1
|
Yang J, Wen C, Guo H, Chai Y, Sun G, Cheng H. Targeting early diagnosis and treatment of pancreatic cancer among the diabetic population: a comprehensive review of biomarker screening strategies. Diabetol Metab Syndr 2025; 17:176. [PMID: 40437631 PMCID: PMC12121257 DOI: 10.1186/s13098-025-01750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/17/2025] [Indexed: 06/01/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by challenging early diagnosis, limited therapeutic options, and a poor prognosis. Diabetes mellitus, marked by altered glucose metabolism, has emerged as a significant risk factor for PDAC development, highlighting a complex, bidirectional pathogenic relationship. This review systematically examines the intricate interactions between diabetes and PDAC, emphasizing their shared pathophysiological mechanisms. A comprehensive understanding of these mechanisms can inform the development of targeted therapeutic strategies, potentially improving patient outcomes by concurrently managing diabetes and pancreatic cancer. We further evaluate current biomarker screening approaches for PDAC within diabetic subpopulations, assess the effectiveness of screening programs among high-risk groups, and propose practical strategies for the early identification and monitoring of PDAC. Early detection in diabetic individuals through targeted biomarker screening followed by timely therapeutic intervention may significantly reduce mortality, improve survival rates, and extend patient longevity. In conclusion, an integrated approach combining early diagnosis, targeted treatments, and a detailed understanding of the underlying pathogenesis represents the most promising strategy for enhancing clinical outcomes and survival among diabetic patients diagnosed with pancreatic cancer.
Collapse
Affiliation(s)
- Jie Yang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Chengming Wen
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Hongkai Guo
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yahui Chai
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, People's Republic of China
| | - Guodong Sun
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, People's Republic of China.
- Department of Medical Affairs, Lanzhou University First Hospital, Lanzhou, Gansu, People's Republic of China.
| | - Huijuan Cheng
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
2
|
Takematsu T, Hayashi H, Ogawa D, Nakao Y, Yamao T, Kitano Y, Nakagawa S, Mima K, Baba Y, Baba H. Molecular Alterations Influencing the Prognostic Outcome in Small Pancreatic Cancer (≤2 cm). Pancreas 2025; 54:e295-e302. [PMID: 40262101 DOI: 10.1097/mpa.0000000000002430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/01/2024] [Indexed: 04/24/2025]
Abstract
PURPOSE Pancreatic cancer (PC) is the most lethal cancer. The prognosis of small PC (tumor ≤ 20 mm) is better than that of larger PC, indicating the importance of detecting early-stage PC for patient outcome. The aim of this study was to elucidate the molecular features in small PC (≤20 mm). MATERIALS AND METHODS This study included 79 PC tumors (≤20 mm in pathological examination) resected between 2004 and 2022. c-Myc, Caveolin-1, Smad4, and Thrombospondin-1 were examined by immunostaining. These molecular alterations were compared in PC patients with tumor size ≤ 10 mm (n = 11) (14%) and 10 mm < tumor size ≤ 20 mm (n = 68) (86%). Mutation analyses of KRAS, PIK3CA, and BRAF were performed by pyrosequencing in 22 PCs. RESULTS PC with 10 mm < tumor size ≤ 20 mm showed significantly worse overall survival and disease-free survival than PC with tumor size < 10 mm (P = 0.024 and P = 0.028). Tumor c-Myc and stromal Caveolin-1 expressions were significantly increased in tumors larger than 10 mm (P = 0.02 and P = 0.04). c-Myc and Caveolin-1 expressions were associated with poor disease-free survival and overall survival. KRAS, PIK3CA, and BRAF mutation status did not differ between the 2 groups. CONCLUSIONS Tumor c-Myc and stromal Caveolin-1 overexpressions were detected in tumors larger than 10 mm. Their overexpressions were associated with worse prognosis even in small PC. These molecular alterations in small PC may be a clue for the detection of early-stage PC.
