1
|
Sultan MH, Zhan Q, Wang Y, Xia Y, Jia X. Precision oncolytic viral therapy in colorectal cancer: Genetic targeting and immune modulation for personalized treatment (Review). Int J Mol Med 2025; 56:104. [PMID: 40342021 PMCID: PMC12081034 DOI: 10.3892/ijmm.2025.5545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
Colorectal cancer (CRC) is a leading health issue and treatments to eradicate it, such as conventional chemotherapy, are non‑selective and come with a number of complications. The present review focuses on the relatively new area of precision oncolytic viral therapy (OVT), with genetic targeting and immune modifications that offer a new future for CRC treatment. In the present review, an overview of the selection factors that are considered optimal for an oncolytic virus, mechanisms of oncolysis and immunomodulation applied to the OVT, as well as new strategies to improve the efficacy of this method are described. Additionally, cause‑and‑effect relationships are examined for OVT efficacy, mediated by the tumor microenvironment, and directions for genetic manipulation of viral specificity are explored. The possibility of synergy between OVT and immune checkpoint inhibitors and other treatment approaches are demonstrated. Incorporating the details of the present review, biomarker‑guided combination therapies in precision OVT for individualized CRC care, significant issues and future trends in this required area of medicine are highlighted. Increasingly, OVT is leaving the experimental stage and may become routine practice; it provides a new perspective on overcoming CRC and highlights the importance of further research and clinical work.
Collapse
Affiliation(s)
- Muhammad Haris Sultan
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Center for Translational Medicine and Precision Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Qi Zhan
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yigang Wang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yulong Xia
- Center for Translational Medicine and Precision Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
2
|
Ataherian MR, Hafezi N, Ferdosi-Shahandashti E, Abdinia FS. IFN-γ Approaches in Tumor Suppression, Its Challenges, and Future Directions: A Review of Recent Advances. J Interferon Cytokine Res 2025; 45:164-173. [PMID: 39914810 DOI: 10.1089/jir.2024.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
IFN-γ is recognized as an immunoregulatory cytokine due to its dual role in both accelerating and dampening immunological responses. Accordingly, in the context of tumor immunotherapy, the therapeutic outcome of IFN-γ is contingent upon factors such as dosage and the expression status of downstream signaling molecules. Furthermore, the coadministration of IFN-γ with various immunestimulatory agents, including anticheckpoint inhibitors, chemotherapeutic agents, and herbal-based medicines, may potentially overcome the IFN-γ-related challenges and enhance the response rate. We decipher the mechanisms of tumor cell eradication facilitated by IFN-γ, the last achievements in IFN-γ-mediated tumor immunotherapy across various cancers, and the strategies to address the failure of IFN-γ-based tumor immunotherapy. Unraveling the molecular mechanisms that lead to failure in IFN-γ-based antitumor actions could assist in pinpointing therapeutic agents that target the immune-modulatory features of IFN-γ, thereby increasing the antitumor response rate.
Collapse
Affiliation(s)
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Sarina Abdinia
- Department of Nanotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
3
|
Spirito F, Nocini R, Mori G, Albanese M, Georgakopoulou EA, Sivaramakrishnan G, Khalil B, Špiljak B, Surya V, Mishra D, Chaurasia A. The Potential of Oncolytic Virotherapy in the Treatment of Head and Neck Cancer: A Comprehensive Review. Int J Mol Sci 2024; 25:12990. [PMID: 39684701 DOI: 10.3390/ijms252312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Head and neck cancer (HNC) represents a challenging oncological entity with significant morbidity and mortality rates. Despite advances in conventional therapies, including surgery, chemotherapy, and radiation therapy, the overall survival rates for advanced HNC remain suboptimal. In recent years, the emerging field of oncolytic virotherapy has gained attention as a promising therapeutic approach for various malignancies, including HNC. This review provides a comprehensive overview of the current understanding of oncolytic viruses (Ovs) in the context of HNC treatment, including their mechanisms of action, preclinical and clinical studies, challenges, and future directions. Future oncolytic virotherapy focuses on improving delivery and specificity through nanoparticle carriers and genetic modifications to enhance tumor targeting and immune response. Combining different OVs and integrating them with immunotherapies, such as checkpoint inhibitors, could overcome tumor resistance and improve outcomes. Personalized approaches and rigorous clinical trials are key to ensuring the safety and effectiveness of virotherapy in treating HNC.
