1
|
Zhang J, Zhu H, Liu W, Miao J, Mao Y, Li Q. Prognostic and predictive molecular biomarkers in colorectal cancer. Front Oncol 2025; 15:1532924. [PMID: 40308511 PMCID: PMC12040681 DOI: 10.3389/fonc.2025.1532924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Precision medicine has brought revolutionary changes to the diagnosis and treatment of cancer patients, and is currently a hot and challenging research topic. Currently, the treatment regimens for most colorectal cancer (CRC) patients are mainly determined by several biomakers, including Microsatellite Instability (MSI), RAS, and BRAF. However, the roles of promising biomarkers such as HER-2, consensus molecular subtypes (CMS), and circulating tumor DNA (ctDNA) in CRC are not yet fully clear. Therefore, it is urgent to explore the potential of these emerging biomarkers in the diagnosis and treatment of CRC patients. In this paper, we discuss recent advances in CRC biomarkers, especially clinical data, and focus on the roles of biomarkers in prognosis, prediction, treatment strategies, and the intrinsic connections with clinical pathological features, hoping to promote better precision medicine for colorectal cancer.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Hao Zhu
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wentao Liu
- Department of General Surgery, Affiliated Drum Tower Hospital, JiangSu University, Nanjing, China
| | - Ji Miao
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yonghuan Mao
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Qiang Li
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Liu W, Niu J, Huo Y, Zhang L, Han L, Zhang N, Yang M. Role of circular RNAs in cancer therapy resistance. Mol Cancer 2025; 24:55. [PMID: 39994791 PMCID: PMC11854110 DOI: 10.1186/s12943-025-02254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past decade, circular RNAs (circRNAs) have gained recognition as a novel class of genetic molecules, many of which are implicated in cancer pathogenesis via different mechanisms, including drug resistance, immune escape, and radio-resistance. ExosomalcircRNAs, in particular, facilitatecommunication between tumour cells and micro-environmental cells, including immune cells, fibroblasts, and other components. Notably, micro-environmental cells can reportedly influence tumour progression and treatment resistance by releasing exosomalcircRNAs. circRNAs often exhibit tissue- and cancer-specific expression patterns, and growing evidence highlights their potential clinical relevance and utility. These molecules show strong promise as potential biomarkers and therapeutic targets for cancer diagnosis and treatment. Therefore, this review aimed to briefly discuss the latest findings on the roles and resistance mechanisms of key circRNAs in the treatment of various malignancies, including lung, breast, liver, colorectal, and gastric cancers, as well as haematological malignancies and neuroblastoma.This review will contribute to the identification of new circRNA biomarkers for the early diagnosis as well as therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Jiling Niu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong Province, China.
| |
Collapse
|
3
|
Torner B, Géczi D, Klekner Á, Balogh I, Penyige A, Birkó Z. Construction of a miRNA Panel for Differentiating Lung Adenocarcinoma Brain Metastases and Glioblastoma. Cancers (Basel) 2025; 17:581. [PMID: 40002176 PMCID: PMC11853152 DOI: 10.3390/cancers17040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Brain metastases (BM) are the most common type of intracranial malignant tumor and are associated with high mortality. More than 50% of BM cases originate from lung cancer, and lung adenocarcinoma (LUAD) is most commonly associated with the development of BM (25%). The differential diagnosis of solitary BM and glioblastoma (GBM)-one of the most aggressive and fatal malignant brain tumors-remains a considerable challenge. Given the major role of microRNAs (miRNAs) in regulating gene expression, their clinical potential as biomarkers for tumor diagnosis and prognosis offers significant promise. METHODS Next-generation RNA Sequencing (RNA-seq) was used to assess the miRNA expression profiles of 6 LUAD-BM, 6 GBM, and 6 control (non-tumoral brain tissue samples) human brain tissue samples. miRNAs exhibiting the most significant differential expression in LUAD-BM patients in comparison to both control subjects and GBM patients were selected for validation through RT-qPCR. RESULTS The analysis of RNA-seq data revealed the presence of 229 differentially expressed miRNAs in the comparison between LUAD-BM and control samples and 46 in the comparison between LU-AD-BM and GBM samples. Eight miRNAs were selected for further analysis, four of which were upregulated and four downregulated, based on the significant differences in their expression levels observed between the LUAD-BM samples and the other two groups, as confirmed with the Mann-Whitney U test. Functional enrichment analysis was also conducted based on a miRNA-centered target analysis performed using the miRNet tool. To assess the diagnostic potential of these differentially expressed miRNAs, we performed a receiver operating characteristic (ROC) curve analysis. CONCLUSIONS A panel of eight miRNAs was identified in human brain tissue samples, exhibiting high accuracy in distinguishing LUAD-BM from both GBM and control samples.
