1
|
Laforce-Lavoie A, Constanzo-Yanez J, Chevrier MC, Cloutier M. Automated processing of Meryman-frozen red blood cells: A novel protocol for deglycerolization. Transfusion 2025; 65:732-739. [PMID: 40084388 DOI: 10.1111/trf.18211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Many blood services maintain large inventories of red blood cell (RBC) units cryopreserved in glycerol using the Meryman method. With the discontinuation of the COBE® 2991 cell processor, an alternative thawing method is needed. We aimed to develop a deglycerolization protocol for Meryman-frozen units using the ACP® 215 cell washer. METHODS In the optimization phase, Meryman-frozen RBC units stored for 10 years were thawed, paired, and divided into two groups: one with a centrifugation step to remove glycerol before deglycerolization ("volume reduction") and one without. Biochemical and hematological parameters assessed included hemolysis, hematocrit, hemoglobin, ATP, pH, and osmolality. The protocol was then validated. RESULTS Hemolysis rates were lower with than without volume reduction (0.4% vs. 0.6%). Centrifuged RBCs also showed higher recovery (72% vs. 63%), increased hematocrit (0.51 L/L vs. 0.40 L/L), and improved pH stability (6.17 vs. 6.11). In the validation phase, six RBC units deglycerolized using the volume reduction step met Canadian Standards Association requirements for hematocrit, hemoglobin, hemolysis, and sterility. DISCUSSION We optimized and validated a new protocol leveraging the ACP® 215 cell washer to deglycerolize Meryman-frozen RBCs. This method yielded low hemolysis, acceptable pH, and satisfactory recovery, especially with prior glycerol removal by centrifugation. The protocol has been successfully implemented, and Meryman-frozen RBC units have since been reliably thawed, meeting regulatory standards and supporting hospital needs.
Collapse
Affiliation(s)
| | | | | | - Marc Cloutier
- Héma-Québec, Medical Affairs and Innovation, Québec, Canada
| |
Collapse
|
2
|
Moldon PA, Ermolinskiy PB, Lugovtsov AE, Timoshina PA, Lazareva EN, Surkov YI, Gurfinkel YI, Tuchin VV, Priezzhev AV. Influence of optical clearing agents on the scattering properties of human nail bed and blood microrheological properties: In vivo and in vitro study. JOURNAL OF BIOPHOTONICS 2024:e202300524. [PMID: 38462766 DOI: 10.1002/jbio.202300524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Optical clearing agents (OCAs) are substances that temporarily modify tissue's optical properties, enabling better imaging and light penetration. This study aimed to assess the impact of OCAs on the nail bed and blood using in vivo and in vitro optical methods. In the in vivo part, OCAs were applied to the nail bed, and optical coherence tomography and optical digital capillaroscopy were used to evaluate their effects on optical clearing and capillary blood flow, respectively. In the in vitro part, the collected blood samples were incubated with the OCA and blood aggregation properties were estimated using diffuse light scattering techniques. The results indicate that OCAs significantly influence the optical properties of the nail bed and blood microrheology. These findings suggest that OCAs hold promise for improving optical imaging and diagnostics, particularly for nail bed applications, and can modify blood microrheology.
Collapse
Affiliation(s)
- P A Moldon
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - P B Ermolinskiy
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - A E Lugovtsov
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - P A Timoshina
- Institution of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Laboratory of Biomedical Photoacoustic, Saratov State University, Saratov, Russia
| | - E N Lazareva
- Institution of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Laboratory of Biomedical Photoacoustic, Saratov State University, Saratov, Russia
| | - Yu I Surkov
- Institution of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Laboratory of Biomedical Photoacoustic, Saratov State University, Saratov, Russia
| | - Y I Gurfinkel
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - V V Tuchin
- Institution of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Laboratory of Biomedical Photoacoustic, Saratov State University, Saratov, Russia
| | - A V Priezzhev
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Kim SJ, Youn UJ, Kang P, Kim TK, Kim IC, Han SJ, Lee DW, Yim JH. A novel exopolysaccharide (p-CY01) from the Antarctic bacterium Pseudoalteromonas sp. strain CY01 cryopreserves human red blood cells. Biomater Sci 2023; 11:7146-7157. [PMID: 37718649 DOI: 10.1039/d3bm00917c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Cryopreservation of human red blood cells (RBCs) is vital for regenerative medicine and organ transplantation, but current cryoprotectants (CPAs) like glycerol and hydroxyethyl starch (HES) have limitations. Glycerol requires post-thaw washing due to cell membrane penetration, while HES causes high viscosity. To address these issues, we explored exopolysaccharides (EPS) from Antarctic Pseudoalteromonas sp. strain CY01 as a non-penetrating CPA for RBC cryopreservation. The EPS, p-CY01, consisted mainly of repeating (1-4) glucose and (1-6) galactose linkages with a molecular mass of 1.1 × 107 Da. Through mild acid hydrolysis, we obtained low molecular weight p-CY01 (p-CY01 LM) with a molecular weight of 2.7 × 105 Da, offering reduced viscosity, improved solubility, and cryoprotective properties. Notably, combining low concentrations of penetrating CPAs (>1% glycerol and dimethyl sulfoxide) with 2.5% (w/v) p-CY01 LM demonstrated significant cryoprotective effects. These findings highlight the potential of p-CY01 LM as a highly effective CPA for human RBC cryopreservation, replacing HES and glycerol and enabling the long-term storage of biological materials.
