1
|
Yin X, Sha H, Cao X, Ge X, Li T, Cui Y, Li S, Wang R, Sha X. Tumor habitat-derived radiomics features in pretreatment CT scans for predicting concurrent chemoradiotherapy responses in nasopharyngeal carcinoma: a retrospective study. Quant Imaging Med Surg 2025; 15:2917-2928. [PMID: 40235772 PMCID: PMC11994483 DOI: 10.21037/qims-24-1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025]
Abstract
Background Nasopharyngeal carcinoma (NPC) is a highly heterogeneous malignancy, characterized by significant variability in its biological and clinical features, which contribute to diverse treatment responses among patients. This study aimed to investigate intratumoral heterogeneity (ITH) in pretreatment computed tomography (CT) scans and test its performance for predicting responses to simultaneous chemoradiotherapy treatment in NPC patients. Methods Pretreatment CT scans of 113 NPC patients were retrospectively analyzed at our center from March 2012 to September 2022. Radiomics features were selected from tumor and habitat regions to establish models. Both univariate and multivariate analyses were conducted to identify clinical risk indices related to treatment responses. Significant variables, including clinical variables, radiomics features, and habitat radiomics (H-Rad) features, were integrated into a joint predictive model, with its performance assessed using the area under the receiver operating characteristic (ROC) curve (AUC). Results A total of ten prediction models were constructed, including six radiomics models [support vector machine (SVM), random forest, extra trees, extreme gradient boost (XGBoost), light gradient boosting machine (LightGBM), and habitat model] and one joint predictive model. The ExtraTrees model performed exceptionally well, resulting in AUCs of 0.969 and 0.894 in the training and testing cohorts, respectively. This indicates its strong ability to effectively predict between treatment responses. In the training cohort, the joint model demonstrated superior predictive accuracy with the highest AUC of 0.961. Additionally, the HabitatMean model showed excellent performance, with an AUC of 0.944. Overall, the joint model demonstrated robustness and superior integration of various features for predictive analysis, with the highest AUCs of 0.961 and 0.861 in the training and testing cohorts, respectively. Conclusions A model that integrates conventional radiomics (C-Rad), a quantitative CT-based measure of ITH, and clinical variables has shown significant accuracy in predicting treatment response to chemoradiotherapy in NPC patients.
Collapse
Affiliation(s)
- Xiaoyan Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Graduated, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Sha
- Department of Imaging Equipment, Hunan Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiujuan Cao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xuanchu Ge
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tengxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yongbin Cui
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Graduated, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuli Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ruozheng Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Xue Sha
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Gharibi O, Hajianfar G, Sabouri M, Mohebi M, Bagheri S, Arian F, Yasemi MJ, Bitarafan Rajabi A, Rahmim A, Zaidi H, Shiri I. Myocardial perfusion SPECT radiomic features reproducibility assessment: Impact of image reconstruction and harmonization. Med Phys 2025; 52:965-977. [PMID: 39470363 PMCID: PMC11788242 DOI: 10.1002/mp.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) has one of the highest mortality rates in humans worldwide. Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) provides clinicians with myocardial metabolic information non-invasively. However, there are some limitations to interpreting SPECT images performed by physicians or automatic quantitative approaches. Radiomics analyzes images objectively by extracting quantitative features and can potentially reveal biological characteristics that the human eye cannot detect. However, the reproducibility and repeatability of some radiomic features can be highly susceptible to segmentation and imaging conditions. PURPOSE We aimed to assess the reproducibility of radiomic features extracted from uncorrected MPI-SPECT images reconstructed with 15 different settings before and after ComBat harmonization, along with evaluating the effectiveness of ComBat in realigning feature distributions. MATERIALS AND METHODS A total of 200 patients (50% normal and 50% abnormal) including rest and stress (without attenuation and scatter corrections) MPI-SPECT images were included. Images were reconstructed using 15 combinations of filter cut-off frequencies, filter orders, filter types, reconstruction algorithms, number of iterations and subsets resulting in 6000 images. Image segmentation was performed on the left ventricle in the first reconstruction for each patient and applied to 14 others. A total of 93 radiomic features were extracted from the segmented area, and ComBat was used to harmonize them. The intraclass correlation coefficient (ICC) and overall concordance correlation coefficient (OCCC) tests were performed before and after ComBat to examine the impact of each parameter on feature robustness and to assess harmonization efficiency. The ANOVA and the Kruskal-Wallis tests were performed to evaluate the effectiveness of ComBat in correcting feature distributions. In addition, the Student's t-test, Wilcoxon rank-sum, and signed-rank tests were implemented to assess the significance level of the impacts made by each parameter of different batches and patient groups (normal vs. abnormal) on radiomic features. RESULTS Before applying ComBat, the majority of features (ICC: 82, OCCC: 61) achieved high reproducibility (ICC/OCCC ≥ 0.900) under every batch except Reconstruction. The largest and smallest number of poor features (ICC/OCCC < 0.500) were obtained by IterationSubset and Order batches, respectively. The most reliable features were from the first-order (FO) and gray-level co-occurrence matrix (GLCM) families. Following harmonization, the minimum number of robust features increased (ICC: 84, OCCC: 78). Applying ComBat showed that Order and Reconstruction were the least and the most responsive batches, respectively. The most robust families, in a descending order, were found to be FO, neighborhood gray-tone difference matrix (NGTDM), GLCM, gray-level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), and gray-level dependence matrix (GLDM) under Cut-off, Filter, and Order batches. The Wilcoxon rank-sum test showed that the number of robust features significantly differed under most batches in the Normal and Abnormal groups. CONCLUSION The majority of radiomic features show high levels of robustness across different OSEM reconstruction parameters in uncorrected MPI-SPECT. ComBat is effective in realigning feature distributions and enhancing radiomic features reproducibility.
