1
|
Marsh NM, MacEwen MJS, Chea J, Kenerson HL, Kwong AA, Locke TM, Miralles FJ, Sapre T, Gozali N, Hart ML, Bammler TK, MacDonald JW, Sullivan LB, Atilla-Gokcumen GE, Ong SE, Scott JD, Yeung RS, Sancak Y. Mitochondrial calcium signaling regulates branched-chain amino acid catabolism in fibrolamellar carcinoma. SCIENCE ADVANCES 2025; 11:eadu9512. [PMID: 40435263 PMCID: PMC12118637 DOI: 10.1126/sciadv.adu9512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/23/2025] [Indexed: 06/01/2025]
Abstract
Metabolic adaptations are essential for survival. The mitochondrial calcium uniporter plays a key role in coordinating metabolic homeostasis by regulating mitochondrial metabolic pathways and calcium signaling. However, a comprehensive analysis of uniporter-regulated mitochondrial pathways has remained unexplored. Here, we investigate consequences of uniporter loss and gain of function using uniporter knockout cells and fibrolamellar carcinoma (FLC), which we demonstrate to have elevated mitochondrial calcium levels. We find that branched-chain amino acid (BCAA) catabolism and the urea cycle are uniporter-regulated pathways. Reduced uniporter function boosts expression of BCAA catabolism genes and the urea cycle enzyme ornithine transcarbamylase. In contrast, high uniporter activity in FLC suppresses their expression. This suppression is mediated by the transcription factor KLF15, a master regulator of liver metabolism. Thus, the uniporter plays a central role in FLC-associated metabolic changes, including hyperammonemia. Our study identifies an important role for the uniporter in metabolic adaptation through transcriptional regulation of metabolism and elucidates its importance for BCAA and ammonia metabolism.
Collapse
Affiliation(s)
- Nicole M. Marsh
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | - Jane Chea
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Heidi L. Kenerson
- Department of Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Albert A. Kwong
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Timothy M. Locke
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Natasha Gozali
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Madeleine L. Hart
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Lucas B. Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Chen J, Chen X, Cai H, Yang Y, Zhu Q, Sun D, Gao C. The ubiquitination degradation of KLF15 mediated by WSB2 promotes lipogenesis and progression of hepatocellular carcinoma via inhibiting PDLIM2 expression. J Gastroenterol Hepatol 2025; 40:192-207. [PMID: 39638411 DOI: 10.1111/jgh.16812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/08/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND AND AIM Krüppel-like factors15 (KLF15) is a cancer suppressor in many cancers. However, its precise function in the development of hepatocellular carcinoma (HCC) remains unclear. Lipogenesis is necessary for the development of HCC. This research aims to investigate the role of KLF15 in the regulation of hepatic lipid production and HCC progression. METHODS The binding relationships among genes were confirmed by ChIP, dual luciferase assays, and Co-IP. Lipogenesis was examined by oil red O staining. Triglyceride and cholesterol levels were measured through commercial kits. The effect of treatment on HCC cell viability, proliferation, migration, and invasion were assessed using CCK-8, clone formation, or transwell assays. A subcutaneous tumorigenic model was utilized to explore the effects of PDLIM2 in HCC in vivo. RESULTS KLF15 were downregulated in human HCC tissues. KLF15 overexpression reduced lipid droplet production, suppressed the expression of genes associated with lipogenesis, and promoted cell proliferation, migration, and invasion. KLF15 suppressed the NF-κB pathway through transcriptional activation of PDLIM2. PDLIM2 knockdown attenuated the effect of KLF15 overexpression on HCC. WSB2 degraded KLF15 through ubiquitination to promote HCC lipogenesis and development. CONCLUSION The ubiquitination degradation of KLF15 was mediated by WSB2, which led to transcriptional repression of PDLIM2 and further activation of the NF-κB pathway, ultimately promoting HCC lipogenesis and development.