Collapse
Affiliation(s)
- Sung Jin Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
- Graduate Program in Biomaterials Science & Engineering, Yonsei University, Seoul 03722, South Korea
| | - Ui Joung Youn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Pilsung Kang
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Tai Kyoung Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Dong-Woo Lee
- Graduate Program in Biomaterials Science & Engineering, Yonsei University, Seoul 03722, South Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, South Korea.
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| |
Collapse
|
4
|
Wang Y, Gao S, Zhu K, Ren L, Yuan X. Integration of Trehalose Lipids with Dissociative Trehalose Enables Cryopreservation of Human RBCs. ACS Biomater Sci Eng 2023; 9:498-507. [PMID: 36577138 DOI: 10.1021/acsbiomaterials.2c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cryopreservation of red blood cells (RBCs) is imperative for transfusion therapy, while cryoprotectants are essential to protect RBCs from cryoinjury under freezing temperatures. Trehalose has been considered as a biocompatible cryoprotectant that naturally accumulates in organisms to tolerate anhydrobiosis and cryobiosis. Herein, we report a feasible protocol that enables glycerol-free cryopreservation of human RBCs by integration of the synthesized trehalose lipids and dissociative trehalose through ice tuning and membrane stabilization. Typically, in comparison with sucrose monolaurate or trehalose only, trehalose monolaurate was able to protect cell membranes against freeze stress, achieving 96.9 ± 2.0% cryosurvival after incubation and cryopreservation of human RBCs with 0.8 M trehalose. Moreover, there were slight changes in cell morphology and cell functions. It was further confirmed by isothermal titration calorimetry and osmotic fragility tests that the moderate membrane-binding activity of trehalose lipids exerted cell stabilization for high cryosurvival. The aforementioned study is likely to provide an alternative way for glycerol-free cryopreservation of human RBCs and other types of cells.
Collapse
Affiliation(s)
- Yan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin300072, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| |
Collapse
|
5
|
Novel platelet products including cold-stored platelets. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:421-423. [PMID: 36485096 PMCID: PMC9820915 DOI: 10.1182/hematology.2022000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article reviews 3 products: pathogen-inactivated platelets, cold-stored platelets, and cryoplatelets. These are all coming to a transfusion service near you in the next few years. The article reviews the limitations of these new products and highlights the gaps in our understanding of their place in patient treatment.
Collapse
|
6
|
Pasciu V, Sotgiu FD, Porcu C, Berlinguer F. Effect of Media with Different Glycerol Concentrations on Sheep Red Blood Cells' Viability In Vitro. Animals (Basel) 2021; 11:1592. [PMID: 34071487 PMCID: PMC8228453 DOI: 10.3390/ani11061592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/01/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
The use of high doses of glycerol as a livestock feed supplement is followed by a rapid increase in plasma concentrations and consequently in plasma osmolality. Moreover, glycerol is a highly diffusible molecule that can readily permeate the red blood cell (RBC) membrane following a concentration gradient. A rise in glycerol plasma concentrations can thus alter RBC homeostasis. The present study aimed at investigating both glycerol osmotic effects on sheep RBCs and their oxidative response under in vitro conditions. Sheep blood samples were suspended in media supplemented with increasing glycerol concentrations (0, 25, 50, 100, 150, 200, 250, 300, 350, 400 mg/dL), which reflected those found in vivo in previous studies, and incubated at 37 °C for 4h. Thereafter, osmolality and hemolysis were determined in spent media, while cell extracts were used to assay intracellular concentration of glycerol, ATP, Ca2+ ions, oxidative stress markers and reactive oxygen species (ROS).The study confirmed that glycerol intracellular concentrations are directly related with its concentration in the incubation media, as well as hemolysis (p < 0.001) which increased significantly at glycerol concentrations higher form 200 mg/dL. ROS intracellular level increased at all glycerol concentration tested (p < 0.01) and total thiols decreased at the highest concentrations. However, RBCs proved to be able to cope by activating their antioxidant defense system. Superoxide dismutase activity indeed increased at the highest glycerol concentrations (p < 0.001), while total antioxidant capacity and malonyldialdehyde, a typical product of lipid peroxidation by ROS, did not show significant changes. Moreover, no alterations in intracellular Ca2+ ions and ATP concentrations were found. In conclusion, glycerol-induced hemolysis can be related to the induced osmotic stress. In sheep, nutritional treatments should be designed to avoid reaching glycerol circulating concentrations higher than 200 mg/dL.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.S.); (C.P.); (F.B.)