Collapse
Affiliation(s)
- Bernadett Torner
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.T.); (D.G.); (I.B.); (A.P.)
| | - Dóra Géczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.T.); (D.G.); (I.B.); (A.P.)
| | - Álmos Klekner
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.T.); (D.G.); (I.B.); (A.P.)
- Division of Clinical Genetics, Department of Laboratory Medicine, University of Debrecen Clinical Center, 4032 Debrecen, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.T.); (D.G.); (I.B.); (A.P.)
| | - Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.T.); (D.G.); (I.B.); (A.P.)
| |
Collapse
|
4
|
Tang X, Guo M, Zhang Y, Lv J, Gu C, Yang Y. Examining the evidence for mutual modulation between m6A modification and circular RNAs: current knowledge and future prospects. J Exp Clin Cancer Res 2024; 43:216. [PMID: 39095902 PMCID: PMC11297759 DOI: 10.1186/s13046-024-03136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The resistance of cancer cells to treatment significantly impedes the success of therapy, leading to the recurrence of various types of cancers. Understanding the specific mechanisms of therapy resistance may offer novel approaches for alleviating drug resistance in cancer. Recent research has shown a reciprocal relationship between circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification, and their interaction can affect the resistance and sensitivity of cancer therapy. This review aims to summarize the latest developments in the m6A modification of circRNAs and their importance in regulating therapy resistance in cancer. Furthermore, we explore their mutual interaction and exact mechanisms and provide insights into potential future approaches for reversing cancer resistance.
Collapse
Affiliation(s)
- Xiaozhu Tang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjie Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junxian Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
5
|
Lu J, Jin Z, Jin X, Chen W. Prognostic value and potential regulatory relationship of miR-200c-5p in colorectal cancer. J Biochem Mol Toxicol 2024; 38:e23770. [PMID: 39016041 DOI: 10.1002/jbt.23770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
This study aimed to investigate the relationship and potential mechanisms of miR-200c-5p in colorectal cancer (CRC) progression. Differentially expressed miRNAs were screened using the TCGA database. Subsequently, univariate analysis was performed to identify CRC survival-related miRNAs. Survival and receiver operator characteristic curves were generated. The target genes of miR-200c-5p and the relevant signaling pathways or biological processes were predicted by the miRNet database and enrichment analyses. The miR-200c-5p expression was detected using quantitative reverse-transcription polymerase chain reaction, Cell Counting Kit-8, Transwell, and cell apoptosis experiments were performed to determine miR-200c-5p's impact on CRC cell viability, invasiveness, and apoptosis. Finally, we constructed a CRC mouse model with inhibited miR-200c-5p to evaluate its impact on tumors. miR-200c-5p was upregulated in CRC, implying a favorable prognosis. Gene set enrichment analysis revealed that miR-200c-5p may participate in signaling pathways such as the TGF-β signaling pathway, RIG-I-like receptor signaling pathway, renin-angiotensin system, and DNA replication. miR-200c-5p potentially targeted mRNAs, including KCNE4 and CYP1B1, exhibiting a negative correlation with their expression. Furthermore, these mRNAs may participate in biological processes like the regulation of intracellular transport, cAMP-dependent protein kinase regulatory activity, ubiquitin protein ligase binding, MHC class II protein complex binding, and regulation of apoptotic signaling pathway. Lastly, miR-200c-5p overexpression repressed the viability and invasiveness of CRC cells but promoted apoptosis. The tumor size, weight, and volume were significantly increased by inhibiting miR-200c-5p (p < 0.05). miR-200c-5p is upregulated in CRC, serving as a promising biomarker for predicting CRC prognosis.