Collapse
Affiliation(s)
- Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Massimo Albanese
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Eleni A Georgakopoulou
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Basel Khalil
- Department of Basic Sciences, Faculty of Dentistry, University of Damascus, Damascus 30621, Syria
| | - Bruno Špiljak
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Varun Surya
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepika Mishra
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George's Medical University, Lucknow 226003, India
| |
Collapse
|
4
|
Hu Z, Liu W, Liu J, Zhou H, Sun C, ChaoTian, Guo X, Zhu C, Shao M, Wang S, Wei L, Liu M, Li S, Wang J, Xu H, Zhu W, Li X, Li J. The anti-tumor efficacy of a recombinant oncolytic herpes simplex virus mediated CRISPR/Cas9 delivery targeting in HPV16-positive cervical cancer. Antiviral Res 2024; 232:106035. [PMID: 39536909 DOI: 10.1016/j.antiviral.2024.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Cervical cancer, often driven by high-risk human papillomavirus (HPV) infections such as HPV16 or HPV18, remains a leading cause of cancer-related deaths. HPV16, found in about 90% of cervical cancer patients, harbors key oncogenic related genes (E6, E7, E2, E5) and an upstream regulatory region (URR) that contribute to cancer progression. This study introduces a novel approach using a recombinant oncolytic herpes simplex virus type 1 (HSV-1) named SONC103, armed with a CRISPR/Cas9 gene editing system. The aim was to target and disrupt integrated HPV16 genes in cervical cancer cells. Results demonstrated SONC103's capability to specifically and effectively knock down HPV16 oncogenes, thereby reducing cell proliferation and promoting apoptosis. Analyses further revealed loss of HPV16 DNA probes in infected cells' chromosomes, significant regulation of cellular processes related to tumor apoptosis, and downregulation of E6/E7 oncoproteins while increasing tumor suppressor proteins P53 and pRB. Notably, SONC103 exhibited substantial inhibition of tumor growth in a murine xenograft cervical cancer model. This study showcases the potential of the recombinant oncolytic HSV-1 virus (SONC103) in combating HPV16-positive cervical cancer by targeting oncogenes and facilitating oncolysis.
Collapse
Affiliation(s)
- Zongfeng Hu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Wenqi Liu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Jiajia Liu
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Hua Zhou
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Chunyang Sun
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - ChaoTian
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Xiaona Guo
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Chengyang Zhu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Mingxia Shao
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Shengrun Wang
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Lijun Wei
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Min Liu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Shuzhen Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Jinyu Wang
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Haitian Xu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Wei Zhu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Xiaopeng Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China; Beijing WellGene Company, Ltd, Beijing, 100085, China.
| | - Jingfeng Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China.