| | | | | | | |
Collapse
|
7
|
Bizjak DA, Grolle A, Urena JAN, Bloch W, Deitenbeck R, Grau M. Monitoring of RBC rheology after cryopreservation to detect autologous blood doping in vivo? A pilot study. Clin Hemorheol Microcirc 2020; 76:367-379. [PMID: 32675400 DOI: 10.3233/ch-200887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND: Autologous blood doping (ABD) is applied to improve performance capacity. ABD includes blood donation, red blood cell (RBC) storage at –80°C and re-infusion prior to or during competition. ABD is not directly detectable with current detection techniques. OBJECTIVE: Since cryopreservation is known to affect RBC physiology in vitro, the aim of the study was to examine whether these alterations are detectable in vivo. METHODS: Blood from six healthy male donors was transferred into conventional blood bags, cryopreserved, stored for 18 weeks at –80°C and re-infused with a RBC volume corresponding to ∼4% of total blood volume into respective donor. RBC physiology parameters were measured before blood donation/re-infusion, and 0/1/2/6/24/48/72 h and 1 w post re-infusion. RESULTS: RBC parameters and age markers were unaffected during intervention. RBC deformability increased from pre-blood-sampling to pre-re-infusion while deformability and viscosity values remained unaltered post re-infusion. RBC nitric oxide associated analytes, metabolic parameters and electrolyte concentrations remained unaffected. CONCLUSIONS: The data of this pilot study indicate that the increase in RBC deformability might be related to neoformation of RBC after blood donation. The lack of changes in tested parameters might be related to the low re-infused RBC volume which might explain differences to in vitro results.
Collapse
Affiliation(s)
- Daniel A. Bizjak
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Andreas Grolle
- German Red Cross Blood Donation Service West, Hagen, Germany
| | | | - Wilhelm Bloch
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | | | - Marijke Grau
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| |
Collapse
|
8
|
Porcu C, Sotgiu FD, Pasciu V, Cappai MG, Barbero-Fernández A, Gonzalez-Bulnes A, Dattena M, Gallus M, Molle G, Berlinguer F. Administration of glycerol-based formulations in sheep results in similar ovulation rate to eCG but red blood cell indices may be affected. BMC Vet Res 2020; 16:207. [PMID: 32571314 PMCID: PMC7310049 DOI: 10.1186/s12917-020-02418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/08/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The objective of this study was to investigate the metabolic and osmotic effects of different doses of glycerol or a glycerol - propylene glycol mixture in Sarda sheep with the aim to identify those able to beneficially modify ewe's metabolic status without harmful changes in red blood cell (RBC) indices. Thereafter, the selected doses were tested for their effects on ewe's ovarian activity during an induced follicular phase and compared to the effects of a hormonal treatment with equine chorionic gonadotrophin (eCG). RESULTS Glycerol was administered alone (G groups: 90% glycerol and 10% water; % v/v) or in combination with propylene glycol (M groups: 70% glycerol, 20% propylene glycol, 10% water; % v/v). Treatments were formulated to provide 100, 75, 50 and 25% of the amount of energy supplied in previous experiments. Obtained results showed that the formulations G75 and M75 (22.5 and 18.2% on DM basis, respectively) induce metabolic changes comparable to those induced by M100. The latter dose has been already evaluated for its effects on sheep metabolism and reproductive performance. However, with these high doses, plasma osmolality increased significantly, and RBC indices showed significant alterations. The low dose groups (G25 and M25, 8.6 and 6.9% on DM basis, respectively) did not show any alterations in plasma osmolality and RBC indices, but the metabolic milieu differed markedly from that of M100. Between the medium dose groups, M50 (12.9% on DM basis) showed a more comparable milieu to M100 than G50 (15.9% on DM basis) and no RBC alterations. Therefore, M75, G75 and M50 doses were tested for their effect on ovarian functions and proved to be equally effective as eCG. CONCLUSION The results of the present study evidenced an alteration of RBC indices, and possibly of their functions, as a side effect of glycerol administration at high doses in the diet of ewes. Therefore, protocols foreseeing the administration of glycerol should be tested for their effects on RBC indices and functions. In general terms, the medium dose of the glucogenic mixture (12.9% of dietary DM on offer) should be preferred.