Collapse
Affiliation(s)
- Omid Gharibi
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Integrative OncologyBC Cancer Research InstituteVancouverBritish ColumbiaCanada
- Department of Medical PhysicsSchool of MedicineIran University of Medical SciencesTehranIran
| | - Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Maziar Sabouri
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Integrative OncologyBC Cancer Research InstituteVancouverBritish ColumbiaCanada
| | - Mobin Mohebi
- Department of Biomedical EngineeringTarbiat Modares UniversityTehranIran
| | - Soroush Bagheri
- Department of Medical PhysicsKashan University of Medical SciencesKashanIran
| | - Fatemeh Arian
- Department of Medical PhysicsSchool of MedicineIran University of Medical SciencesTehranIran
| | - Mohammad Javad Yasemi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical ScienceTehranIran
| | - Ahmad Bitarafan Rajabi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
- Cardiovascular Intervention Research CenterRajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Arman Rahmim
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Integrative OncologyBC Cancer Research InstituteVancouverBritish ColumbiaCanada
- Department of RadiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
- Department of Nuclear Medicine and Molecular ImagingUniversity of GroningenUniversity Medical Center GroningenGroningenNetherlands
- Department of Nuclear MedicineUniversity of Southern DenmarkOdenseDenmark
- University Research and Innovation CenterÓbuda UniversityBudapestHungary
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
- Department of Cardiology, InselspitalBern University HospitalUniversity of BernBernSwitzerland
| |
Collapse
|
3
|
Zuo Z, Ma J, Yan M, Ge W, Yao T, Zhou L, Zeng Y, Liu Y. Machine learning-derived prognostic signature for progression-free survival in non-metastatic nasopharyngeal carcinoma. Head Neck 2025; 47:112-128. [PMID: 39077955 DOI: 10.1002/hed.27895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Early detection of high-risk nasopharyngeal carcinoma (NPC) recurrence is essential. We created a machine learning-derived prognostic signature (MLDPS) by combining three machine learning (ML) models to predict progression-free survival (PFS) in patients with non-metastatic NPC. METHODS A cohort of 653 patients with non-metastatic NPC was divided into a training (n = 457) and validation (n = 196) dataset (7:3 ratio). The study included clinicopathological characteristics, hematologic markers, and MRI findings in three machine learning models-random forest (RF), extreme gradient boosting (XGBoost), and least absolute shrinkage and selection operator (LASSO)-to predict progression-free survival (PFS). A Venn diagram identified the overlapping signatures from the three ML algorithms. Cox proportional hazard analysis determined the MLDPS for PFS. RESULTS The RF, XGBoost, and LASSO algorithms identified six consensus factors from the 33 signatures. Cox proportional hazards analysis showed that the MLDPS includes age, lymphocyte count, number of positive lymph nodes, and regional lymph node density. Additionally, MLDPS effectively stratified prognosis, with low-risk individuals showing better PFS than high-risk individuals (p < 0.001). CONCLUSION MLDPS, based on clinicopathological characteristics, hematologic markers, and MRI findings, is crucial for guiding clinical management and personalizing treatments for patients with non-metastatic NPC.
Collapse
Affiliation(s)
- Zhichao Zuo
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, China
| | - Jie Ma
- Department of Medical Imaging, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mi Yan
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, China
| | - Wu Ge
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, China
| | - Ting Yao
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, China
| | - Lu Zhou
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, China
| | - Ying Zeng
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, China
| | - Yang Liu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
4
|
Chen L, Wang Z, Meng Y, Zhao C, Wang X, Zhang Y, Zhou M. A clinical-radiomics nomogram based on multisequence MRI for predicting the outcome of patients with advanced nasopharyngeal carcinoma receiving chemoradiotherapy. Front Oncol 2024; 14:1460426. [PMID: 39634263 PMCID: PMC11615067 DOI: 10.3389/fonc.2024.1460426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Problem Nasopharyngeal carcinoma (NPC) is a common malignant tumor with high heterogeneity and is mainly treated with chemoradiotherapy. It is important to predict the outcome of patients with advanced NPC after chemoradiotherapy to devise customized treatment strategies. Traditional MRI methods have limited predictive power, and better predictive models are needed. Aim To evaluate the predictive value of a clinical-radiomics nomogram based on multisequence MRI in predicting the outcome of advanced NPC patients receiving chemoradiotherapy. Methods This prospective study included a retrospective analysis of 118 patients with advanced NPC who underwent MRI prior to chemoradiotherapy. The primary endpoint was progression-free survival (PFS). The maximum ROIs of lesions at the same level were determined via axial T2-weighted imaging short-time inversion recovery (T2WI-STIR), contrast-enhanced T1-weighted imaging (CE-T1WI), and diffusion-weighted imaging (DWI) with solid tumor components, and the radiomic features were extracted. After feature selection, the radiomics score was calculated, and a nomogram was constructed combining the radiomics score with the clinical features. The diagnostic efficacy of the model was evaluated by the area under the receiver operating characteristic curve (AUC), and the clinical application value of the nomogram was evaluated by decision curve analysis (DCA) and a correction curve. Patients were divided into a high-risk group and a low-risk group, and the median risk score calculated by the joint prediction model was used as the cutoff value. Kaplan-Meier analysis and the log-rank test were used to compare the differences in survival curves between the two groups. Results The AUCs of the nomogram model constructed by the combination of the radiomics score and neutrophil-to-lymphocyte ratio (NLR) and T stage in the training group and validation group were 0.897 (95% CI: 0.825-0.968) and 0.801 (95% CI: 0.673-0.929), respectively. Kaplan-Meier survival analysis demonstrated that the model effectively stratified patients into high- and low-risk groups, with significant differences in prognosis. Conclusion This clinical-radiomics nomogram based on multisequence MRI offers a noninvasive, effective tool for predicting the outcome of advanced NPC patients receiving chemoradiotherapy, promoting individualized treatment approaches.