Collapse
Affiliation(s)
- Jiying Lu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Colorectal and Anal Surgery, The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zhekang Jin
- Department of Colorectal and Anal Surgery, The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xihan Jin
- Department of Colorectal and Anal Surgery, The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Pu Y, Han Y, Ouyang Y, Li H, Li L, Wu X, Yang L, Gao J, Zhang L, Zhou J, Ji Q, Song Q. Kaempferol inhibits colorectal cancer metastasis through circ_0000345 mediated JMJD2C/β-catenin signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155261. [PMID: 38493716 DOI: 10.1016/j.phymed.2023.155261] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024]
Abstract
BACKGROUND Recurrence and metastasis are the main causes of disease deterioration in colorectal cancer (CRC) patients, yet efficient therapeutic strategies are lacking. Natural compounds for efficient antitumour therapeutics are becoming increasingly prominent. Kaempferol, one of the main components of flavonoids in plants, displays a variety of pharmacological activities. Our preliminary experiments suggested that kaempferol could inhibit CRC metastasis and is significantly associated with the β-catenin signalling pathway. Moreover, we also defined the regulatory roles of JMJD2C in β-catenin signalling in our previous work. PURPOSE This study aims to reveal the mechanism by which kaempferol inhibits CRC progression and regulates the JMJD2C/β-catenin signalling pathway. METHODS The migratory capabilities of CRC cells after kaempferol intervention were measured by scratch wound healing and transwell assays. Circ_0000345 knockdown CRC stable cell lines were generated by lentivirus infection. The possible mechanism of kaempferol on circ_0000345 was verified by molecular-protein docking and verification program cellular thermal shift assay (CETSA). A dual luciferase reporter gene assay was carried out for the targeting relationship among circ_0000345, miR-205-5p and JMJD2C. Fluorescence in situ hybridization (FISH) was performed to determine the expression of circ_0000345 in tumour tissues. A pulmonary metastatic model of CRC in vitro was built to assess the antimetastatic effect and mechanism of kaempferol in vivo. RESULTS In vitro, kaempferol inhibits the ability to migrate of CRC cells by reducing the activation of the JMJD2C/β-catenin signalling pathway. MiR-205-5p is a key bridge for kaempferol to inhibit the expression of JMJD2C. The function of miR-205-5p is impeded by circ_0000345, which shows higher expression levels in human metastatic CRC tissues than nonmetastatic CRC tissues, and its formation is regulated by the RNA-binding proteins HNRNPK and HNRNPL. Mechanistically, kaempferol physically interacts with HNRNPK and HNRNPL to suppress JMJD2C by downregulating the expression of circ_0000345. In vivo, kaempferol suppresses CRC lung metastasis. Kaempferol inhibits the activation of JMJD2C/β-catenin signalling through reducing the expression of circ_0000345 in the CRC lung metastasis model. CONCLUSION Circ_0000345 enhances activation of the JMJD2C/β-catenin signalling pathway through miR-205-5p to promote CRC metastasis. Kaempferol inhibits CRC metastasis through the circ_0000345-mediated JMJD2C/β-catenin signalling pathway, and this effect is influenced as a direct consequence of the binding of kaempferol with HNRNPK and HNRNPL. This provides promising therapeutic and/or adjuvant agents for advanced CRC and sheds light on the multifaceted role of phytomedicine in cancer.