Collapse
Affiliation(s)
- Cristian Porcu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Francesca D Sotgiu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Maria Grazia Cappai
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Alicia Barbero-Fernández
- Universidad Alfonso X el Sabio, Campus de Villanueva de la Cañada, Avd. Universidad 1, 28040, Madrid, Spain
| | | | - Maria Dattena
- AGRIS Sardegna, Loc. Bonassai, 07100, Sassari, Italy
| | | | | | - Fiammetta Berlinguer
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| |
Collapse
|
9
|
Waters L, Padula MP, Marks DC, Johnson L. Calcium chelation: a novel approach to reduce cryopreservation-induced damage to frozen platelets. Transfusion 2020; 60:1552-1563. [PMID: 32319689 DOI: 10.1111/trf.15799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cryopreserved platelets are phenotypically and functionally different to conventionally stored platelets. Calcium may be released from internal stores during the freeze-thaw process, initiating signaling events which lead to these alterations. It was hypothesized that the addition of a calcium chelator prior to cryopreservation may mitigate some of these changes. METHODS Buffy coat-derived platelets that had been pooled and split were tested fresh and following cryopreservation (n = 8 per group). Platelets were cryopreserved using 5%-6% dimethylsulfoxide (DMSO) or were supplemented with increasing concentrations of the internal calcium chelator, BAPTA-AM (100 μM, 200 μM, or 400 μM), prior to storage at -80°C. RESULTS Supplementation of platelets with BAPTA-AM prior to freezing improved platelet recovery in a dose response manner (400 μM: 84 ± 2%) compared to standard DMSO cryopreserved platelets (70 ± 4%). There was a loss of GPIbα, GPVI, and GPIIb/IIIa receptors on platelets following cryopreservation, which was rescued when platelets were supplemented with BAPTA-AM (400 μM: p < 0.0001 for all). Platelet activation markers, such as phosphatidylserine and P-selectin, were externalized on platelets following cryopreservation. However, the addition of BAPTA-AM significantly reduced the increase of these activation markers on cryopreserved platelets (400 μM: p < 0.0001 for both). Both cryopreserved platelet groups exhibited similar functionality as assessed by thromboelastography, forming clots at a faster rate than fresh platelets. CONCLUSIONS This study demonstrates that calcium plays a crucial role in mediating cryopreservation-induced damage to frozen platelets. The addition of the calcium chelator, BAPTA-AM, prior to cryopreservation reduces this damage.
Collapse
Affiliation(s)
- Lauren Waters
- Research and Development, Australian Red Cross Lifeblood (formerly the Australian Red Cross Blood Service), Alexandria, New South Wales, Australia.,School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood (formerly the Australian Red Cross Blood Service), Alexandria, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood (formerly the Australian Red Cross Blood Service), Alexandria, New South Wales, Australia
| |
Collapse
|
10
|
|
11
|
Lahmann JM, Sanchez CC, Benson JD, Acker JP, Higgins AZ. Implications of variability in cell membrane permeability for design of methods to remove glycerol from frozen-thawed erythrocytes. Cryobiology 2020; 92:168-179. [PMID: 31935377 DOI: 10.1016/j.cryobiol.2020.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/03/2023]
Abstract
In North America, red blood cells (RBCs) are currently cryopreserved in a solution of 40% glycerol. While glycerol is not inherently toxic to humans, it must be removed prior to transfusion to prevent intravascular osmotic hemolysis. The current deglycerolization procedure requires about 45 min per RBC unit. We previously presented predictions suggesting that glycerol could be safely removed from RBCs in less than 1 min. However, experimental evaluation of these methods resulted in much higher hemolysis than expected. Here we extend our previous study by considering both concentration-dependence of permeability and variability in permeability values in the mathematical optimization algorithm. To establish a model for the concentration dependence of glycerol permeability, we combined literature data with new measurements of permeability in the presence of 40% glycerol. To account for cell-dependent variability we scaled the concentration-dependent permeability model to define a permeability range for optimization. Methods designed using a range extending to 50% of the model-predicted glycerol permeability had a duration of less than 3 min and resulted in hemolysis ranging from 34% to 83%; hemolysis values were highly dependent on the blood donor. Extending the permeability range to 5% of the model-predicted value yielded a 30 min method that resulted in an average hemolysis of 12%. Our results suggest high variability in the glycerol permeability between donors and within a population of cells from the same donor. Such variability has broad implications for design of methods for equilibration of cells with cryoprotectants.
Collapse
Affiliation(s)
- John M Lahmann
- School of Chemical, Biological and Environmental Engineering, Oregon State University, USA
| | - Cynthia Cruz Sanchez
- School of Chemical, Biological and Environmental Engineering, Oregon State University, USA
| | - James D Benson
- Department of Biology, University of Saskatchewan, Canada
| | - Jason P Acker
- Centre for Innovation, Canadian Blood Services, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Canada
| | - Adam Z Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University, USA.