| |
Collapse
|
5
|
Hu Z, Li Y, Yang J, Liu J, Zhou H, Sun C, Tian C, Zhu C, Shao M, Wang S, Wei L, Liu M, Li S, Wang J, Xu H, Zhu W, Li X, Li J. Improved antitumor effectiveness of oncolytic HSV-1 viruses engineered with IL-15/IL-15Rα complex combined with oncolytic HSV-1-aPD1 targets colon cancer. Sci Rep 2024; 14:23671. [PMID: 39389985 PMCID: PMC11467195 DOI: 10.1038/s41598-024-72888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Oncolytic virotherapy is emerging as a promising therapeutic avenue for cancer treatment, harnessing both innate and tumor-specific immune responses for targeted tumor elimination. In this study, we present a novel oncolytic virus (oHSV1-IL15B) derived from herpes simplex virus-1 (HSV-1), armed with IL-15/IL-15Rα complex, with a focus on treating colon cancer combined with oncolytic HSV-1 expressing anti-PD-1 antibody (oHSV1-aPD1). Results from our study reveal that recombinant oHSV-1 virus equipped with IL-15/IL-15Rα complex exhibited significant anti-tumor effects in a murine CT26 colon adenocarcinoma model. Notably, oHSV1-IL15B combined with oHSV-1-aPD1 demonstrates superior tumor inhibition and prolonged overall survival compared to oHSV1-mock and monotherapy groups. Further exploration highlights the impact of oHSV1-IL15B, oHSV-1-aPD1 and combined group on antitumor capacity, revealing a substantial increase in CD8+ T and CD4+ T cell proportions of CT26-bearing BALB/c mice and promoting apoptosis in tumor tissue. The study emphasizes the pivotal role of cytotoxic CD8+T cells in oncolytic virotherapy, demonstrating that recombinant oHSV1-IL15B combined with oncolytic HSV-1-aPD1 induces a robust tumor-specific T cell response. RNA sequence analysis highlighted oHSV1-IL15B combined with oHSV1-aPD1 improved tumors immune microenvironment on immune response, antiviral response-related genes and apoptosis-related genes, which contributed to anti-tumor immunotherapy. The findings underscore the promising antitumor activity achieved through the combination of IL-15/IL-15Rα complex and anti-PD-1 antibody with oHSV-1. This research opens avenues for diverse therapeutic strategies, suggesting the potential of synergistically utilizing cytokines and anti-PD-1 antibody with oncolytic viruses to enhance immunotherapy for cancer management.
Collapse
Affiliation(s)
- Zongfeng Hu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Yixiao Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | | | - Jiajia Liu
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Hua Zhou
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Chunyang Sun
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Chao Tian
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Chengyang Zhu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Mingxia Shao
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Shengrun Wang
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Lijun Wei
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Min Liu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Shuzhen Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Jinyu Wang
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Haitian Xu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Wei Zhu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Xiaopeng Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China.
- Beijing WellGene Company, Ltd, Beijing, 100085, China.
| | - Jingfeng Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China.
| |
Collapse
|
6
|
Hoshi R, Gorospe KA, Labouta HI, Azad T, Lee WL, Thu KL. Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer. Pharmaceutics 2024; 16:1181. [PMID: 39339217 PMCID: PMC11434872 DOI: 10.3390/pharmaceutics16091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.
Collapse
Affiliation(s)
- Ryunosuke Hoshi
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Kristyna A. Gorospe
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Hagar I. Labouta
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Leslie Dan Faculty of Pharmacy, University of Toronto, St. George Campus, Toronto, ON M5S 3M2, Canada
- Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, St. George Campus, Toronto, ON M5S 3E2, Canada
| | - Taha Azad
- Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Health Campus, Sherbrooke, QC J1K 2R1, Canada;
- Research Center, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1J 3H5, Canada
| | - Warren L. Lee
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Biochemistry, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada
- Medicine and the Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
7
|
Zhu W, Shao M, Tian C, Yang J, Zhou H, Liu J, Sun C, Liu M, Wang J, Wei L, Li S, Li X, Li J. The Oncolytic virus VT1092M and an Anti-PD-L1 antibody synergize to induce systemic antitumor immunity in a murine bilateral tumor model. Transl Oncol 2024; 46:102020. [PMID: 38843659 PMCID: PMC11214513 DOI: 10.1016/j.tranon.2024.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024] Open
Abstract
This study investigated the synergistic potential of an oncolytic herpes simplex virus armed with interleukin 12 (VT1092M) in combination with immune checkpoint inhibitors for enhancing antitumor responses. The potential of this combination treatment to induce systemic antitumor immunity was assessed using bilateral subcutaneous tumor and tumor re-challenge mouse models. The antitumor efficacy of various OV and ICI treatment combinations and the underlying mechanisms were explored through diverse analytical techniques, including flow cytometry and RNA sequencing. Using VT1092M, either alone or in combination with an anti-PD-L1 antibody, significantly reduced the sizes of both the injected and untreated abscopal tumors in a bilateral tumor mouse model. The combination therapy demonstrated superior antitumor efficacy to the other treatment conditions tested, which was accompanied by an increase in T cell numbers and CD8+T cell activation. Results from the survival and tumor re-challenge experiments showed that the combination therapy elicited long-term, tumor-specific immune responses, which were associated with tumor clearance and prolonged survival. Immune cell depletion assays identified CD8+T cells as the crucial mediators of systemic antitumor immunity during combination therapy. In conclusion, the combination of VT1092M and PD-L1 blockade emerged as a potent inducer of antitumor immune responses, surpassing the efficacy of each monotherapy. This synergistic approach holds promise for achieving robust and sustained antitumor immunity, with potential implications for preventing tumor metastasis in patients with cancer.