Collapse
Affiliation(s)
- Liucheng Chen
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyuan Wang
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Ying Meng
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Cancan Zhao
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Xuelian Wang
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Yan Zhang
- School of Medical Imaging, Bengbu Medical University, Bengbu, Anhui, China
| | - Muye Zhou
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
5
|
Bourdillon AT. Computer Vision-Radiomics & Pathognomics. Otolaryngol Clin North Am 2024; 57:719-751. [PMID: 38910065 DOI: 10.1016/j.otc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The role of computer vision in extracting radiographic (radiomics) and histopathologic (pathognomics) features is an extension of molecular biomarkers that have been foundational to our understanding across the spectrum of head and neck disorders. Especially within head and neck cancers, machine learning and deep learning applications have yielded advances in the characterization of tumor features, nodal features, and various outcomes. This review aims to overview the landscape of radiomic and pathognomic applications, informing future work to address gaps. Novel methodologies will be needed to potentially engineer ways of integrating multidimensional data inputs to examine disease features to guide prognosis comprehensively and ultimately clinical management.
Collapse
Affiliation(s)
- Alexandra T Bourdillon
- Department of Otolaryngology-Head & Neck Surgery, University of California-San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
6
|
Yoo J, Hyun SH, Lee J, Cheon M, Lee KH, Heo JS, Choi JY. Prognostic Significance of 18 F-FDG PET/CT Radiomics in Patients With Resectable Pancreatic Ductal Adenocarcinoma Undergoing Curative Surgery. Clin Nucl Med 2024; 49:909-916. [PMID: 38968550 DOI: 10.1097/rlu.0000000000005363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
PURPOSE This study aimed to investigate the prognostic significance of PET/CT radiomics to predict overall survival (OS) in patients with resectable pancreatic ductal adenocarcinoma (PDAC). METHODS We enrolled 627 patients with resectable PDAC who underwent preoperative 18 F-FDG PET/CT and subsequent curative surgery. Radiomics analysis of the PET/CT images for the primary tumor was performed using the Chang-Gung Image Texture Analysis toolbox. Radiomics features were subjected to least absolute shrinkage and selection operator (LASSO) regression to select the most valuable imaging features of OS. The prognostic significance was evaluated by Cox proportional hazards regression analysis. Conventional PET parameters and LASSO score were assessed as predictive factors for OS by time-dependent receiver operating characteristic curve analysis. RESULTS During a mean follow-up of 28.8 months, 378 patients (60.3%) died. In the multivariable Cox regression analysis, tumor differentiation, resection margin status, tumor stage, and LASSO score were independent prognostic factors for OS (HR, 1.753, 1.669, 2.655, and 2.946; all P < 0.001, respectively). The time-dependent receiver operating characteristic curve analysis showed that the LASSO score had better predictive performance for OS than conventional PET parameters. CONCLUSIONS The LASSO score using the 18 F-FDG PET/CT radiomics of the primary tumor was the independent prognostic factor for predicting OS in patients with resectable PDAC and may be helpful in determining therapeutic and follow-up plans for these patients.
Collapse
Affiliation(s)
- Jang Yoo
- From the Department of Nuclear Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju
| | - Seung Hyup Hyun
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Jaeho Lee
- Department of Preventive Medicine, Seoul National University College of Medicine
| | - Miju Cheon
- Department of Nuclear Medicine, Veterans Health Service Medical Center
| | | | - Jin Seok Heo
- Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| |
Collapse
|
7
|
Alabi RO, Elmusrati M, Leivo I, Almangush A, Mäkitie AA. Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects. Int J Med Inform 2024; 188:105464. [PMID: 38728812 DOI: 10.1016/j.ijmedinf.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Radiomics is a rapidly growing field used to leverage medical radiological images by extracting quantitative features. These are supposed to characterize a patient's phenotype, and when combined with artificial intelligence techniques, to improve the accuracy of diagnostic models and clinical outcome prediction. OBJECTIVES This review aims at examining the application areas of artificial intelligence-based radiomics (AI-based radiomics) for the management of head and neck cancer (HNC). It further explores the workflow of AI-based radiomics for personalized and precision oncology in HNC. Finally, it examines the current challenges of AI-based radiomics in daily clinical oncology and offers possible solutions to these challenges. METHODS Comprehensive electronic databases (PubMed, Medline via Ovid, Scopus, Web of Science, CINAHL, and Cochrane Library) were searched following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The quality of included studies and their risk of biases were evaluated using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)and Prediction Model Risk of Bias Assessment Tool (PROBAST). RESULTS Out of the 659 search hits retrieved, 45 fulfilled the inclusion criteria. Our review revealed that the application of AI-based radiomics model as an ancillary tool for improved decision-making in HNC management includes radiomics-based cancer diagnosis and radiomics-based cancer prognosis. The radiomics-based cancer diagnosis includes tumor staging, tumor grading, and classification of malignant and benign tumors. Similarly, radiomics-based cancer prognosis includes prediction for treatment response, recurrence, metastasis, and survival. In addition, the challenges in the implementation of these models for clinical evaluations include data imbalance, feature engineering (extraction and selection), model generalizability, multi-modal fusion, and model interpretability. CONCLUSION Considering the highly subjective and interobserver variability that is peculiar to the interpretation of medical images by expert clinicians, AI-based radiomics seeks to offer potentially useful quantitative information, which is not visible to the human eye or unintentionally often remain ignored during clinical imaging practice. By enabling the extraction of this type of information, AI-based radiomics has the potential to revolutionize HNC oncology, providing a platform for more personalized, higher quality, and cost-effective care for HNC patients.