Collapse
Affiliation(s)
- Toru Takematsu
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Imamura Hospital, Saga, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Ogawa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Nakao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takanobu Yamao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kitano
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Xue X, Zhou Y, Liu H, Gao Y, Ma X, Xiao Z, Zhang W, Li P, Tian Z, Luan Y, Zhao X. A novel missense mutation Smad4 V354L enhances the efficacy of docetaxel in non-small cell lung cancer. Biomed Pharmacother 2025; 184:117899. [PMID: 39923405 DOI: 10.1016/j.biopha.2025.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
NSCLC is a heterogeneous disease with unique combinations of somatic molecular alterations in individual patients. The different mutations in tumor oncogene and suppressors might be associated with the response to therapy. However, little is known about how Smad4 genomic alterations cause the therapeutic effect of docetaxel. The retrospective analysis was conducted on 49 patients with stage IIB or IIIA non-small cell lung cancer receiving docetaxel chemotherapy. One novel missense variant, c.1060 G > C in Smad4 was identified by next-generation sequencing. The Smad4c.1060 G > C variant results in the substitution of valine with leucine at amino acid 354 (p.Val354Leu, V354L). The clinical analysis showed that the patients with Smad4 V354L mutation receiving docetaxel treatment manifested better prognosis with prolonged disease-free survival and overall survival compared with patients with the wild-type. Smad4 V354L cells demonstrated increased sensitivity to docetaxel with apoptosis and G2/M cell cycle arrest. Furthermore, the cell-cycle related protein expression of CDK2 was remarkably decreased, while the expression of cyclin-dependent kinase inhibitor p21 Waf1 and p27 Kip1 was significantly increased. In vivo experiments further demonstrated the increased inhibitory effects of docetaxel in the nude mice inoculated with Smad4 V354L cells compared to the mice inoculated with wild-type cells group. The novel V354L missense mutation of Smad4 gene enhances the efficacy of docetaxel in non-small cell lung cancer, which would provide new opportunities for precise clinical therapy of NSCLC.
Collapse
Affiliation(s)
- Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Yongjia Zhou
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Huiping Liu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yan Gao
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Xinyu Ma
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Zhaohua Xiao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China; Key Laboratory of Thoracic Cancer in Universities of Shandong, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China; Key Laboratory of Thoracic Cancer in Universities of Shandong, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Yun Luan
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China; Key Laboratory of Thoracic Cancer in Universities of Shandong, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China.
| |
Collapse
|
4
|
Li Z, He T, Xing Z, Zhu J, Wu W, Su A. Inhibition of THBS1 axis contributes to the antitumor effect of PA-MSHA in anaplastic thyroid cancer. Exp Cell Res 2025; 444:114373. [PMID: 39672500 DOI: 10.1016/j.yexcr.2024.114373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive form of thyroid cancer, has the worst prognosis, and lacks effective treatment in clinical practice. Thrombospondin-1 (THBS1) is a multifunctional extracellular matrix (ECM) glycoprotein that regulates cell proliferation, apoptosis, and metastasis, and is considered a potential clinical biomarker for the monitoring and prognostication of various tumors. However, the specific roles and molecular mechanisms of action of THBS1 in ATC remain unclear. In this study, we found that Pseudomonas aeruginosa-mannose sensitive hemagglutinin (PA-MSHA), a THBS1 inhibitor, significantly inhibited ATC tumor growth both in vitro and in vivo. Mechanistically, we demonstrated that THBS1 was the target gene of PA-MSHA in ATC and identified the THBS1/FAK/AKT axis as the key antitumor signaling pathway. Furthermore, we confirmed that THBS1 was overexpressed in ATC tumors and that high levels of THBS1 were associated with a poorer prognosis in thyroid cancer. Silencing THBS1 significantly decreased p-FAK and p-AKT levels, resulting in significant inhibition of cell proliferation and apoptosis in ATC cells. These findings suggest that the THBS1/FAK/AKT axis is a promising therapeutic target for ATC treatment.