Collapse
Affiliation(s)
- Wei Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Mingxia Shao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Chao Tian
- Beijing WellGene Company, Ltd, Beijing 100085, PR China
| | | | - Hua Zhou
- Beijing WellGene Company, Ltd, Beijing 100085, PR China
| | - Jiajia Liu
- Beijing WellGene Company, Ltd, Beijing 100085, PR China
| | - Chunyang Sun
- Beijing WellGene Company, Ltd, Beijing 100085, PR China
| | - Min Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Jinyu Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Lijun Wei
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Shuzhen Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Xiaopeng Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China; Beijing WellGene Company, Ltd, Beijing 100085, PR China.
| | - Jingfeng Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
8
|
Vitiello A, Reale A, Conciatori V, Vicco A, Garzino-Demo A, Palù G, Parolin C, von Einem J, Calistri A. Simultaneous Expression of Different Therapeutic Genes by Infection with Multiple Oncolytic HSV-1 Vectors. Biomedicines 2024; 12:1577. [PMID: 39062150 PMCID: PMC11274547 DOI: 10.3390/biomedicines12071577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic viruses (OVs) are anti-cancer therapeutics combining the selective killing of cancer cells with the triggering of an anti-tumoral immune response. The latter effect can be improved by arming OVs with immunomodulatory factors. Due to the heterogeneity of cancer and the tumor microenvironment, it is anticipated that strategies based on the co-expression of multiple therapeutic molecules that interfere with different features of the target malignancy will be more effective than mono-therapies. Here, we show that (i) the simultaneous expression of different proteins in triple-negative breast cancer (TNBC) cells can be achieved through their infection with a combination of OVs based on herpes simplex virus type 1 (oHSV1), each encoding a single transgene. (ii) The level of expressed proteins is dependent on the number of infectious viral particles utilized to challenge tumor cells. (iii) All recombinant viruses exhibited comparable efficacy in the killing of TNBC cells in single and multiple infections and showed similar kinetics of replication. Overall, our results suggest that a strategy based on co-infection with a panel of oHSV1s may represent a promising combinatorial therapeutic approach for TNBC, as well as for other types of solid tumors, that merits further investigation in more advanced in vitro and in vivo models.
Collapse
Affiliation(s)
- Adriana Vitiello
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Alberto Reale
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Valeria Conciatori
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Anna Vicco
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Alfredo Garzino-Demo
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Jens von Einem
- Institute for Virology, University of Ulm, 89081 Ulm, Germany
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| |
Collapse
|
9
|
Stergiopoulos GM, Concilio SC, Galanis E. An Update on the Clinical Status, Challenges, and Future Directions of Oncolytic Virotherapy for Malignant Gliomas. Curr Treat Options Oncol 2024; 25:952-991. [PMID: 38896326 PMCID: PMC11878440 DOI: 10.1007/s11864-024-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
OPINION STATEMENT Malignant gliomas are common central nervous system tumors that pose a significant clinical challenge due to the lack of effective treatments. Glioblastoma (GBM), a grade 4 malignant glioma, is the most prevalent primary malignant brain tumor and is associated with poor prognosis. Current clinical trials are exploring various strategies to combat GBM, with oncolytic viruses (OVs) appearing particularly promising. In addition to ongoing and recently completed clinical trials, one OV (Teserpaturev, Delytact®) received provisional approval for GBM treatment in Japan. OVs are designed to selectively target and eliminate cancer cells while promoting changes in the tumor microenvironment that can trigger and support long-lasting anti-tumor immunity. OVs offer the potential to remodel the tumor microenvironment and reverse systemic immune exhaustion. Additionally, an increasing number of OVs are armed with immunomodulatory payloads or combined with immunotherapy approaches in an effort to promote anti-tumor responses in a tumor-targeted manner. Recently completed oncolytic virotherapy trials can guide the way for future treatment individualization through patient preselection, enhancing the likelihood of achieving the highest possible clinical success. These trials also offer valuable insight into the numerous challenges inherent in malignant glioma treatment, some of which OVs can help overcome.