| |
Collapse
|
12
|
Ki KK, Johnson L, Faddy HM, Flower RL, Marks DC, Dean MM. Immunomodulatory effect of cryopreserved platelets: altered BDCA3 + dendritic cell maturation and activation in vitro. Transfusion 2017; 57:2878-2887. [PMID: 28921552 DOI: 10.1111/trf.14320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cryopreservation of platelets (PLTs) is useful in remote areas to overcome logistic problems associated with supply and can extend the shelf life to 2 years. During cryopreservation, properties of PLTs are modified. Whether changes in the cryopreserved PLT (CPP) product are associated with modulation of recipients' immune function is unknown. We aimed to characterize the immune profile of myeloid dendritic cells (mDCs) and the specialized blood DC antigen (BDCA)3+ subset after exposure to CPPs. STUDY DESIGN AND METHODS Using an in vitro whole blood model of transfusion, the effect of CPPs on mDC and BDCA3+ DC surface antigen expression and inflammatory mediator production was examined using flow cytometry. In parallel, polyinosinic:polycytidylic acid (poly(I:C)) or lipopolysaccharide (LPS) was utilized to model processes activated in viral or bacterial infection, respectively. RESULTS Cryopreserved PLTs had minimal impact on mDC responses but significantly modulated BDCA3+ DC responses in vitro. Exposure to CPPs alone up regulated BDCA3+ DC CD86 expression and suppressed interleukin (IL)-8, tumor necrosis factor (TNF)-α, and interferon-γ inducible protein (IP)-10 production. In both models of infection-related processes, exposure to CPPs down regulated BDCA3+ DC expression of CD40, CD80, and CD83 and suppressed BDCA3+ DC production of IL-8, IL-12, and TNF-α. CPPs suppressed CD86 expression in the presence of LPS and IP-10 and IL-6 production with poly(I:C). CONCLUSION Cryopreserved PLTs may be immunosuppressive, and this effect is more evident when processes associated with infection are concurrently activated, especially for BDCA3+ DCs. This suggests that transfusion of CPPs in patients with infection may result in impaired BDCA3+ DC responses.
Collapse
Affiliation(s)
- Katrina K Ki
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, Brisbane, QLD, Australia
| | - Lacey Johnson
- Research and Development, The Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - Helen M Faddy
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, Brisbane, QLD, Australia
| | - Robert L Flower
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - Denese C Marks
- Research and Development, The Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - Melinda M Dean
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Stefanic M, Ward K, Tawfik H, Seemann R, Baulin V, Guo Y, Fleury JB, Drouet C. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials 2017. [DOI: 10.1016/j.biomaterials.2017.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Eker İ, Yılmaz S, Çetinkaya RA, Pekel A, Ünlü A, Gürsel O, Yılmaz S, Avcu F, Muşabak U, Pekoğlu A, Ertaş Z, Açıkel C, Zeybek N, Kürekçi AE, Avcı İY. Generation of Platelet Microparticles after Cryopreservation of Apheresis Platelet Concentrates Contributes to Hemostatic Activity. Turk J Haematol 2016; 34:64-71. [PMID: 27094612 PMCID: PMC5451691 DOI: 10.4274/tjh.2016.0049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE In the last decade, substantial evidence has accumulated about the use of cryopreserved platelet concentrates, especially in trauma. However, little reference has been made in these studies to the morphological and functional changes of platelets. Recently platelets have been shown to be activated by cryopreservation processes and to undergo procoagulant membrane changes resulting in the generation of platelet-derived microparticles (PMPs), platelet degranulation, and release of platelet-derived growth factors (PDGFs). We assessed the viabilities and the PMP and PDGF levels of cryopreserved platelets, and their relation with thrombin generation. MATERIALS AND METHODS Apheresis platelet concentrates (APCs) from 20 donors were stored for 1 day and cryopreserved with 6% dimethyl sulfoxide. Cryopreserved APCs were kept at -80 °C for 1 day. Thawed APCs (100 mL) were diluted with 20 mL of autologous plasma and specimens were analyzed for viabilities and PMPs by flow cytometry, for thrombin generation by calibrated automated thrombogram, and for PDGFs by enzyme-linked immunosorbent assay testing. RESULTS The mean PMP and PDGF levels in freeze-thawed APCs were significantly higher (2763±399.4/µL vs. 319.9±80.5/µL, p<0.001 and 550.9±73.6 pg/mL vs. 96.5±49 pg/mL, p<0.001, respectively), but the viability rates were significantly lower (68.2±13.7% vs. 94±7.5%, p<.001) than those of fresh APCs. The mean endogenous thrombin potential (ETP) of freeze-thawed APCs was significantly higher than that of the fresh APCs (3406.1±430.4 nM.min vs. 2757.6±485.7 nM.min, p<0.001). Moreover, there was a significant positive poor correlation between ETP levels and PMP levels (r=0.192, p=0.014). CONCLUSION Our results showed that, after cryopreservation, while levels of PMPs were increasing, significantly higher and earlier thrombin formation was occurring in the samples analyzed despite the significant decrease in viability. Considering the damage caused by the freezing process and the scarcity of evidence for their in vivo superiority, frozen platelets should be considered for use in austere environments, reserving fresh platelets for prophylactic use in blood banks.