Collapse
Affiliation(s)
- Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Mohammed Elmusrati
- Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland
| | - Ilmo Leivo
- University of Turku, Institute of Biomedicine, Pathology, Turku, Finland
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; University of Turku, Institute of Biomedicine, Pathology, Turku, Finland; Department of Pathology, University of Helsinki, Helsinki, Finland; Faculty of Dentistry, Misurata University, Misurata, Libya
| | - Antti A Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Wang CK, Wang TW, Lu CF, Wu YT, Hua MW. Deciphering the Prognostic Efficacy of MRI Radiomics in Nasopharyngeal Carcinoma: A Comprehensive Meta-Analysis. Diagnostics (Basel) 2024; 14:924. [PMID: 38732337 PMCID: PMC11082984 DOI: 10.3390/diagnostics14090924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This meta-analysis investigates the prognostic value of MRI-based radiomics in nasopharyngeal carcinoma treatment outcomes, specifically focusing on overall survival (OS) variability. The study protocol was registered with INPLASY (INPLASY202420101). Initially, a systematic review identified 15 relevant studies involving 6243 patients through a comprehensive search across PubMed, Embase, and Web of Science, adhering to PRISMA guidelines. The methodological quality was assessed using the Quality in Prognosis Studies (QUIPS) tool and the Radiomics Quality Score (RQS), highlighting a low risk of bias in most domains. Our analysis revealed a significant average concordance index (c-index) of 72% across studies, indicating the potential of radiomics in clinical prognostication. However, moderate heterogeneity was observed, particularly in OS predictions. Subgroup analyses and meta-regression identified validation methods and radiomics software as significant heterogeneity moderators. Notably, the number of features in the prognosis model correlated positively with its performance. These findings suggest radiomics' promising role in enhancing cancer treatment strategies, though the observed heterogeneity and potential biases call for cautious interpretation and standardization in future research.
Collapse
Affiliation(s)
- Chih-Keng Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ting-Wei Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Chia-Fung Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Man-Wei Hua
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| |
Collapse
|
9
|
Li H, Huang W, Wang S, Balasubramanian PS, Wu G, Fang M, Xie X, Zhang J, Dong D, Tian J, Chen F. Comprehensive integrated analysis of MR and DCE-MR radiomics models for prognostic prediction in nasopharyngeal carcinoma. Vis Comput Ind Biomed Art 2023; 6:23. [PMID: 38036750 PMCID: PMC10689317 DOI: 10.1186/s42492-023-00149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Although prognostic prediction of nasopharyngeal carcinoma (NPC) remains a pivotal research area, the role of dynamic contrast-enhanced magnetic resonance (DCE-MR) has been less explored. This study aimed to investigate the role of DCR-MR in predicting progression-free survival (PFS) in patients with NPC using magnetic resonance (MR)- and DCE-MR-based radiomic models. A total of 434 patients with two MR scanning sequences were included. The MR- and DCE-MR-based radiomics models were developed based on 289 patients with only MR scanning sequences and 145 patients with four additional pharmacokinetic parameters (volume fraction of extravascular extracellular space (ve), volume fraction of plasma space (vp), volume transfer constant (Ktrans), and reverse reflux rate constant (kep) of DCE-MR. A combined model integrating MR and DCE-MR was constructed. Utilizing methods such as correlation analysis, least absolute shrinkage and selection operator regression, and multivariate Cox proportional hazards regression, we built the radiomics models. Finally, we calculated the net reclassification index and C-index to evaluate and compare the prognostic performance of the radiomics models. Kaplan-Meier survival curve analysis was performed to investigate the model's ability to stratify risk in patients with NPC. The integration of MR and DCE-MR radiomic features significantly enhanced prognostic prediction performance compared to MR- and DCE-MR-based models, evidenced by a test set C-index of 0.808 vs 0.729 and 0.731, respectively. The combined radiomics model improved net reclassification by 22.9%-52.6% and could significantly stratify the risk levels of patients with NPC (p = 0.036). Furthermore, the MR-based radiomic feature maps achieved similar results to the DCE-MR pharmacokinetic parameters in terms of reflecting the underlying angiogenesis information in NPC. Compared to conventional MR-based radiomics models, the combined radiomics model integrating MR and DCE-MR showed promising results in delivering more accurate prognostic predictions and provided more clinical benefits in quantifying and monitoring phenotypic changes associated with NPC prognosis.
Collapse
Affiliation(s)
- Hailin Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, China
| | - Siwen Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Gang Wu
- Department of Radiotherapy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, China
| | - Mengjie Fang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuebin Xie
- Department of Radiology, Kiang Wu Hospital, Santo António, Macao, 999078, China
| | - Jie Zhang
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, Guangdong, 519000, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai, Guangdong, 519000, China.
