1
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Ziogas IA, Tasoudis PT, Serifis N, Alexopoulos SP, Montenovo MI, Shingina A. Liver Transplantation for Hepatic Adenoma: A UNOS Database Analysis and Systematic Review of the Literature. Transplant Direct 2022; 8:e1264. [PMID: 35018302 PMCID: PMC8735769 DOI: 10.1097/txd.0000000000001264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Liver transplantation (LT) has been employed for hepatic adenoma (HA) on a case-oriented basis. We aimed to describe the characteristics, waitlist, and post-LT outcomes of patients requiring LT for HA. METHODS All patients listed or transplanted for HA in the United States were identified in the United Network for Organ Sharing (UNOS) database (1987-2020). A systematic literature review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis statement. RESULTS A total of 199 HA patients were listed for LT in UNOS and the crude waitlist mortality was 9.0%. A total of 142 HA patients underwent LT; 118 of these were among those listed with an indication of HA who underwent LT, and 24 were diagnosed incidentally. Most did not experience hepatocellular carcinoma transformation (89.4%). Over a median follow-up of 62.9 mo, death was reported in 18.3%. The 1-, 3-, and 5-y patient survival rates were 94.2%, 89.7%, and 86.3% in the UNOS cohort. The systematic review yielded 61 articles reporting on 99 nonoverlapping patients undergoing LT for HA and 2 articles reporting on multicenter studies. The most common LT indications were suspected malignancy (39.7%), unresectable HA (31.7%), and increasing size (27.0%), whereas 53.1% had glycogen storage disease. Over a median follow-up of 36.5 mo, death was reported in 6.0% (n=5/84). The 1-, 3-, and 5-y patient survival rates were all 95.0% in the systematic review. CONCLUSIONS LT for HA can lead to excellent long-term outcomes in well-selected patients. Prospective granular data are needed to develop more optimal selection criteria and further improve outcomes.
Collapse
Affiliation(s)
- Ioannis A. Ziogas
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
| | - Panagiotis T. Tasoudis
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Serifis
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sophoclis P. Alexopoulos
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Martin I. Montenovo
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Alexandra Shingina
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
3
|
Knotek M, Novak R, Jaklin-Kekez A, Mrzljak A. Combined liver-kidney transplantation for rare diseases. World J Hepatol 2020; 12:722-737. [PMID: 33200012 PMCID: PMC7643210 DOI: 10.4254/wjh.v12.i10.722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Combined liver and kidney transplantation (CLKT) is indicated in patients with failure of both organs, or for the treatment of end-stage chronic kidney disease (ESKD) caused by a genetic defect in the liver. The aim of the present review is to provide the most up-to-date overview of the rare conditions as indications for CLKT. They are major indications for CLKT in children. However, in some of them (e.g., atypical hemolytic uremic syndrome or primary hyperoxaluria), CLKT may be required in adults as well. Primary hyperoxaluria is divided into three types, of which type 1 and 2 lead to ESKD. CLKT has been proven effective in renal function replacement, at the same time preventing recurrence of the disease. Nephronophthisis is associated with liver fibrosis in 5% of cases and these patients are candidates for CLKT. In alpha 1-antitrypsin deficiency, hereditary C3 deficiency, lecithin cholesterol acyltransferase deficiency and glycogen storage diseases, glomerular or tubulointerstitial disease can lead to chronic kidney disease. Liver transplantation as a part of CLKT corrects underlying genetic and consequent metabolic abnormality. In atypical hemolytic uremic syndrome caused by mutations in the genes for factor H, successful CLKT has been reported in a small number of patients. However, for this indication, CLKT has been largely replaced by eculizumab, an anti-C5 antibody. CLKT has been well established to provide immune protection of the transplanted kidney against donor-specific antibodies against class I HLA, facilitating transplantation in a highly sensitized recipient.
Collapse
Affiliation(s)
- Mladen Knotek
- Department of Medicine, Tree Top Hospital, Hulhumale 23000, Maldives
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Rafaela Novak
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | | | - Anna Mrzljak
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia.