Collapse
Affiliation(s)
| | - Soner Yılmaz
- University of Health Sciences Gülhane Faculty of Medicine, Blood Training Center and Blood Bank, Ankara, Turkey Phone : +90 312 304 4902 E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Valeri C, Giorgio G. Commentary on 50 years of research at the NBRL, Boston, Massachusetts. Transfus Apher Sci 2016; 54:16-20. [DOI: 10.1016/j.transci.2016.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Henkelman S, Noorman F, Badloe JF, Lagerberg JWM. Utilization and quality of cryopreserved red blood cells in transfusion medicine. Vox Sang 2014; 108:103-12. [PMID: 25471135 DOI: 10.1111/vox.12218] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 02/06/2023]
Abstract
Cryopreserved (frozen) red blood cells have been used in transfusion medicine since the Vietnam war. The main method to freeze the red blood cells is by usage of glycerol. Although the usage of cryopreserved red blood cells was promising due to the prolonged storage time and the limited cellular deterioration at subzero temperatures, its usage have been hampered due to the more complex and labour intensive procedure and the limited shelf life of thawed products. Since the FDA approval of a closed (de) glycerolization procedure in 2002, allowing a prolonged postthaw storage of red blood cells up to 21 days at 2-6°C, cryopreserved red blood cells have become a more utilized blood product. Currently, cryopreserved red blood cells are mainly used in military operations and to stock red blood cells with rare phenotypes. Yet, cryopreserved red blood cells could also be useful to replenish temporary blood shortages, to prolong storage time before autologous transfusion and for IgA-deficient patients. This review describes the main methods to cryopreserve red blood cells, explores the quality of this blood product and highlights clinical settings in which cryopreserved red blood cells are or could be utilized.
Collapse
Affiliation(s)
- S Henkelman
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
17
|
|
18
|
Johnson L, Reid S, Tan S, Vidovic D, Marks DC. PAS-G supports platelet reconstitution after cryopreservation in the absence of plasma. Transfusion 2013; 53:2268-77. [DOI: 10.1111/trf.12084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/31/2012] [Accepted: 11/16/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Lacey Johnson
- Research and Development; The Australian Red Cross Blood Service; Sydney; Australia
| | - Samantha Reid
- Research and Development; The Australian Red Cross Blood Service; Sydney; Australia
| | - Shereen Tan
- Research and Development; The Australian Red Cross Blood Service; Sydney; Australia
| | - Diana Vidovic
- Research and Development; The Australian Red Cross Blood Service; Sydney; Australia
| | - Denese C. Marks
- Research and Development; The Australian Red Cross Blood Service; Sydney; Australia
| |
Collapse
|
19
|
Fitzpatrick GM, Cliff R, Tandon N. Thrombosomes: a platelet-derived hemostatic agent for control of noncompressible hemorrhage. Transfusion 2013; 53 Suppl 1:100S-106S. [DOI: 10.1111/trf.12043] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Holley A, Marks DC, Johnson L, Reade MC, Badloe JF, Noorman F. Frozen blood products: clinically effective and potentially ideal for remote Australia. Anaesth Intensive Care 2013; 41:10-9. [PMID: 23362885 DOI: 10.1177/0310057x1304100104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The development of effective cryopreservation techniques for both red blood cells and platelets, which maintain ex vivo biological activity, in combination with frozen plasma, provides for a unique blood banking strategy. This technology greatly enhances the storage life of these products. The rationale and potential advantages of using cryopreservation techniques for the provision of blood products to remote and military environments have been effectively demonstrated in several conflicts over the last decade. Current haemostatic resuscitation doctrine for the exsanguinating patient supports the use of red blood cells, platelets and frozen plasma early in the resuscitation. We believe an integrated fresh-frozen blood bank inventory could facilitate provision of blood products, not only in the military setting but also in regional Australia, by overcoming many logistic and geographical challenges. The processes involved in production and point of care thawing are sufficiently well developed and achievable to make this technology a viable option. The potential limitations of cryopreservation and subsequent product thawing need to be considered if such a strategy is to be developed. A substantial body of international experience using cryopreserved products in remote settings has already been accrued. This experience provides a template for the possible creation of an Australian integrated fresh-frozen blood bank inventory that could conceivably enhance the care of patients in both regional Australia and in the military setting.
