as vimentin and β-catenin, the EMT-associated markers. Its effect on a subpopulation of GBM cells exhibiting glioblastoma stem cell (GSCs)-like characteristics revealed a reduced expression of Oct4, Sox2, CD133, CD44, and a decrease in ALDH+, Nestin+ and CD44+ cells. In contrast, there was an increase in the expression of GFAP and GFAP+ cells. The Olt also significantly suppressed the oncosphere-forming ability of cells. Its efficacy was further validated in vivo, wherein oral administration of Olt could suppress the ectopically established GBM tumor growth in SCID mice. However, there was no alteration in body weight, organ ratio, and biochemical parameters, reflecting the absence of any toxicity otherwise. Together, our findings could demonstrate the promising chemotherapeutic efficacy of Olt with potential implications in treating GBM.
Collapse
|
17
|
Liu Y, Zhang X, Jiang T, Du N. Hypoxia-Induced Nestin Regulates Viability and Metabolism of Lung Cancer by Targeting Transcriptional Factor Nrf2, STAT3, and SOX2. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9811905. [PMID: 36082356 PMCID: PMC9448566 DOI: 10.1155/2022/9811905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Objective To investigate hypoxia-induced Nestin regulates lung cancer viability and metabolism by targeting transcription factors Nrf2, STAT3, and SOX2. Methods Eighty-four cases of nonsmall cell lung cancer (nonsmall cell lung cancer, NSCLC), which had been treated from June 2020 to February 2021, were randomly selected from our clinicopathology database. Immunohistochemical staining of collected tissue cells was performed to assess the expression patterns of Nestin, STAT3, Nrf2, and SOX2. Data were quantified and statistically analyzed using one-way and two-way ANOVA tests with P < 0.05. Results Clinicopathological findings showed significant differences in lymph node metastasis, tissue differentiation, and histology on induction of Nestin expression; Nestin expression correlated with STAT3, Nrf2, and SOX2 expression.Nestin/STAT3/SOX2/Nrf2 are involved in angiogenesis and lung cancer development. Conclusion Hypoxia-induced Nestin promotes the progression of nonsmall lung cancer cells by targeting the downstream transcription factors STAT3, Nrf2, and SOX2.
Collapse
Affiliation(s)
- Yongshi Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xinglin Zhang
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ning Du
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Novel therapeutics and drug-delivery approaches in the modulation of glioblastoma stem cell resistance. Ther Deliv 2022; 13:249-273. [PMID: 35615860 DOI: 10.4155/tde-2021-0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a deadly malignancy with a poor prognosis. An important factor contributing to GBM recurrence is high resistance of GBM cancer stem cells (GSCs). While temozolomide (TMZ), has been shown to consistently extend survival, GSCs grow resistant to TMZ through upregulation of DNA damage repair mechanisms and avoidance of apoptosis. Since a single-drug approach has failed to significantly alter prognosis in the past 15 years, unique approaches such as multidrug combination therapy together with distinctive targeted drug-delivery approaches against cancer stem cells are needed. In this review, a rationale for multidrug therapy using a targeted nanotechnology approach that preferentially target GSCs is proposed with discussion and examples of drugs, nanomedicine delivery systems, and targeting moieties.
Collapse
|
19
|
A Tumor Suppressor Gene, N-myc Downstream-Regulated Gene 1 (NDRG1), in Gliomas and Glioblastomas. Brain Sci 2022; 12:brainsci12040473. [PMID: 35448004 PMCID: PMC9029626 DOI: 10.3390/brainsci12040473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 12/04/2022] Open
Abstract
The development of potent and selective therapeutic approaches to glioblastoma (GBM) requires the identification of molecular pathways that critically regulate the survival and proliferation of GBM. Glioblastoma stem-like cells (GSCs) possess stem-cell-like properties, self-renewal, and differentiation into multiple neural cell lineages. From a clinical point of view, GSCs have been reported to resist radiation and chemotherapy. GSCs are influenced by the microenvironment, especially the hypoxic condition. N-myc downstream-regulated gene 1 (NDRG1) is a tumor suppressor with the potential to suppress the proliferation, invasion, and migration of cancer cells. Previous studies have reported that deregulated expression of NDRG1 affects tumor growth and clinical outcomes of patients with GBM. This literature review aimed to clarify the critical role of NDRG1 in tumorigenesis and acquirement of resistance for anti-GBM therapies, further to discussing the possibility and efficacy of NDRG1 as a novel target of treatment for GBM. The present review was conducted by searching the PubMed and Scopus databases. The search was conducted in February 2022. We review current knowledge on the regulation and signaling of NDRG1 in neuro-oncology. Finally, the role of NDRG1 in GBM and potential clinical applications are discussed.