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, China.
| |
Collapse
|
10
|
Le VH, Kha QH, Minh TNT, Nguyen VH, Le VL, Le NQK. Development and Validation of CT-Based Radiomics Signature for Overall Survival Prediction in Multi-organ Cancer. J Digit Imaging 2023; 36:911-922. [PMID: 36717518 PMCID: PMC10287593 DOI: 10.1007/s10278-023-00778-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
The malignant tumors in nature share some common morphological characteristics. Radiomics is not only images but also data; we think that a probability exists in a set of radiomics signatures extracted from CT scan images of one cancer tumor in one specific organ also be utilized for overall survival prediction in different types of cancers in different organs. The retrospective study enrolled four data sets of cancer patients in three different organs (420, 157, 137, and 191 patients for lung 1 training, lung 2 testing, and two external validation set: kidney and head and neck, respectively). In the training set, radiomics features were obtained from CT scan images, and essential features were chosen by LASSO algorithm. Univariable and multivariable analyses were then conducted to find a radiomics signature via Cox proportional hazard regression. The Kaplan-Meier curve was performed based on the risk score. The integrated time-dependent area under the ROC curve (iAUC) was calculated for each predictive model. In the training set, Kaplan-Meier curve classified patients as high or low-risk groups (p-value < 0.001; log-rank test). The risk score of radiomics signature was locked and independently evaluated in the testing set, and two external validation sets showed significant differences (p-value < 0.05; log-rank test). A combined model (radiomics + clinical) showed improved iAUC in lung 1, lung 2, head and neck, and kidney data set are 0.621 (95% CI 0.588, 0.654), 0.736 (95% CI 0.654, 0.819), 0.732 (95% CI 0.655, 0.809), and 0.834 (95% CI 0.722, 0.946), respectively. We believe that CT-based radiomics signatures for predicting overall survival in various cancer sites may exist.
Collapse
Affiliation(s)
- Viet Huan Le
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Thoracic Surgery, Khanh Hoa General Hospital, Nha Trang, 65000, Vietnam
| | - Quang Hien Kha
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Tran Nguyen Tuan Minh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Van Hiep Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Oncology Center, Bai Chay Hospital, Quang Ninh, 20000, Vietnam
| | - Van Long Le
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Anesthesiology and Critical Care, Hue University of Medicine and Pharmacy, Hue University, Hue City, 52000, Vietnam
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 106, Taiwan.
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, 106, Taiwan.
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
11
|
Guo Y, Dai G, Xiong X, Wang X, Chen H, Zhou X, Huang W, Chen F. Intravoxel incoherent motion radiomics nomogram for predicting tumor treatment responses in nasopharyngeal carcinoma. Transl Oncol 2023; 31:101648. [PMID: 36905870 PMCID: PMC10020114 DOI: 10.1016/j.tranon.2023.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Intravoxel incoherent motion (IVIM) plays an important role in predicting treatment responses in patient with nasopharyngeal carcinoma (NPC). The goal of this study was to develop and validate a radiomics nomogram based on IVIM parametric maps and clinical data for the prediction of treatment responses in NPC patients. METHODS Eighty patients with biopsy-proven NPC were enrolled in this study. Sixty-two patients had complete responses and 18 patients had incomplete responses to treatment. Each patient received a multiple b-value diffusion-weighted imaging (DWI) examination before treatment. Radiomics features were extracted from IVIM parametric maps derived from DWI image. Feature selection was performed by the least absolute shrinkage and selection operator method. Radiomics signature was generated by support vector machine based on the selected features. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) values were used to evaluate the diagnostic performance of radiomics signature. A radiomics nomogram was established by integrating the radiomics signature and clinical data. RESULTS The radiomics signature showed good prognostic performance to predict treatment response in both training (AUC = 0.906, P<0.001) and testing (AUC = 0.850, P<0.001) cohorts. The radiomic nomogram established by integrating the radiomic signature with clinical data significantly outperformed clinical data alone (C-index, 0.929 vs 0.724; P<0.0001). CONCLUSIONS The IVIM-based radiomics nomogram provided high prognostic ability to treatment responses in patients with NPC. The IVIM-based radiomics signature has the potential to be a new biomarker in prediction of the treatment responses and may affect treatment strategies in patients with NPC.
Collapse
Affiliation(s)
- Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Ganmian Dai
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Xiaoli Xiong
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Xiaoyi Wang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Huijuan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Xiaoyue Zhou
- Siemens Healthineers Digital Technology (Shanghai) Co., Ltd., Shanghai 201306, China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China.
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China.