Collapse
Affiliation(s)
| | | | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Wang L, Zhou X, Chen X, Liu Y, Huang Y, Cheng Y, Ren P, Zhao J, Zhou GG. Enhanced therapeutic efficacy for glioblastoma immunotherapy with an oncolytic herpes simplex virus armed with anti-PD-1 antibody and IL-12. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200799. [PMID: 38681801 PMCID: PMC11053222 DOI: 10.1016/j.omton.2024.200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/18/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Glioblastoma is the most common and aggressive malignant brain tumor and has limited treatment options. Hence, innovative approaches are urgently needed. Oncolytic virus therapy is emerging as a promising modality for cancer treatment due to its tumor-specific targeting and immune-stimulatory properties. In this study, we developed a new generation of oncolytic herpes simplex virus C5252 by deletion of a 15-kb internal repeat region and both copies of γ34.5 genes. Additionally, C5252 was armed with anti-programmed cell death protein 1 antibody and interleukin-12 to enhance its therapeutic efficacy for glioblastoma immune-virotherapy. In vitro and in vivo experiments demonstrate that C5252 has a remarkable safety profile and potent anti-tumor activity against glioblastoma. Mechanistic studies demonstrated that C5252 specifically induces cell apoptosis by caspase-3/7 activation via downregulating ciliary neurotrophic factor receptor α. Furthermore, the enhanced anti-tumor therapeutic efficacy of C5252 in a subcutaneous glioblastoma model and an orthotopic glioblastoma model was confirmed. Moreover, syngeneic mouse models showed that the murine surrogate of C5252 has superior anti-tumor activity compared to the unarmed backbone virus, with enhanced immune activation. Taken together, our findings support C5252 as a promising therapeutic option for glioblastoma treatment, positioning it as a highly promising candidate for clinical translation.
Collapse
Affiliation(s)
- Lei Wang
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
- Shenzhen International Institute for Biomedical Research, 1301 Guan-Guang Road, Building 1-B, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen 518110, China
| | - Xusha Zhou
- ImmVira Co., Ltd., Shenzhen 518110, China
| | | | | | - Yue Huang
- ImmVira Co., Ltd., Shenzhen 518110, China
| | - Yuan Cheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Peigen Ren
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Jing Zhao
- Shenzhen International Institute for Biomedical Research, 1301 Guan-Guang Road, Building 1-B, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen 518110, China
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, 1301 Guan-Guang Road, Building 1-B, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen 518110, China
| |
Collapse
|
11
|
Wang H, Borlongan M, Kaufman HL, Le U, Nauwynck HJ, Rabkin SD, Saha D. Cytokine-armed oncolytic herpes simplex viruses: a game-changer in cancer immunotherapy? J Immunother Cancer 2024; 12:e008025. [PMID: 38821716 PMCID: PMC11149157 DOI: 10.1136/jitc-2023-008025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Cytokines are small proteins that regulate the growth and functional activity of immune cells, and several have been approved for cancer therapy. Oncolytic viruses are agents that mediate antitumor activity by directly killing tumor cells and inducing immune responses. Talimogene laherparepvec is an oncolytic herpes simplex virus type 1 (oHSV), approved for the treatment of recurrent melanoma, and the virus encodes the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). A significant advantage of oncolytic viruses is the ability to deliver therapeutic payloads to the tumor site that can help drive antitumor immunity. While cytokines are especially interesting as payloads, the optimal cytokine(s) used in oncolytic viruses remains controversial. In this review, we highlight preliminary data with several cytokines and chemokines, including GM-CSF, interleukin 12, FMS-like tyrosine kinase 3 ligand, tumor necrosis factor α, interleukin 2, interleukin 15, interleukin 18, chemokine (C-C motif) ligand 2, chemokine (C-C motif) ligand 5, chemokine (C-X-C motif) ligand 4, or their combinations, and show how these payloads can further enhance the antitumor immunity of oHSV. A better understanding of cytokine delivery by oHSV can help improve clinical benefit from oncolytic virus immunotherapy in patients with cancer.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
- College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Mia Borlongan