Collapse
|
20
|
D’Amico AG, Maugeri G, Vanella L, Pittalà V, Reglodi D, D’Agata V. Multimodal Role of PACAP in Glioblastoma. Brain Sci 2021; 11:994. [PMID: 34439613 PMCID: PMC8391398 DOI: 10.3390/brainsci11080994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of brain tumors. To date, the GBM therapeutical approach consists of surgery, radiation-therapy and chemotherapy combined with molecules improving cancer responsiveness to treatments. In this review, we will present a brief overview of the GBM classification and pathogenesis, as well as the therapeutic approach currently used. Then, we will focus on the modulatory role exerted by pituitary adenylate cyclase-activating peptide, known as PACAP, on GBM malignancy. Specifically, we will describe PACAP ability to interfere with GBM cell proliferation, as well as the tumoral microenvironment. Considering its anti-oncogenic role in GBM, synthesis of PACAP agonist molecules may open new perspectives for combined therapy to existing gold standard treatment.
Collapse
Affiliation(s)
- Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (L.V.); (V.P.)
| | - Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy;
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (L.V.); (V.P.)
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (L.V.); (V.P.)
| | - Dora Reglodi
- MTA-PTE PACAP Research Group, Department of Anatomy, University of Pécs Medical School, 7624 Pécs, Hungary;
| | - Velia D’Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy;
| |
Collapse
|
21
|
Prediction of Glioma Stemlike Cell Infiltration in the Non-Contrast-Enhancing Area by Quantitative Measurement of Lactate on Magnetic Resonance Spectroscopy in Glioblastoma. World Neurosurg 2021; 153:e76-e95. [PMID: 34144167 DOI: 10.1016/j.wneu.2021.06.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND We previously reported that glioma stemlike cells (GSCs) exist in the area of the tumor periphery showing no gadolinium enhancement on magnetic resonance imaging. In the present work, we analyzed glucose metabolism to investigate whether lactate could be predictive of tumor invasiveness and of use in detection of the tumor invasion area in glioblastoma multiforme (GBM). METHODS The expression of lactate dehydrogenase A (LDH-A) and pyruvate dehydrogenase (PDH) was investigated in 20 patients. In GSC lines, LDH-A and PDH expression also was examined in parallel to assessments of mitochondrial respiration. We then investigated the relationship between lactate/creatine ratios in the tumor periphery measured by magnetic resonance spectroscopy, using learning-compression-model algorithms and phenotypes of GBMs. RESULTS In 20 GBMs, high-invasive GBM expressed LDH-A at significantly higher expression than did low-invasive GBM, whereas low-invasive GBM showed significantly higher expression of PDH than did high-invasive GBM. The highly invasive GSC line showed higher expression of LDH-A and lower expression of PDH compared with low-invasive GSC lines. The highly invasive GSC line also showed the lowest consumption of oxygen and the lowest production of adenosine triphosphate. Lactate levels, as measured by magnetic resonance spectroscopy, showed a significant positive correlation with LDH-A transcript levels, permitting classification of the GBMs into high-invasive and low-invasive phenotypes based on a cutoff value of 0.66 in the lactate/creatine ratio. CONCLUSIONS In the tumor periphery area of the highly invasive GBM, aerobic glycolysis was the predominant pathway for glucose metabolism, resulting in the accumulation of lactate. The level of lactate may facilitate prediction of the tumor-infiltrating area on GBM.
Collapse
|