| |
Collapse
|
12
|
Kulanthaivelu R, Kohan A, Hinzpeter R, Liu ZA, Hope A, Huang SH, Waldron J, O’Sullivan B, Ortega C, Metser U, Veit-Haibach P. Prognostic value of PET/CT and MR-based baseline radiomics among patients with non-metastatic nasopharyngeal carcinoma. Front Oncol 2022; 12:952763. [PMID: 36353565 PMCID: PMC9638017 DOI: 10.3389/fonc.2022.952763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2023] Open
Abstract
PURPOSE Radiomics is an emerging imaging assessment technique that has shown promise in predicting survival among nasopharyngeal carcinoma (NPC) patients. Studies so far have focused on PET or MR-based radiomics independently. The aim of our study was to evaluate the prognostic value of clinical and radiomic parameters derived from both PET/CT and MR. METHODS Retrospective evaluation of 124 NPC patients with PET/CT and radiotherapy planning MR (RP-MR). Primary tumors were segmented using dedicated software (LIFEx version 6.1) from PET, CT, contrast-enhanced T1-weighted (T1-w), and T2-weighted (T2-w) MR sequences with 376 radiomic features extracted. Summary statistics describe patient, disease, and treatment characteristics. The Kaplan-Meier (KM) method estimates overall survival (OS) and progression-free survival (PFS). Clinical factors selected based on univariable analysis and the multivariable Cox model were subsequently constructed with radiomic features added. RESULTS The final models comparing clinical, clinical + RP-MR, clinical + PET/CT and clinical + RP-MR + PET/CT for OS and PFS demonstrated that combined radiomic signatures were significantly associated with improved survival prognostication (AUC 0.62 vs 0.81 vs 0.75 vs 0.86 at 21 months for PFS and 0.56 vs 0.85 vs 0.79 vs 0.96 at 24 months for OS). Clinical + RP-MR features initially outperform clinical + PET/CT for both OS and PFS (<18 months), and later in the clinical course for PFS (>42 months). CONCLUSION Our study demonstrated that PET/CT-based radiomic features may improve survival prognostication among NPC patients when combined with baseline clinical and MR-based radiomic features.
Collapse
Affiliation(s)
- Roshini Kulanthaivelu
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Andres Kohan
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Ricarda Hinzpeter
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Andrew Hope
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Shao Hui Huang
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - John Waldron
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Brian O’Sullivan
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Claudia Ortega
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Pei W, Wang C, Liao H, Chen X, Wei Y, Huang X, Liang X, Bao H, Su D, Jin G. MRI-based random survival Forest model improves prediction of progression-free survival to induction chemotherapy plus concurrent Chemoradiotherapy in Locoregionally Advanced nasopharyngeal carcinoma. BMC Cancer 2022; 22:739. [PMID: 35794590 PMCID: PMC9261049 DOI: 10.1186/s12885-022-09832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/27/2022] [Indexed: 12/08/2022] Open
Abstract
Background The present study aimed to explore the application value of random survival forest (RSF) model and Cox model in predicting the progression-free survival (PFS) among patients with locoregionally advanced nasopharyngeal carcinoma (LANPC) after induction chemotherapy plus concurrent chemoradiotherapy (IC + CCRT). Methods Eligible LANPC patients underwent magnetic resonance imaging (MRI) scan before treatment were subjected to radiomics feature extraction. Radiomics and clinical features of patients in the training cohort were subjected to RSF analysis to predict PFS and were tested in the testing cohort. The performance of an RSF model with clinical and radiologic predictors was assessed with the area under the receiver operating characteristic (ROC) curve (AUC) and Delong test and compared with Cox models based on clinical and radiologic parameters. Further, the Kaplan-Meier method was used for risk stratification of patients. Results A total of 294 LANPC patients (206 in the training cohort; 88 in the testing cohort) were enrolled and underwent magnetic resonance imaging (MRI) scans before treatment. The AUC value of the clinical Cox model, radiomics Cox model, clinical + radiomics Cox model, and clinical + radiomics RSF model in predicting 3- and 5-year PFS for LANPC patients was [0.545 vs 0.648 vs 0.648 vs 0.899 (training cohort), and 0.566 vs 0.736 vs 0.730 vs 0.861 (testing cohort); 0.556 vs 0.604 vs 0.611 vs 0.897 (training cohort), and 0.591 vs 0.661 vs 0.676 vs 0.847 (testing cohort), respectively]. Delong test showed that the RSF model and the other three Cox models were statistically significant, and the RSF model markedly improved prediction performance (P < 0.001). Additionally, the PFS of the high-risk group was lower than that of the low-risk group in the RSF model (P < 0.001), while comparable in the Cox model (P > 0.05). Conclusion The RSF model may be a potential tool for prognostic prediction and risk stratification of LANPC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09832-6.
