1
|
Sarmiento M, Salinas J, Rojas P, Gutierrez C, Vidal M, Jara V, Garcia MJ, Campbell MJ, Flores Y, Sandoval V, Vergara M, Palacios F, Ocqueteau M. Analysis of apheresis outcomes in a cohort of Chilean patients treated with autologous stem cell transplantation: A single center real-world experience. Transfus Apher Sci 2024; 63:103983. [PMID: 39098276 DOI: 10.1016/j.transci.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Adequate stem cell harvesting is required for autologous hematopoietic transplantation. In deficient mobilizer patients, the collection of stem cells can be challenging because of the impossibility of achieving satisfactory CD34 cell counts with GCSF + - chemotherapy. Plerixafor is a potent and expensive drug that promotes the release of stem cells from the medullary niche to the peripheral blood and allows satisfactory harvests. We performed a retrospective analysis of 370 patients with myeloma and lymphoma harvested at our institution. 99 % of patients achieved satisfactory apheresis using Plerixafor in 45 %. Satisfactory harvests were obtained in patients mobilized with GCSF or plerixafor. In patients who used plerixafor, it was necessary to perform fewer apheresis procedures (P = 0.05). In multivariate analysis, the only factor that predicted the need for plerixafor was the presence of less than 30,000 CD34 / ul on the day of apheresis (OR 0.3. p < 0.001). Since we adopted the plerixafor protocol guided by CD34 counts, the number of patients with harvest failure has decreased. In conclusion, the rational and standardized use of plerixafor favors satisfactory harvest in patients who require autologous transplantation in South-American patients.
Collapse
Affiliation(s)
- M Sarmiento
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile.
| | - J Salinas
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - P Rojas
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - C Gutierrez
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - M Vidal
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - V Jara
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - M J Garcia
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - M J Campbell
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - Y Flores
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - V Sandoval
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - M Vergara
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - F Palacios
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| | - M Ocqueteau
- Programa de trasplante hematopoyético del adulto, Red de Salud Christus UC, Pontificia Universidad Católica de Chile, Chile
| |
Collapse
|
2
|
Guan Q, Gilpin SG, Doerksen J, Bath L, Lam T, Li Y, Lambert P, Wall DA. The Interactions of T Cells with Myeloid-Derived Suppressor Cells in Peripheral Blood Stem Cell Grafts. Cells 2024; 13:1545. [PMID: 39329729 PMCID: PMC11429538 DOI: 10.3390/cells13181545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
The interaction of myeloid-derived suppressor cells (MDSCs) with T cells within G-CSF-mobilized peripheral blood stem cell (PBSC) grafts in patients undergoing autologous or allogeneic hematopoietic stem cell transplantation remains to be elucidated. Through studying allo- and auto-PBSC grafts, we observed grafts containing large numbers of T cells and MDSCs with intergraft variability in their percentage and number. T cells from autologous grafts compared to allografts expressed relative higher percentages of inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, TIGIT and BTLA. Autograft T cells had decreased cell proliferation and IFN-γ secretion, which supported the possible presence of T cell exhaustion. On the contrary, graft monocytic MDSCs (M-MDSCs) expressed multiple inhibitory receptor ligands, including PD-L1, CD86, Galectin-9, HVEM and CD155. The expression of inhibitory receptor ligands on M-MDSCs was correlated with their corresponding inhibitory receptors on T cells in the grafts. Isolated M-MDSCs had the ability to suppress T cell proliferation and IFN-γ secretion and/or promote Treg expansion. Blocking the PD-L1-PD-1 signaling pathway partially reversed the functions of M-MDSCs. Taken together, our data indicated that T cells and M-MDSCs in PBSC grafts express complementary inhibitory receptor-ligand pairing, which may impact the quality of immune recovery and clinical outcome post transplantation.
Collapse
Affiliation(s)
- Qingdong Guan
- Manitoba Blood and Marrow Transplant Program, Departments of Pediatrics and Child Health and Internal Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (D.A.W.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Manitoba Center for Advanced Cell and Tissue Therapy, Winnipeg, MB R3A 1R9, Canada
- Paul Albreachtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Scott G. Gilpin
- Manitoba Blood and Marrow Transplant Program, Departments of Pediatrics and Child Health and Internal Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (D.A.W.)
| | - James Doerksen
- Manitoba Blood and Marrow Transplant Program, Departments of Pediatrics and Child Health and Internal Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (D.A.W.)
| | - Lauren Bath
- Manitoba Blood and Marrow Transplant Program, Departments of Pediatrics and Child Health and Internal Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (D.A.W.)
| | - Tracy Lam
- Manitoba Blood and Marrow Transplant Program, Departments of Pediatrics and Child Health and Internal Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (D.A.W.)
| | - Yun Li
- Manitoba Blood and Marrow Transplant Program, Departments of Pediatrics and Child Health and Internal Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (D.A.W.)