Collapse
Affiliation(s)
- A Holley
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Zerimech F, Huyvaert H, Matran R, Nadif R. Usefulness of a new dialysis device adapted to small volume of red blood cells and its interest in epidemiology. Clin Biochem 2011; 44:739-41. [PMID: 21406190 DOI: 10.1016/j.clinbiochem.2011.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/20/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES We checked the efficiency of a new dialysis device adapted to small volumes to remove glycerol from cryopreserved red blood cells. DESIGN AND METHODS Dialysis was performed on D-Tube96™ Dialyzer Mini device. In a preliminary trial, we measured the residual glycerol before, and 2, 4 and 24 h after dialysis. Glycerol and hemoglobin concentrations and antioxidant enzymes activities were measured in three samples with or without glycerolization/deglycerolization procedure. The mini dialysis was then applied to 96 samples from the French Epidemiological study on the Genetics and Environment of Asthma. RESULTS Ninety-two percent of glycerol was removed after 24 h of dialysis. Hemoglobin content and activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase were recovered. No significant loss of volume was observed. Results obtained for the 96 samples perfectly fitted with reference values of our laboratory. CONCLUSION This new dialysis method seems to be particularly adapted for processing a large number of samples of RBCs cryoconserved in small volumes from epidemiological studies.
Collapse
Affiliation(s)
- Farid Zerimech
- Laboratoire de Biochimie Biologie Moléculaire, CHRU de Lille, 59037 Lille, France.
| | | | | | | |
Collapse
|
22
|
Zhou X, Liu Z, Shu Z, Ding W, Du P, Chung J, Liu C, Heimfeld S, Gao D. A Dilution-Filtration System for Removing Cryoprotective Agents. J Biomech Eng 2011; 133:021007. [DOI: 10.1115/1.4003317] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In most cryopreservation applications, the final concentrations of cryoprotective agents (CPAs) must be reduced to biocompatible levels. However, traditional methods for removing CPAs usually have disadvantages of operation complexity, time consumption, and ease of contamination, especially for the applications involving large volumes of cell suspensions. A dilution-filtration system, which involves pure ultrafiltration for separation, was developed for continuous, automatic, and closed process of removing CPAs. To predict the optimal protocols under given experimental conditions, a theoretical model was established first. Cell-free experiments were then conducted to investigate the variation in CPA concentration during the process, and the experimental data were compared with the theoretical values for the validation of the model. Finally, ten units (212.9 ml/unit±9.5 ml/unit) of thawed human red blood cells (cryopreserved with 40% (w/v) glycerol) were deglycerolized using the theoretically optimal operation protocols to further validate the effectiveness and advantage of the system. In the cell-free experiments, glycerol was continuously removed and the concentration variations fitted the simulated results quite well. In the in-vitro experiments, glycerol concentration in RBC suspension was reduced to 5.57 g/l±2.81 g/l within an hour, and the cell count recovery rate was 91.19%±3.57%, (n=10), which proves that the system is not only safe for removing CPAs, but also particularly efficient for processing large-scale samples. However, the operation parameters must be carefully controlled and the optimal protocols should be specialized and various from case to case. The presented theoretical model provides an effective approach to find out the optimal operation protocols under given experimental conditions and constrains.
Collapse
Affiliation(s)
- Xiaoming Zhou
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Zhong Liu
- Anhui Blood Center, Hefei, Anhui 230022, China
| | - Zhiquan Shu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195
| | - Weiping Ding
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195
| | - Pingan Du
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - JaeHyun Chung
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195
| | - Carolyn Liu
- Swedish Physicians Pine Lake Clinic, Sammamish, WA 98075
| | - Shelly Heimfeld
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA98109
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195
| |
Collapse
|
23
|
Valeri CR, Ragno G. An approach to prevent the severe adverse events associated with transfusion of FDA-approved blood products. Transfus Apher Sci 2010; 42:223-33. [DOI: 10.1016/j.transci.2009.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/10/2009] [Indexed: 11/25/2022]
|
24
|
Holovati JL, Hannon JL, Gyongyossy-Issa MI, Acker JP. Blood Preservation Workshop: New and Emerging Trends in Research and Clinical Practice. Transfus Med Rev 2009; 23:25-41. [DOI: 10.1016/j.tmrv.2008.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Valeri C, Ragno G. Role of nitric oxide in the prevention of severe adverse events associated with blood products. Transfus Apher Sci 2008; 39:241-5. [DOI: 10.1016/j.transci.2008.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Holovati JL, Wong KA, Webster JM, Acker JP. The effects of cryopreservation on red blood cell microvesiculation, phosphatidylserine externalization, and CD47 expression. Transfusion 2008; 48:1658-68. [DOI: 10.1111/j.1537-2995.2008.01735.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Valeri CR, Ragno G. The effects of preserved red blood cells on the severe adverse events observed in patients infused with hemoglobin based oxygen carriers. ACTA ACUST UNITED AC 2008; 36:3-18. [PMID: 18293157 DOI: 10.1080/10731190701857736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The severe adverse events observed in patients who received hemoglobin based oxygen carriers (HBOCs) were associated with the Ringer's D.L lactate resuscitative solution administered and to the excipient used in the HBOCs containing Ringer's D,L lactate and the length of storage of the preserved RBC administered to the patient at the time that the HBOCs were infused. This paper reports the quality of the red blood cells preserved in the liquid state at 4 degrees C and that of previously frozen RBCs stored at 4 degrees C with regard to their survival, function and safety. Severe adverse events have been observed related to the length of storage of the liquid preserved RBC stored at 4 degrees C prior to transfusion. The current methods to preserve RBC in the liquid state in additive solutions at 4 degrees C maintain their survival and function for only 2 weeks. The freezing of red blood cells with 40% W/V glycerol and storage at -80 degrees C allows for storage at -80 degrees C for 10 years and following thawing, deglycerolization and storage at 4 degrees C in the additive solution (AS-3, Nutricel) for 2 weeks with acceptable 24 hour posttransfusion survival, less than 1% hemolysis, and moderately impaired oxygen transport function with no associated adverse events. Frozen deglycerolized RBCs are leukoreduced and contain less than 5% of residual plasma and non-plasma substances. Frozen deglycerolized RBCs are the ideal RBC product to transfuse patients receiving HBOCs.