- College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Ankyra Therapeutics, Inc, Cambridge, Massachusetts, USA
| | - Uyen Le
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
| |
Collapse
|
12
|
Awad RM, Breckpot K. Novel technologies for applying immune checkpoint blockers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:1-101. [PMID: 38225100 DOI: 10.1016/bs.ircmb.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Cancer cells develop several ways to subdue the immune system among others via upregulation of inhibitory immune checkpoint (ICP) proteins. These ICPs paralyze immune effector cells and thereby enable unfettered tumor growth. Monoclonal antibodies (mAbs) that block ICPs can prevent immune exhaustion. Due to their outstanding effects, mAbs revolutionized the field of cancer immunotherapy. However, current ICP therapy regimens suffer from issues related to systemic administration of mAbs, including the onset of immune related adverse events, poor pharmacokinetics, limited tumor accessibility and immunogenicity. These drawbacks and new insights on spatiality prompted the exploration of novel administration routes for mAbs for instance peritumoral delivery. Moreover, novel ICP drug classes that are adept to novel delivery technologies were developed to circumvent the drawbacks of mAbs. We therefore review the state-of-the-art and novel delivery strategies of ICP drugs.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
13
|
Zhan J, Zhang M, Zhou L, He C. Combination of immune checkpoint blockade and targeted gene regulation of angiogenesis for facilitating antitumor immunotherapy. Front Bioeng Biotechnol 2023; 11:1065773. [PMID: 36994358 PMCID: PMC10040836 DOI: 10.3389/fbioe.2023.1065773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The rapid development of tumor immunotherapy has improved the management of patients with cancer. However, several key problems of tumor immunotherapy, including the insufficient activation of effector T cells, poor tumor invasion, and poor immune killing ability, lead to a low response rate. In the present study, a synergistic strategy was developed by combining in situ tumor vaccines, gene-mediated downregulation of tumor angiogenesis, and anti-PD-L1 therapy. In situ tumor vaccines and antitumor angiogenesis were achieved by codelivering unmethylated cytosine-phosphate-guanine (CpG) and vascular endothelial growth factor (VEGF)-silencing gene (shVEGF) via a hyaluronic acid (HA)-modified HA/PEI/shVEGF/CpG system. Necrotic tumor cells and CpG adjuvants formed in situ tumor vaccines and activated the host immune response. Moreover, VEGF silencing reduced tumor angiogenesis and prompted the homogeneous distribution of tumor blood vessels to facilitate immune cell infiltration. Meanwhile, anti-angiogenesis also improved the immunosuppressive tumor microenvironment. To further improve the specific tumor-killing effect, an anti-PD-L1 antibody was introduced for immune checkpoint blockade, thereby boosting antitumor immune responses. The combination therapy strategy presented in the present study could act in the multiple stages of the tumor immunotherapy cycle, which is expected to offer a new avenue for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Zhan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Manli Zhang
- Department of Hepatology and Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Lili Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Chuan He
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Chuan He,
| |
Collapse
|
14
|
Yang Z, Pietrobon V, Bobbin M, Stefanson O, Yang J, Goswami A, Alphson B, Choi H, Magallanes K, Cai Q, Barrett D, Wang B, Qi LS, Marincola FM. Nanoscale, antigen encounter-dependent, IL-12 delivery by CAR T cells plus PD-L1 blockade for cancer treatment. J Transl Med 2023; 21:158. [PMID: 36855120 PMCID: PMC9976446 DOI: 10.1186/s12967-023-04014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapies for the treatment of hematological malignancies experienced tremendous progress in the last decade. However, essential limitations need to be addressed to further improve efficacy and reduce toxicity to assure CAR-T cell persistence, trafficking to the tumor site, resistance to an hostile tumor microenvironment (TME), and containment of toxicity restricting production of powerful but potentially toxic bioproducts to the TME; the last could be achieved through contextual release upon tumor antigen encounter of factors capable of converting an immune suppressive TME into one conducive to immune