Collapse
Affiliation(s)
- Zhe Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Thyroid & Breast & Vascular Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Chen H, Xu X, Li J, Xue Y, Li X, Zhang K, Jiang H, Liu X, Li M. Decoding tumor-fibrosis interplay: mechanisms, impact on progression, and innovative therapeutic strategies. Front Pharmacol 2024; 15:1491400. [PMID: 39534084 PMCID: PMC11555290 DOI: 10.3389/fphar.2024.1491400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Malignant tumors are a category of diseases that possess invasive and metastatic capabilities, with global incidence and mortality rates remaining high. In recent years, the pivotal role of fibrosis in tumor progression, drug resistance, and immune evasion has increasingly been acknowledged. Fibrosis enhances the proliferation, migration, and invasion of tumor cells by modifying the composition and structure of the extracellular matrix, thereby offering protection for immune evasion by tumor cells. The activation of cancer-associated fibroblasts (CAFs) plays a significant role in this process, as they further exacerbate the malignant traits of tumors by secreting a variety of cytokines and growth factors. Anti-fibrotic tumor treatment strategies, including the use of anti-fibrotic drugs and inhibition of fibrosis-related signaling pathways such as Transforming Growth Factor-β (TGF-β), have demonstrated potential in delaying tumor progression and improving the effectiveness of chemotherapy, targeted therapy, and immunotherapy. In the future, by developing novel drugs that target the fibrotic microenvironment, new therapeutic options may be available for patients with various refractory tumors.
Collapse
Affiliation(s)
- Huiguang Chen
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xuexin Xu
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jingxian Li
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Xue
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xin Li
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Kaiyu Zhang
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Haihui Jiang
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoliu Liu
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Department of Anatomy, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mingzhe Li
- Department of Anatomy, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 217] [Impact Index Per Article: 217.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Petrik J, Lauks S, Garlisi B, Lawler J. Thrombospondins in the tumor microenvironment. Semin Cell Dev Biol 2024; 155:3-11. [PMID: 37286406 DOI: 10.1016/j.semcdb.2023.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Many cancers begin with the formation of a small nest of transformed cells that can remain dormant for years. Thrombospondin-1 (TSP-1) initially promotes dormancy by suppressing angiogenesis, a key early step in tumor progression. Over time, increases in drivers of angiogenesis predominate, and vascular cells, immune cells, and fibroblasts are recruited to the tumor mass forming a complex tissue, designated the tumor microenvironment. Numerous factors, including growth factors, chemokine/cytokine, and extracellular matrix, participate in the desmoplastic response that in many ways mimics wound healing. Vascular and lymphatic endothelial cells, and cancer-associated pericytes, fibroblasts, macrophages and immune cells are recruited to the tumor microenvironment, where multiple members of the TSP gene family promote their proliferation, migration and invasion. The TSPs also affect the immune signature of tumor tissue and the phenotype of tumor-associated macrophages. Consistent with these observations, expression of some TSPs has been established to correlate with poor outcomes in specific types of cancer.
Collapse
Affiliation(s)
- James Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| | - Sylvia Lauks
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Bianca Garlisi
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jack Lawler
- Harvard Medical School, Boston, MA, USA; Beth Israel, Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Kumar L, Kumar S, Sandeep K, Patel SKS. Therapeutic Approaches in Pancreatic Cancer: Recent Updates. Biomedicines 2023; 11:1611. [PMID: 37371705 DOI: 10.3390/biomedicines11061611] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer is a significant challenge for effective treatment due to its complex mechanism, different progressing stages, and lack of adequate procedures for screening and identification. Pancreatic cancer is typically identified in its advanced progression phase with a low survival of ~5 years. Among cancers, pancreatic cancer is also considered a high mortality-causing casualty over other accidental or disease-based mortality, and it is ranked seventh among all mortality-associated cancers globally. Henceforth, developing diagnostic procedures for its early detection, understanding pancreatic cancer-linked mechanisms, and various therapeutic strategies are crucial. This review describes the recent development in pancreatic cancer progression, mechanisms, and therapeutic approaches, including molecular techniques and biomedicines for effectively treating cancer.
Collapse
Affiliation(s)
- Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Kumar Sandeep
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|