Collapse
|
14
|
Machine Learning Based on MRI DWI Radiomics Features for Prognostic Prediction in Nasopharyngeal Carcinoma. Cancers (Basel) 2022; 14:cancers14133201. [PMID: 35804973 PMCID: PMC9264891 DOI: 10.3390/cancers14133201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary In the past, radiomics studies of nasopharyngeal carcinoma (NPC) were only based on basic MR sequences. Previous studies have shown that radiomics methods based on T2-weighted imaging and contrast-enhanced T1-weighted imaging have been successfully used to improve the prognosis of patients with nasopharyngeal carcinoma. The purpose of this study was to explore the predictive efficacy of radiomics analyses based on readout-segmented echo-planar diffusion-weighted imaging (RESOLVE-DWI) which quantitatively reflects the diffusion motion of water molecules for prognosis evaluation in nasopharyngeal carcinoma. Several prognostic radiomics models were established by using diffusion-weighted imaging, apparent diffusion coefficient maps, T2-weighted and contrast-enhanced T1-weighted imaging to predict the risk of recurrence or metastasis of nasopharyngeal carcinoma, and the predictive effects of different models were compared. The results show that the model based on MRI DWI can successfully predict the prognosis of patients with nasopharyngeal carcinoma and has higher predictive efficiency than the model based on the conventional sequence, which suggests MRI DWI-radiomics can provide a useful and alternative approach for survival estimation. Abstract Purpose: This study aimed to explore the predictive efficacy of radiomics analyses based on readout-segmented echo-planar diffusion-weighted imaging (RESOLVE-DWI) for prognosis evaluation in nasopharyngeal carcinoma in order to provide further information for clinical decision making and intervention. Methods: A total of 154 patients with untreated NPC confirmed by pathological examination were enrolled, and the pretreatment magnetic resonance image (MRI)—including diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) maps, T2-weighted imaging (T2WI), and contrast-enhanced T1-weighted imaging (CE-T1WI)—was collected. The Random Forest (RF) algorithm selected radiomics features and established the machine-learning models. Five models, namely model 1 (DWI + ADC), model 2 (T2WI + CE-T1WI), model 3 (DWI + ADC + T2WI), model 4 (DWI + ADC + CE-T1WI), and model 5 (DWI + ADC + T2WI + CE-T1WI), were constructed. The average area under the curve (AUC) of the validation set was determined in order to compare the predictive efficacy for prognosis evaluation. Results: After adjusting the parameters, the RF machine learning models based on extracted imaging features from different sequence combinations were obtained. The invalidation sets of model 1 (DWI + ADC) yielded the highest average AUC of 0.80 (95% CI: 0.79–0.81). The average AUCs of the model 2, 3, 4, and 5 invalidation sets were 0.72 (95% CI: 0.71–0.74), 0.66 (95% CI: 0.64–0.68), 0.74 (95% CI: 0.73–0.75), and 0.75 (95% CI: 0.74–0.76), respectively. Conclusion: A radiomics model derived from the MRI DWI of patients with nasopharyngeal carcinoma was generated in order to evaluate the risk of recurrence and metastasis. The model based on MRI DWI can provide an alternative approach for survival estimation, and can reveal more information for clinical decision-making and intervention.
Collapse
|
15
|
Xi Y, Ge X, Ji H, Wang L, Duan S, Chen H, Wang M, Hu H, Jiang F, Ding Z. Prediction of Response to Induction Chemotherapy Plus Concurrent Chemoradiotherapy for Nasopharyngeal Carcinoma Based on MRI Radiomics and Delta Radiomics: A Two-Center Retrospective Study. Front Oncol 2022; 12:824509. [PMID: 35530350 PMCID: PMC9074388 DOI: 10.3389/fonc.2022.824509] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
Objective We aimed to establish an MRI radiomics model and a Delta radiomics model to predict tumor retraction after induction chemotherapy (IC) combined with concurrent chemoradiotherapy (CCRT) for primary nasopharyngeal carcinoma (NPC) in non-endemic areas and to validate its efficacy. Methods A total of 272 patients (155 in the training set, 66 in the internal validation set, and 51 in the external validation set) with biopsy pathologically confirmed primary NPC who were screened for pretreatment MRI were retrospectively collected. The NPC tumor was delineated as a region of interest in the two sequenced images of MRI before treatment and after IC, followed by radiomics feature extraction. With the use of maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms, logistic regression was performed to establish pretreatment MRI radiomics and pre- and post-IC Delta radiomics models. The optimal Youden’s index was taken; the receiver operating characteristic (ROC) curve, calibration curve, and decision curve were drawn to evaluate the predictive efficacy of different models. Results Seven optimal feature subsets were selected from the pretreatment MRI radiomics model, and twelve optimal subsets were selected from the Delta radiomics model. The area under the ROC curve, accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the MRI radiomics model were 0.865, 0.827, 0.837, 0.813, 0.776, and 0.865, respectively; the corresponding indicators of the Delta radiomics model were 0.941, 0.883, 0.793, 0.968, 0.833, and 0.958, respectively. Conclusion The pretreatment MRI radiomics model and pre- and post-IC Delta radiomics models could predict the IC-CCRT response of NPC in non-epidemic areas.
Collapse
Affiliation(s)
- Yuzhen Xi
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Department of Radiology, 903rd Hospital of PLA, Hangzhou, China
| | - Xiuhong Ge
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiming Ji
- Department of Radiology, Liangzhu Hospital, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Haonan Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengze Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital Affiliated to Medical College Zhejiang University, Hangzhou, China
| | - Feng Jiang
- Department of Head and Neck Radiotherapy, Zhejiang Cancer Hospital/Zhejiang Province Key Laboratory of Radiation Oncology, Hangzhou, China
- *Correspondence: Feng Jiang, ; Zhongxiang Ding,
| | - Zhongxiang Ding
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Feng Jiang, ; Zhongxiang Ding,
| |
Collapse
|
16
|
Fang ZY, Li KZ, Yang M, Che YR, Luo LP, Wu ZF, Gao MQ, Wu C, Luo C, Lai X, Zhang YY, Wang M, Xu Z, Li SM, Liu JK, Zhou P, Wang WD. Integration of MRI-Based Radiomics Features, Clinicopathological Characteristics, and Blood Parameters: A Nomogram Model for Predicting Clinical Outcome in Nasopharyngeal Carcinoma. Front Oncol 2022; 12:815952. [PMID: 35311119 PMCID: PMC8924617 DOI: 10.3389/fonc.2022.815952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to develop a nomogram model based on multiparametric magnetic resonance imaging (MRI) radiomics features, clinicopathological characteristics, and blood parameters to predict the progression-free survival (PFS) of patients with nasopharyngeal carcinoma (NPC). Methods A total of 462 patients with pathologically confirmed nonkeratinizing NPC treated at Sichuan Cancer Hospital were recruited from 2015 to 2019 and divided into training and validation cohorts at a ratio of 7:3. The least absolute shrinkage and selection operator (LASSO) algorithm was used for radiomics feature dimension reduction and screening in the training cohort. Rad-score, age, sex, smoking and drinking habits, Ki-67, monocytes, monocyte ratio, and mean corpuscular volume were incorporated into a multivariate Cox proportional risk regression model to build a multifactorial nomogram. The concordance index (C-index) and decision curve analysis (DCA) were applied to estimate its efficacy. Results Nine significant features associated with PFS were selected by LASSO and used to calculate the rad-score of each patient. The rad-score was verified as an independent prognostic factor for PFS in NPC. The survival analysis showed that those with lower rad-scores had longer PFS in both cohorts (p < 0.05). Compared with the tumor–node–metastasis staging system, the multifactorial nomogram had higher C-indexes (training cohorts: 0.819 vs. 0.610; validation cohorts: 0.820 vs. 0.602). Moreover, the DCA curve showed that this model could better predict progression within 50% threshold probability. Conclusion A nomogram that combined MRI-based radiomics with clinicopathological characteristics and blood parameters improved the ability to predict progression in patients with NPC.