Collapse
Affiliation(s)
- Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yicun Han
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiran Ouyang
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215007, China
| | - Haoze Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinnan Wu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liu Yang
- Department of Oncology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Jingdong Gao
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215007, China
| | - Lei Zhang
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215007, China
| | - Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215007, China.
| |
Collapse
|
7
|
Mao J, Lu Y. Roles of circRNAs in the progression of colorectal cancer: novel strategies for detection and therapy. Cancer Gene Ther 2024; 31:831-841. [PMID: 38337038 DOI: 10.1038/s41417-024-00739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Endogenous noncoding RNAs with a covalently closed loop are known as circular RNAs (circRNAs). Recently, published works have revealed that circRNAs, which act as microRNA sponges, are critical for the biological behavior of several kinds of malignancies, including tumor cell proliferation, apoptosis, invasion, and metastasis. Additionally, there is a significant correlation between circRNAs and tumor resistance, stage, prognosis, and size. At present, colorectal cancer (CRC) is one of the most serious malignant tumors for human health. CircRNAs could represent potential targets to use in the prevention, diagnosis, and therapy of CRC, according to many studies. To fully comprehend the role of circRNAs in the incidence and progression of CRC, this review outlines the regulatory role and mechanisms of circRNAs in CRC and assesses their potential relevance as diagnostic and treatment possibilities for CRC. Our goal is to offer meaningful biological information for clinical evaluation and decision-making process for CRC treatment.
Collapse
Affiliation(s)
- Jun Mao
- Department of Medical Morphology Laboratory, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China
- Liaoning Key Laboratory of Cancer Stem Cells, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China
| | - Ying Lu
- Department of Medical Morphology Laboratory, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China.
- Liaoning Key Laboratory of Cancer Stem Cells, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China.
| |
Collapse
|
8
|
Liang D, Li G. Pulling the trigger: Noncoding RNAs in white adipose tissue browning. Rev Endocr Metab Disord 2024; 25:399-420. [PMID: 38157150 DOI: 10.1007/s11154-023-09866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
White adipose tissue (WAT) serves as the primary site for energy storage and endocrine regulation in mammals, while brown adipose tissue (BAT) is specialized for thermogenesis and energy expenditure. The conversion of white adipocytes to brown-like fat cells, known as browning, has emerged as a promising therapeutic strategy for reversing obesity and its associated co-morbidities. Noncoding RNAs (ncRNAs) are a class of transcripts that do not encode proteins but exert regulatory functions on gene expression at various levels. Recent studies have shed light on the involvement of ncRNAs in adipose tissue development, differentiation, and function. In this review, we aim to summarize the current understanding of ncRNAs in adipose biology, with a focus on their role and intricate mechanisms in WAT browning. Also, we discuss the potential applications and challenges of ncRNA-based therapies for overweight and its metabolic disorders, so as to combat the obesity epidemic in the future.
Collapse
Affiliation(s)
- Dehuan Liang
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
- Fifth School of Clinical Medicine (Beijing Hospital), Peking University, Beijing, 100730, People's Republic of China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China.