rejection. METHODS We created an HER2-targeting CAR-T (RB-312) using a clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) system, which induces the expression of the IL-12 heterodimer via conditional transcription of its two endogenous subunits p35 and p40. This circuit includes two lentiviral constructs. The first one (HER2-TEV) expresses an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3z co-stimulatory domains linked to the tobacco etch virus (TEV) protease and two single guide RNAs (sgRNA) targeting the interleukin (IL)-12A and IL12B transcription start site (TSS), respectively. The second construct (LdCV) encodes linker for activation of T cells (LAT) fused to nuclease-deactivated Streptococcus Pyogenes Cas9 (dCas9)-VP64-p65-Rta (VPR) via a TEV-cleavable sequence (TCS). Activation of the CAR brings HER2-TEV in close proximity to LdCV releasing dCas9 for nuclear localization. This conditional circuit leads to conditional and reversible induction of the IL-12/p70 heterodimer. RB-312 was compared in vitro to controls (cRB-312), lacking the IL-12 sgRNAs and conventional HER2 CAR (convCAR). RESULTS The inducible CRISPRa system activated endogenous IL-12 expression resulting in enhanced secondary interferon (FN)-γ production, cytotoxicity, and CAR-T proliferation in vitro, prolonged in vivo persistence and greater suppression of HER2+ FaDu oropharyngeal cancer cell growth compared to the conventional CAR-T cell product. No systemic IL-12 was detected in the peripheral circulation. Moreover, the combination with programmed death ligand (PD-L1) blockade demonstrated robust synergistic effects. CONCLUSIONS RB-312, the first clinically relevant product incorporating a CRISPRa system with non-gene editing and reversible upregulation of endogenous gene expression that promotes CAR-T cells persistence and effectiveness against HER2-expressing tumors. The autocrine effects of reversible, nanoscale IL-12 production limits the risk of off-tumor leakage and systemic toxicity.
Collapse
Affiliation(s)
- Zhifen Yang
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA.
| | | | - Maggie Bobbin
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | | | - Jin Yang
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | | | | | - Hana Choi
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | | | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA, 90404, USA
| | | | - Bing Wang
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | - Lei S Qi
- Department of Bioengineering, Department of Chemical and Systems Biology, Stanford University, ChEM-H, Stanford, CA, 94305, USA.
| | | |
Collapse
|
15
|
Ghasemi M, Abbasi L, Ghanbari Naeini L, Kokabian P, Nameh Goshay Fard N, Givtaj N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front Immunol 2023; 13:950079. [PMID: 36703982 PMCID: PMC9871831 DOI: 10.3389/fimmu.2022.950079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023] Open
Abstract
Every type of cancer tissue is theoretically more vulnerable to viral infection. This natural proclivity has been harnessed as a new anti-cancer therapy by employing oncolytic viruses (OVs) to selectively infect and destroy cancer cells while providing little or no harm with no toxicity to the host. Whereas the primary oncolytic capabilities of OVs initially sparked the greatest concern, the predominant focus of research is on the association between OVs and the host immune system. Numerous OVs are potent causal agents of class I MHC pathway-related chemicals, enabling early tumor/viral immune recognition and cytokine-mediated response. The modified OVs have been studied for their ability to bind to dendritic cells (DCs) by expressing growth factors, chemokines, cytokines, and defensins inside the viral genome. OVs, like reovirus, can directly infect DCs, causing them to release chemokines and cytokines that attract and excite natural killer (NK) cells. In addition, OVs can directly alter cancer cells' sensitivity to NK by altering the expression levels of NK cell activators and inhibitors on cancerous cells. Therefore, NK cells and DCs in modulating the therapeutic response should be considered when developing and improving future OV-based therapeutics, whether modified to express transgenes or used in combination with other drugs/immunotherapies. Concerning the close relationship between NK cells and DCs in the potential of OVs to kill tumor cells, we explore how DCs and NK cells in tumor microenvironment affect oncolytic virotherapy and summarize additional information about the interaction mentioned above in detail in this work.