Collapse
Affiliation(s)
- Jing Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou, Changzhou, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou, Changzhou, China
| | - Huihua Cai
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou, Changzhou, China
| | - Yong Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou, Changzhou, China
| | - Qinqin Zhu
- Department of Gastroenterology, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou, Changzhou, China
| | - Donglin Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou, Changzhou, China
| | - Cao Gao
- Department of Anesthesiology, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou, Changzhou, China
| |
Collapse
|
3
|
Marsh NM, MacEwen MJS, Chea J, Kenerson HL, Kwong AA, Locke TM, Miralles FJ, Sapre T, Gozali N, Hart ML, Bammler TK, MacDonald JW, Sullivan LB, Atilla-Gokcumen GE, Ong SE, Scott JD, Yeung RS, Sancak Y. Mitochondrial Calcium Signaling Regulates Branched-Chain Amino Acid Catabolism in Fibrolamellar Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596106. [PMID: 38853984 PMCID: PMC11160645 DOI: 10.1101/2024.05.27.596106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Metabolic adaptations in response to changes in energy supply and demand are essential for survival. The mitochondrial calcium uniporter plays a key role in coordinating metabolic homeostasis by regulating TCA cycle activation, mitochondrial fatty acid oxidation, and cellular calcium signaling. However, a comprehensive analysis of uniporter-regulated mitochondrial pathways has remained unexplored. Here, we investigate metabolic consequences of uniporter loss- and gain-of-function using uniporter knockout cells and the liver cancer fibrolamellar carcinoma (FLC), which we demonstrate to have elevated mitochondrial calcium levels. Our results reveal that branched-chain amino acid (BCAA) catabolism and the urea cycle are uniporter-regulated metabolic pathways. Reduced uniporter function boosts expression of BCAA catabolism genes, and the urea cycle enzyme ornithine transcarbamylase (OTC). In contrast, high uniporter activity in FLC suppresses their expression. This suppression is mediated by reduced expression of the transcription factor KLF15, a master regulator of liver metabolism. Thus, uniporter responsive calcium signaling plays a central role in FLC-associated metabolic changes, including hyperammonemia. Our study identifies an important role for mitochondrial calcium signaling in metabolic adaptation through transcriptional regulation of metabolism and elucidates its importance for BCAA and ammonia metabolism in FLC.
Collapse
Affiliation(s)
- Nicole M Marsh
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Melissa J S MacEwen
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jane Chea
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Heidi L Kenerson
- Department of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Albert A Kwong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | | | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Natasha Gozali
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Madeleine L Hart
- Human Biology Division, Fred Hutchinson Cancer Center, WA, Seattle, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, WA, Seattle, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Mao S, Wu D, Cheng X, Wu J. Circ_0007432 promotes non-small cell lung cancer progression and macrophage M2 polarization through SRSF1/KLF12 axis. iScience 2024; 27:109861. [PMID: 38799570 PMCID: PMC11126953 DOI: 10.1016/j.isci.2024.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/05/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
Circular RNAs (circRNAs) plays critical roles in non-small cell lung cancer (NSCLC) development. Herein, we illustrated the effects of circ_0007432 on malignant features of NSCLC. We found that circ_0007432 played a promoting role in NSCLC progression, lying in accelerating cell viability, migration and invasion of NSCLC cells, promoting M2 macrophage polarization, suppressing cell apoptosis of NSCLC cells, and enhancing tumor growth in vivo. Mechanistically, the interactions among circ_0007432, SRSF1, KLF12, and IL-8 were validated by RNA-binding protein immunoprecipitation (RIP), electrophoretic mobility shift assay (EMSA), RNA pull-down, dual luciferase reporter assay and chromatin immunoprecipitation (ChIP) assays. Circ_0007432 upregulated KLF12 by recruiting SRSF1. KLF12 facilitated IL-8 expression and release by binding to IL-8 promoter. Furthermore, the role of circ_0007432/SRSF1/KLF12/IL-8 axis in malignant phenotypes of tumor cells or macrophage polarization was investigated using rescue experiments. In conclusion, circ_0007432 bound with SRSF1 to stabilize KLF12 and then promote IL-8 release, thus promoting malignant behaviors of NSCLC cells and M2 macrophage polarization.
Collapse
Affiliation(s)
- Shanshan Mao
- Radiotherapy Department, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, P.R. China
- Department of Medical Oncology, Haikou People’s Hospital, Haikou 570208, Hainan Province, P.R. China
| | - Dongyu Wu
- Radiotherapy Department, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, P.R. China
| | - Xiaozhen Cheng
- Department of Medical Oncology, Haikou People’s Hospital, Haikou 570208, Hainan Province, P.R. China
| | - Jinsheng Wu
- Radiotherapy Department, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, P.R. China
| |
Collapse
|
5
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Lv X, Yang L, Xie Y, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol 2024; 12:1397788. [PMID: 38859962 PMCID: PMC11163066 DOI: 10.3389/fcell.2024.1397788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the second most common form of cancer worldwide Research points to the pivotal role of non-coding RNAs (ncRNAs) in controlling and managing the pathology by controlling essential pathways. ncRNAs have all been identified as being either up- or downregulated among individuals suffering from lung cancer thus hinting that they may play a role in either promoting or suppressing the spread of the disease. Several ncRNAs could be effective non-invasive biomarkers to diagnose or even serve as effective treatment options for those with lung cancer, and several molecules have emerged as potential targets of interest. Given that ncRNAs are contained in exosomes and are implicated in the development and progression of the malady. Herein, we have summarized the role of ncRNAs in lung cancer. Moreover, we highlight the role of exosomal ncRNAs in lung cancer.