Collapse
Affiliation(s)
- Zeng-Yi Fang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China.,Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
| | - Ke-Zhen Li
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Man Yang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu-Rou Che
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li-Ping Luo
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zi-Fei Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming-Quan Gao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Xin Lai
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Yi-Yao Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhu Xu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Si-Ming Li
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie-Ke Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhou
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei-Dong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China.,Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Duan W, Xiong B, Tian T, Zou X, He Z, Zhang L. Radiomics in Nasopharyngeal Carcinoma. CLINICAL MEDICINE INSIGHTS: ONCOLOGY 2022; 16:11795549221079186. [PMID: 35237090 PMCID: PMC8883403 DOI: 10.1177/11795549221079186] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies, and the primary treatment methods are radiotherapy and chemotherapy. Radiotherapy alone, concurrent chemoradiotherapy, and induction chemotherapy combined with concurrent chemoradiotherapy can be used according to different grades. Treatment options and prognoses vary greatly depending on the grade of disease in the patients. Accurate grading and risk assessment are required. Recently, radiomics has combined a large amount of invisible high-dimensional information extracted from computed tomography, magnetic resonance imaging, or positron emission tomography with powerful computing capabilities of machine-learning algorithms, providing the possibility to achieve an accurate diagnosis and individualized treatment for cancer patients. As an effective tumor biomarker of NPC, the radiomic signature has been widely used in grading, differential diagnosis, prediction of prognosis, evaluation of treatment response, and early identification of therapeutic complications. The process of radiomic research includes image segmentation, feature extraction, feature selection, model establishment, and evaluation. Many open-source or commercial tools can be used to achieve these procedures. The development of machine-learning algorithms provides more possibilities for radiomics research. This review aimed to summarize the application of radiomics in NPC and introduce the basic process of radiomics research.
Collapse
Affiliation(s)
- Wenyue Duan
- College of Medicine, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Bingdi Xiong
- College of Medicine, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Ting Tian
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xinyun Zou
- College of Medicine, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Zhennan He
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Ling Zhang
- Department of Oncology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| |
Collapse
|
18
|
Magnetic Resonance Imaging-Based Radiomics for the Prediction of Progression-Free Survival in Patients with Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14030653. [PMID: 35158921 PMCID: PMC8833585 DOI: 10.3390/cancers14030653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary More than 70% of patients with nasopharyngeal carcinoma (NPC) present with a locoregionally advanced state. Although the initial staging of NPC is primarily based on TNM staging, there is currently no well-established prognostic marker for NPC. Recently, radiomics has received considerable research attention as a potential prognostic biomarker for NPC. The aim of this systematic review and meta-analysis was to comprehensively evaluate the prognostic value of pretreatment magnetic resonance imaging (MRI)-based radiomics for NPC. The analyzed radiomic models demonstrated modest prognostic values, with a pooled mean estimated Harrell’s concordance index (C index) of 0.762. The prognostic models developed using more than eight radiomic features had significantly higher C-indices than those developed using fewer features. Our findings provide evidence that MRI-based radiomics may have a modest prognostic role in the treatment of NPC. However, more consistent study protocols are needed to verify the generalizability of radiomics. Abstract Advanced non-metastatic nasopharyngeal carcinoma (NPC) has variable treatment outcomes. However, there are no prognostic biomarkers for identifying high-risk patients with NPC. The aim of this systematic review and meta-analysis was to comprehensively assess the prognostic value of magnetic resonance imaging (MRI)-based radiomics for untreated NPC. The PubMed-Medline and EMBASE databases were searched for relevant articles published up to 12 August 2021. The Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) checklist was used to determine the qualities of the selected studies. Random-effects modeling was used to calculate the pooled estimates of Harrell’s concordance index (C-index) for progression-free survival (PFS). Between-study heterogeneity was evaluated using Higgins’ inconsistency index (I2). Among the studies reported in the 57 articles screened, 10 with 3458 patients were eligible for qualitative and quantitative data syntheses. The mean adherence rate to the TRIPOD checklist was 68.6 ± 7.1%. The pooled estimate of the C-index was 0.762 (95% confidence interval, 0.687–0.837). Substantial between-study heterogeneity was observed (I2 = 89.2%). Overall, MRI-based radiomics shows good prognostic performance in predicting the PFS of patients with untreated NPC. However, more consistent and robust study protocols are necessary to validate the prognostic role of radiomics for NPC.
Collapse
|