| |
Collapse
|
9
|
Fan W, Zhang Y, Wang D, Wang C, Yang J. The impact of Yiwei decoction on the LncRNA and CircRNA regulatory networks in premature ovarian insufficiency. Heliyon 2023; 9:e20022. [PMID: 37809621 PMCID: PMC10559751 DOI: 10.1016/j.heliyon.2023.e20022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/19/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Premature ovarian insufficiency(POI)is a female reproductive aging illness. Yiwei decoction(YWD) is a traditional treatment for Yangming nourishment. YWD can treat premature ovarian insufficiency, but the exact molecular mechanism is unknown. As a result, the differential expression of Long noncoding RNAs (LncRNAs) and Circular RNAs(CircRNAs) in the ovary of POI rats after YWD treatment was investigated in this paper, and the CeRNA regulatory network was built. The model was created using cyclophosphamide. The model group + YWD was in Group A, the model control group was in Group B, and the regular control group was in Group C. In this study, 177 differential expression Long noncoding RNAs(DELncRNAs) and 190 differential expression Circular RNAs (DECircRNAs) were discovered between A and B (P<0.05,|LogFC|>1). Following the analysis, 27 DELncRNAs and 96 DECircRNAs (P-adjusted<0.05,|LogFC|>1) were discovered. At the same time, we built the CeRNA network using differentially expressed mRNAs and microRNAs (miRNAs) expression between groups A and B. The DELncRNAs were used to construct a lncRNA-miRNA-mRNA ceRNA network with 27 LncRNAs, 4 miRNAs, and 19 mRNAs. The DECircRNAs were utilized to establish a CircRNA-miRNA-mRNA ceRNA network that was made up of 15 CircRNAs, 4 miRNAs, and 20 mRNA. The highly correlated regulatory networks were the LncMSTRG.22691.3/miR-3102/ANGPT4 and Circ10_34698898_34699378/miR-33-5p/TTC22. Circ20_12035276_12036793、Circ20_30693935_30696337、Circ4_157723097_157723378 and Circ4_157923266_157923904 occurred concurrently in AvsB, BvsC, and AvsC. MiRDB predicted eight target miRNAs for these CircRNAs. The miRanda(score = 140,energy = -1) binding energy calculation revealed that seven miRNAs were well combined with three CircRNA base complementary pairs. This implies that 3 DECircRNAs could serve as spongy bodies for these miRNAs. Network pharmacological analysis showed that ten active components in YWD may regulate the expression of LncRNAs and CircRNAs, such as Stigmasterol, Uridine, Ophiopogonanone A, Gamma-Aminobutyric Acid, and others. In conclusion, this study combined transcriptomics and network pharmacological analysis to identify differentially expressed lncRNAs as well as CircRNAs in ovaries of YWD-treated POI rats, thereby constructing ceRNA networks implicated in POI. This would contribute to clarifying the pathways by which Chinese herbal compounds regulate gene expression in POI.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Yingjie Zhang
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Dandan Wang
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Chen Wang
- School of Traditional Chinese Medicine, Shandong University of Chinese Medicine, Jinan, 250013, China
| | - Jie Yang
- School of Physical Education and Health, Shandong Sport University, Jinan, 250013, China
| |
Collapse
|
10
|
Zhang Y, Luo J, Yang W, Ye WC. CircRNAs in colorectal cancer: potential biomarkers and therapeutic targets. Cell Death Dis 2023; 14:353. [PMID: 37296107 PMCID: PMC10250185 DOI: 10.1038/s41419-023-05881-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Globally, colorectal cancer (CRC) is the third most prevalent cancer and the second leading cause of cancer-related deaths. Circular RNAs (circRNAs) are single-stranded RNA with covalently closed-loop structures and are highly stable, conserved, and abundantly expressed in various organs and tissues. Recent research found abnormal circRNA expression in CRC patients' blood/serum, cells, CRC tissues, and exosomes. Furthermore, mounting data demonstrated that circRNAs are crucial to the development of CRC. CircRNAs have been shown to exert biological functions by acting as microRNA sponges, RNA-binding protein sponges, regulators of gene splicing and transcription, and protein/peptide translators. These characteristics make circRNAs potential markers for CRC diagnosis and prognosis, potential therapeutic targets, and circRNA-based therapies. However, further studies are still necessary to improve the understanding of the roles and biological mechanisms of circRNAs in the development of CRC. In this review, up-to-date research on the role of circRNAs in CRC was examined, focusing on their potential application in CRC diagnosis and targeted therapy, which would advance the knowledge of the functions of circRNAs in the development and progression of CRC.
Collapse
Affiliation(s)
- Yuying Zhang
- Central Laboratory, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Jingyan Luo
- Forevergen Biosciences Centre, Guangzhou International Biotech Island, Guangzhou, 510300, China
| | - Weikang Yang
- Department of Prevention and Healthcare, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Wen-Chu Ye
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|