Collapse
|
28
|
|
29
|
Valeri CR, Khuri S, Ragno G. Nonsurgical bleeding diathesis in anemic thrombocytopenic patients: role of temperature, red blood cells, platelets, and plasma-clotting proteins. Transfusion 2007; 47:206S-248S. [PMID: 17888061 DOI: 10.1111/j.1537-2995.2007.01465.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research at the Naval Blood Research Laboratory (Boston, MA) for the past four decades has focused on the preservation of red blood cells (RBCs), platelets (PLTs), and plasma-clotting proteins to treat wounded servicemen suffering blood loss. We have studied the survival and function of fresh and preserved RBCs and PLTs and the function of fresh and frozen plasma-clotting proteins. This report summarizes our peer-reviewed publications on the effects of temperature, RBCs, PLTs, and plasma-clotting proteins on the bleeding time (BT) and nonsurgical blood loss. The term nonsurgical blood loss refers to generalized, systemic bleeding that is not corrected by surgical interventions. We observed that the BT correlated with the volume of shed blood collected at the BT site and to the nonsurgical blood loss in anemic thrombocytopenic patients after cardiopulmonary bypass surgery. Many factors influence the BT, including temperature; hematocrit (Hct); PLT count; PLT size; PLT function; and the plasma-clotting proteins factor (F)VIII, von Willebrand factor, and fibrinogen level. Our laboratory has studied temperature, Hct, PLT count, PLT size, and PLT function in studies performed in non-aspirin-treated and aspirin-treated volunteers, in aspirin-treated baboons, and in anemic thrombocytopenic patients. This monograph discusses the role of RBCs and PLTs in the restoration of hemostasis, in the hope that a better understanding of the hemostatic mechanism might improve the treatment of anemic thrombocytopenic patients. Data from our studies have demonstrated that it is important to transfuse anemic thrombocytopenic patients with RBCs that have satisfactory viability and function to achieve a Hct level of 35 vol percent before transfusing viable and functional PLTs. The Biomedical Excellence for Safer Transfusion (BEST) Collaborative recommends that preserved PLTs have an in vivo recovery of 66 percent of that of fresh PLTs and a life span that is at least 50 percent that of fresh PLTs. Their recommendation does not include any indication that preserved PLTs must be able to function to reduce the BT and reduce or prevent nonsurgical blood loss. One of the hemostatic effects of RBC is to scavenge endothelial cell nitric oxide, a vasodilating agent that inhibits PLT function. In addition, endothelin may be released from endothelial cells, a potent vasoconstrictor substance,to reduce blood flow at the BT site. RBCs, like PLTs at the BT site, may provide arachidonic acid and adenosine diphosphate to stimulate the PLTs to make thromboxane, another potent vasoconstrictor substance and a PLT-aggregating substance. At the BT site, the PLTs and RBCs are activated and phosphatidyl serine is exposed on both the PLTs and the RBCs. FVa and FXa, which generate prothrombinase activity to produce thrombin, accumulate on the PLTs and RBCs. A Hct level of 35 vol percent at the BT site minimizes shear stress and reduces nitric oxide produced by endothelial cells. The transfusion trigger for prophylactic PLT transfusion should consider both the Hct and the PLT count. The transfusion of RBCs that are both viable and functional to anemic thrombocytopenic patients may reduce the need for prophylactic leukoreduced PLTs, the alloimmunization of the patients, and the associated adverse events related to transfusion-related acute lung injury. The cost for RBC transfusions will be significantly less than the cost for the prophylactic PLT transfusions.
Collapse
Affiliation(s)
- C Robert Valeri
- NBRL, Inc., and Boston VA Healthcare System, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
30
|
Arber C, Bertrand G, Halter J, Boehlen F, Kaplan C, Gratwohl A. Platelet refractoriness due to combined anti-HLA and anti-HPA-5a alloantibodies: clinical management during myeloablative allogeneic HSCT and development of a quantitative MAIPA assay. Br J Haematol 2007; 139:159-61. [PMID: 17854320 DOI: 10.1111/j.1365-2141.2007.06753.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|