Collapse
Affiliation(s)
- Matin Ghasemi
- Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nozar Givtaj
- Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran,*Correspondence: Nozar Givtaj,
| |
Collapse
|
16
|
Zou H, Mou X, Zhu B. Combining of Oncolytic Virotherapy and Other Immunotherapeutic Approaches in Cancer: A Powerful Functionalization Tactic. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200094. [PMID: 36618103 PMCID: PMC9818137 DOI: 10.1002/gch2.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/04/2022] [Indexed: 06/17/2023]
Abstract
Oncolytic viruses have found a good place in the treatment of cancer. Administering oncolytic viruses directly or by applying genetic changes can be effective in cancer treatment through the lysis of tumor cells and, in some cases, by inducing immune system responses. Moreover, oncolytic viruses induce antitumor immune responses via releasing tumor antigens in the tumor microenvironment (TME) and affect tumor cell growth and metabolism. Despite the success of virotherapy in cancer therapies, there are several challenges and limitations, such as immunosuppressive TME, lack of effective penetration into tumor tissue, low efficiency in hypoxia, antiviral immune responses, and off-targeting. Evidence suggests that oncolytic viruses combined with cancer immunotherapy-based methods such as immune checkpoint inhibitors and adoptive cell therapies can effectively overcome these challenges. This review summarizes the latest data on the use of oncolytic viruses for the treatment of cancer and the challenges of this method. Additionally, the effectiveness of mono, dual, and triple therapies using oncolytic viruses and other anticancer agents has been discussed based on the latest findings.
Collapse
Affiliation(s)
- Hai Zou
- Department of Critical CareFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiao‐Zhou Mou
- General SurgeryCancer CenterDepartment of Hepatobiliary and Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College)Hangzhou310014China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang ProvinceZhejiang Provincial People's HospitalAffiliated People's Hospital of Hangzhou Medical CollegeHangzhou310014China
| | - Biao Zhu
- Department of Critical CareFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
17
|
Zhou C, Chen Q, Chen Y, Qin CF. Oncolytic Zika Virus: New Option for Glioblastoma Treatment. DNA Cell Biol 2022. [DOI: 10.1089/dna.2022.0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yun Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
18
|
Current landscape and perspective of oncolytic viruses and their combination therapies. Transl Oncol 2022; 25:101530. [PMID: 36095879 PMCID: PMC9472052 DOI: 10.1016/j.tranon.2022.101530] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Oncolytic virotherapy has become an important branch of cancer immunotherapy in clinical practice. Multiple viruses can be engineered to be OVs and armed with anticancer genes to enhance their efficacy. OVs can reshape TME and produce synergistic anticancer efficacy when combined with other therapies. Safety and effectiveness are the main direction of future research and development of OVs.
Oncolytic virotherapy has become an important strategy in cancer immunotherapy. Oncolytic virus (OV) can reshape the tumor microenvironment (TME) through its replication-mediated oncolysis and transgene-produced anticancer effect, inducing an antitumor immune response and creating favorable conditions for the combination of other therapeutic measures. Extensive preclinical and clinical data have suggested that OV-based combination therapy has definite efficacy and promising prospects. Recently, several clinical trials of oncolytic virotherapy combined with immunotherapy have made breakthroughs. This review comprehensively elaborates the OV types and their targeting mechanisms, the selection of anticancer genes armed in OVs, and the therapeutic modes of action and strategies of OVs to provide a theoretical basis for the better design and construction of OVs and the optimization of OV-based therapeutic strategies.
Collapse
|
19
|
Dunai C, Ames E, Ochoa MC, Fernandez-Sendin M, Melero I, Simonetta F, Baker J, Alvarez M. Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:65-122. [PMID: 35798507 DOI: 10.1016/bs.ircmb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Myriam Fernandez-Sendin
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Centre in Onco-Haematology, Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|