Collapse
Affiliation(s)
- Xiaolong Lv
- Department of Cardiothoracic Surgery, The People’s Hospital of Changshou, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The People’s Hospital of Tongliang District, Chongqing, China
| | - Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
7
|
Babayev M, Silveyra P. Role of circular RNAs in lung cancer. Front Genet 2024; 15:1346119. [PMID: 38501058 PMCID: PMC10944888 DOI: 10.3389/fgene.2024.1346119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Lung cancer remains a global public health concern with significant research focus on developing better diagnosis/prognosis biomarkers and therapeutical targets. Circular RNAs (circRNAs) are a type of single-stranded RNA molecules that covalently closed and have ubiquitous expression. These molecules have been implicated in a variety of disease mechanisms, including lung cancer, as they exhibit oncogenic or tumor suppressor characteristics. Recent research has shown an important role that circRNAs play at different stages of lung cancer, particularly in lung adenocarcinoma. In this review, we summarize the latest research on circRNAs and their roles within lung cancer diagnosis, as well as on disease mechanisms. We also discuss the knowledge gaps on these topics and possible future research directions.
Collapse
Affiliation(s)
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University School of Public Health Bloomington, Bloomington, IN, United States
| |
Collapse
|
8
|
Soureas K, Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Cancer quiescence: non-coding RNAs in the spotlight. Trends Mol Med 2023; 29:843-858. [PMID: 37516569 DOI: 10.1016/j.molmed.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Cancer quiescence reflects the ability of cancer cells to enter a reversible slow-cycling or mitotically dormant state and represents a powerful self-protecting mechanism preventing cancer cell 'damage' from hypoxic conditions, nutrient deprivation, immune surveillance, and (chemo)therapy. When stress conditions are restrained, and tumor microenvironment becomes beneficial, quiescent cancer cells re-enter cell cycle to facilitate tumor spread and cancer progression/metastasis. Recent studies have highlighted the dynamic role of regulatory non-coding RNAs (ncRNAs) in orchestrating cancer quiescence. The elucidation of regulatory ncRNA networks will shed light on the quiescence-proliferation equilibrium and, ultimately, pave the way for new treatment options. Herein, we have summarized the ever-growing role of ncRNAs upon cancer quiescence regulation and their impact on treatment resistance and modern cancer therapeutics.
Collapse
Affiliation(s)
- Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece.
| |
Collapse
|
9
|
Tu G, Peng W, Peng X, Zhao Z, Shi S, Cai Q, He B, Yin W, Peng S, Wang L, Yu F, Wang X. hsa_circ_0000519 promotes the progression of lung adenocarcinoma through the hsa-miR-1296-5p/DARS axis. Am J Cancer Res 2023; 13:3342-3367. [PMID: 37693148 PMCID: PMC10492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
Emerging research indicates that circRNAs serve a crucial role in occurrence and development of cancers. This study aimed to uncover the biological role of hsa_circ_0000519 in the progression of LUAD (lung adenocarcinoma). hsa_circ_0000519 was identified by bioinformatic analysis, and its differential expression was validated in LUAD tissues and cell lines. CCK8, colony formation, wound healing, transwell assays, and xenograft tumor models were used to observe the biological functions of hsa_circ_0000519. FISH, RIP, dual luciferase reporter assays, and recovery experiments were implemented to explore the underlying mechanisms of hsa_circ_0000519. hsa_circ_0000519 was significantly upregulated in LUAD tissues and cell lines. The expression of hsa_circ_0000519 was positively correlated with T grade and TNM stage in patients with LUAD. Downregulation of hsa_circ_0000519 remarkably reduced cell proliferation, migration, invasion in vitro, and tumor growth in vivo. Mechanistic investigation demonstrated that hsa_circ_0000519 directly sponged hsa-miR-1296-5p to reduce its repressive impact on DARS as well as activate the PI3K/AKT/mTOR signaling pathway. The malignant phenotypes of LUAD cells induced by upregulation of hsa_circ_0000519 could be rescued by hsa-miR-1296-5p overexpression or knockdown of DARS. In conclusion, hsa_circ_0000519 promotes LUAD progression through the hsa-miR-1296-5p/DARS axis and may be expected as a novel biomarker and therapeutic for LUAD.
Collapse
Affiliation(s)
- Guangxu Tu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Wei Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan UniversityChangsha 410082, Hunan, China
- School of Computer Science, National University of Defense TechnologyChangsha 410073, Hunan, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| |
Collapse
|