| |
Collapse
|
4
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Combined and sequential liver-kidney transplantation in children. Pediatr Nephrol 2018; 33:2227-2237. [PMID: 29322327 PMCID: PMC6208698 DOI: 10.1007/s00467-017-3880-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/23/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Combined and sequential liver-kidney transplantation (CLKT and SLKT) is a definitive treatment in children with end-stage organ failure. There are two major indications: - terminal insufficiency of both organs, or - need for transplanting new liver as a source of lacking enzyme or specific regulator of the immune system in a patient with renal failure. A third (uncommon) option is secondary end-stage renal failure in liver transplant recipients. These three clinical settings use distinct qualification algorithms. The most common indications include primary hyperoxaluria type 1 (PH1) and autosomal recessive polycystic kidney disease (ARPKD), followed by liver diseases associated with occasional kidney failure. Availability of anti-C5a antibody (eculizumab) has limited the validity of CLKT in genetic atypical hemolytic uremic syndrome (aHUS). The liver coming from the same donor as renal graft (in CLKT) is immunologically protective for the kidney and this provides long-term rejection-free follow-up. No such protection is observed in SLKT, when both organs come from different donors, except uncommon cases of living donation of both organs. Overall long-term outcome in CLKT in terms of graft survival is good and not different from isolated liver or kidney transplantation, however patient survival is inferior due to complexity of this procedure.
Collapse
|
6
|
Combined liver and kidney transplantation in children. Pediatr Nephrol 2014; 29:805-14; quiz 812. [PMID: 23644898 DOI: 10.1007/s00467-013-2487-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/25/2013] [Accepted: 04/08/2013] [Indexed: 12/25/2022]
Abstract
Simultaneous combined liver-kidney transplantation (CLKT) is a rare operation in pediatric patients so that annually only 10-30 operations are performed worldwide. The main indications for CLKT are primary hyperoxaluria type 1 and autosomal recessive polycystic kidney disease. In addition, CLKT is indicated in individual patients with metabolic or cirrhotic liver diseases and end-stage kidney disease. The surgery and immediate post-operative management of CLKT remain challenging in infants and small children. The patients should be operated on before they become severely ill or develop major systemic manifestations of their metabolic disorder. The liver allograft is immunologically protective of the kidney graft in simultaneous CLKT, often resulting in well-preserved kidney function. The long-term outcome after CLKT is nowadays comparable to that of isolated liver and kidney transplantations.
Collapse
|
7
|
Clar J, Gri B, Calderaro J, Birling MC, Hérault Y, Smit GPA, Mithieux G, Rajas F. Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy. Kidney Int 2014; 86:747-56. [PMID: 24717294 DOI: 10.1038/ki.2014.102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/27/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
Renal failure is a major complication that arises with aging in glycogen storage disease type 1a and type 1b patients. In the kidneys, glucose-6 phosphatase catalytic subunit (encoded by G6pc) deficiency leads to the accumulation of glycogen, an effect resulting in marked nephromegaly and progressive glomerular hyperperfusion and hyperfiltration preceding the development of microalbuminuria and proteinuria. To better understand the end-stage nephropathy in glycogen storage disease type 1a, we generated a novel kidney-specific G6pc knockout (K-G6pc(-/-)) mouse, which exhibited normal life expectancy. After 6 months, K-G6pc(-/-) mice showed glycogen overload leading to nephromegaly and tubular dilation. Moreover, renal accumulation of lipids due to activation of de novo lipogenesis was observed. This led to the activation of the renin-angiotensin system and the development of epithelial-mesenchymal transition process and podocyte injury by transforming growth factor β1 signaling. The K-G6pc(-/-) mice developed microalbuminuria caused by the impairment of the glomerular filtration barrier. Thus, renal G6pc deficiency alone is sufficient to induce the development of the early-onset nephropathy observed in glycogen storage disease type 1a, independent of the liver disease. The K-G6pc(-/-) mouse model is a unique tool to decipher the molecular mechanisms underlying renal failure and to evaluate potential therapeutic strategies.
Collapse
Affiliation(s)
- Julie Clar
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| | - Blandine Gri
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| | - Julien Calderaro
- Département de Pathologie, Hôpital Henri Mondor, Créteil, France
| | - Marie-Christine Birling
- Institut Clinique de la Souris, Phenomin IGBMC, CNRS, Université de Strasbourg INSERM, U964, Illkirch, France
| | - Yann Hérault
- Institut Clinique de la Souris, Phenomin IGBMC, CNRS, Université de Strasbourg INSERM, U964, Illkirch, France
| | - G Peter A Smit
- Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Gilles Mithieux
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| | - Fabienne Rajas
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| |
Collapse
|
8
|
Boers SJB, Visser G, Smit PGPA, Fuchs SA. Liver transplantation in glycogen storage disease type I. Orphanet J Rare Dis 2014; 9:47. [PMID: 24716823 PMCID: PMC4113191 DOI: 10.1186/1750-1172-9-47] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/01/2014] [Indexed: 12/17/2022] Open
Abstract
Glycogen storage disease type I (GSDI), an inborn error of carbohydrate metabolism, is caused by defects in the glucose-6-transporter/glucose-6-phosphatase complex, which is essential in glucose homeostasis. Two types exist, GSDIa and GSDIb, each caused by different defects in the complex. GSDIa is characterized by fasting intolerance and subsequent metabolic derangements. In addition to these clinical manifestations, patients with GSDIb suffer from neutropenia with neutrophil dysfunction and inflammatory bowel disease. With the feasibility of novel cell-based therapies, including hepatocyte transplantations and liver stem cell transplantations, it is essential to consider long term outcomes of liver replacement therapy. We reviewed all GSDI patients with liver transplantation identified in literature and through personal communication with treating physicians. Our review shows that all 80 GSDI patients showed improved metabolic control and normal fasting tolerance after liver transplantation. Although some complications might be caused by disease progression, most complications seemed related to the liver transplantation procedure and subsequent immune suppression. These results highlight the potential of other therapeutic strategies, like cell-based therapies for liver replacement, which are expected to normalize liver function with a lower risk of complications of the procedure and immune suppression.