| | - Pascal Lambert
- Department of Epidemiology and Cancer Registry, CancerCare Manitoba, Winnipeg, MB R3A 1R9, Canada;
| | - Donna A. Wall
- Manitoba Blood and Marrow Transplant Program, Departments of Pediatrics and Child Health and Internal Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (D.A.W.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Manitoba Center for Advanced Cell and Tissue Therapy, Winnipeg, MB R3A 1R9, Canada
- Paul Albreachtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3A 1R9, Canada
| |
Collapse
|
3
|
Huang L, Lin B, Mu Y, Li Y, Chen M, Zhou Y, Zhu G, Jiang E, Xia Y. Sysmex XN-HPC: study of reference intervals and clinical decision limits in healthy allogeneic donors mobilised with G-CSF. Clin Exp Med 2024; 24:197. [PMID: 39180670 PMCID: PMC11344708 DOI: 10.1007/s10238-024-01467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
The Sysmex XN series haematopoietic progenitor cell (XN-HPC) is a novel tool for assessing stem cell yield before allogeneic haematopoietic stem cell transplantation. This study aimed to establish a reference interval (RI) for XN-HPC in peripheral blood allogeneic transplant donors following granulocyte colony-stimulating factor (G-CSF) stimulation and determine its clinical significance. All specimens were analysed using Sysmex XN-20. Samples were collected and analysed using non-parametric percentile methods to define the RIs. Quantile regression was used to explore the dependency of the RIs on sex and age. Samples were included in clinical decision limits for apheresis based on receiver operating characteristic curve analysis. The non-parametrically estimated RI for XN-HPC was 623.50 (90% confidence interval [CI90%] 510.00-657.00) to 4,144.28 (CI90% 3,761.00-4,547.00). The RIs for the XN-HPC were not age-dependent but were sex-dependent. The RI for males was 648.40 (CI90% 582.00-709.00)-4,502.60 (CI90% 4,046.00-5,219.00) and for females was 490.90 (CI90% 311.00-652.00)-3,096.90 (CI90% 2,749.00-3,782.00). Comparisons based on XN-HPC values between the poor and less-than-optimal groups, good and less-than-optimal groups, and good and non-good groups had areas under the curve of 0.794 (P < 0.001), 0.768 (P < 0.001), and 0.806 (P < 0.001), respectively, indicating a good predictive value for mobilisation effectiveness. XN-HPC data exceeding 3974 × 106/L suggested that a sufficient number of stem cells could be collected clinically. Values > 5318 < 106/L indicated 100% mobilisation effectiveness. We established an RI for XN-HPC in peripheral blood allogeneic transplant donors following G-CSF stimulation and determined clinical decision thresholds for mobilisation efficiency.
Collapse
Affiliation(s)
- Lunhui Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Binbin Lin
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
| | - Yueyi Mu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yong Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Miao Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yunxia Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Guoqing Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| | - Yonghui Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
4
|
Alan S, Kanter J. Advances in pharmacotherapy for sickle cell disease: what is the current state of play? Expert Opin Pharmacother 2024; 25:1325-1334. [PMID: 38973339 DOI: 10.1080/14656566.2024.2377711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Despite over 100 years of neglect and insufficient funding, sickle cell disease has risen to the top of the discussions due to the recent approval of two new genetic therapies. Prior to these approvals, there were only four prior approved medications for sickle cell disease in spite of being the most common inherited blood disorder. The advent and expense of these new genetic therapies have finally brought the trials and tribulations associated with SCD including the suffering and early mortality of affected individuals to the much-needed limelight. Presently, questions about how these therapies will be used and what that means for ongoing pharmaceutical development remain. AREAS COVERED Here, we wish to highlight the current medications and treatments for SCD using already published literature as well as scrutinize the tedious process of implementation for these newly approved commercial genetic therapies. EXPERT OPINION In our expert opinion, despite the progress we have made, significant challenges remain and the most important requirement for any of these treatments is ensuring all affected individuals have access to a sickle cell specialist who can provide comprehensive care.
Collapse
Affiliation(s)
- Sheinei Alan
- Inova Adult Sickle Cell Center, University of Virginia School of Medicine, Inova Fairfax Medical Campus, Fairfax, VA, USA
| | - Julie Kanter
- Lifespan Comprehensive Sickle Cell Center, University of Alabama Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Lonez C, Breman E. Allogeneic CAR-T Therapy Technologies: Has the Promise Been Met? Cells 2024; 13:146. [PMID: 38247837 PMCID: PMC10814647 DOI: 10.3390/cells13020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
This last decade, chimeric antigen receptor (CAR) T-cell therapy has become a real treatment option for patients with B-cell malignancies, while multiple efforts are being made to extend this therapy to other malignancies and broader patient populations. However, several limitations remain, including those associated with the time-consuming and highly personalized manufacturing of autologous CAR-Ts. Technologies to establish "off-the-shelf" allogeneic CAR-Ts with low alloreactivity are currently being developed, with a strong focus on gene-editing technologies. Although these technologies have many advantages, they have also strong limitations, including double-strand breaks in the DNA with multiple associated safety risks as well as the lack of modulation. As an alternative, non-gene-editing technologies provide an interesting approach to support the development of allogeneic CAR-Ts in the future, with possibilities of fine-tuning gene expression and easy development. Here, we will review the different ways allogeneic CAR-Ts can be manufactured and discuss which technologies are currently used. The biggest hurdles for successful therapy of allogeneic CAR-Ts will be summarized, and finally, an overview of the current clinical evidence for allogeneic CAR-Ts in comparison to its autologous counterpart will be given.
Collapse
|