Collapse
Affiliation(s)
| | | | | | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands.
| |
Collapse
|
9
|
Rodeck B, Zimmer KP. Stoffwechselerkrankungen. PÄDIATRISCHE GASTROENTEROLOGIE, HEPATOLOGIE UND ERNÄHRUNG 2013. [PMCID: PMC7498805 DOI: 10.1007/978-3-642-24710-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Entsprechend ihrer Wanderung bei isoelektrischer Fokussierung werden die allelen Varianten des α1-AT als Proteinaseinhibitorphänotypen (Pi) klassifiziert. Die dominierende Isoform ist der normale Phänotyp M, daneben gibt es die Mangelvarianten S und Z sowie eine 0-Variante.
Collapse
Affiliation(s)
- Burkhard Rodeck
- Zentrum für Kinder- und Jugendmedizin, Christliches Kinderhospital Osnabrück, Johannisfreiheit 1, 49074 Osnabrück, Deutschland
| | - Klaus-Peter Zimmer
- grid.411067.50000000085849230Abteilung Allgemeine Pädiatrie und Neonatalogie, Universitätsklinikum Gießen und Marburg GmbH, Zentrum für Kinderheilkunde und Jugendmedizin, Feulgenstr. 12, 35392 Gießen, Deutschland
| |
Collapse
|
10
|
Marega A, Fregonese C, Tulissi P, Vallone C, Gropuzzo M, Toniutto PL, Baccarani U, Bresadola F, Toso F, Montanaro D. Preemptive liver-kidney transplantation in von Gierke disease: a case report. Transplant Proc 2011; 43:1196-7. [PMID: 21620087 DOI: 10.1016/j.transproceed.2011.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type 1a glycogen storage disease (GSD 1a), or von Gierke disease, is a rare, autosomal-recessive disease caused by a deficiency of glucose-6-phosphatase, which leads to glycogen accumulation in the liver, kidney, and intestinal mucosa. Clinical manifestations include hypoglycemia, growth retardation, hepatomegaly, lactic acidemia, hyperlipidemia, and hyperuricemia. Long-term complications include renal disease, gout, osteoporosis, pulmonary hypertension, short stature, and hepatocellular adenomas, which may undergo malignant transformation. Herein we have described the management and the clinical course of a GSD1a patient who underwent simultaneous preemptive liver- kidney transplantation (SPLKT), which solved the liver and renal disease. We confirmed the rapid normalization of glucose metabolism, and correction of hyperlipemia after liver transplantation. In our opinion uremic patients with GSD 1a with or without adenomas must be considered for SPLKT. To our knowledge this is the fifth case of SPLKT and the first preemptive one to be described in the literature.
Collapse
Affiliation(s)
- A Marega
- Department of Nephrology, Azienda Ospedaliero Universitaria S Maria della Misericordia, Udine, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P. Glucose-6-phosphatase deficiency. Orphanet J Rare Dis 2011; 6:27. [PMID: 21599942 PMCID: PMC3118311 DOI: 10.1186/1750-1172-6-27] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 05/20/2011] [Indexed: 01/01/2023] Open
Abstract
Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed by G6PC (GSDIa) or SLC37A4 (GSDIb) gene analysis, and the indications of liver biopsy to measure G6P activity are getting rarer and rarer. Differential diagnoses include the other GSDs, in particular type III (see this term). However, in GSDIII, glycemia and lactacidemia are high after a meal and low after a fast period (often with a later occurrence than that of type I). Primary liver tumors and Pepper syndrome (hepatic metastases of neuroblastoma) may be evoked but are easily ruled out through clinical and ultrasound data. Antenatal diagnosis is possible through molecular analysis of amniocytes or chorionic villous cells. Pre-implantatory genetic diagnosis may also be discussed. Genetic counseling should be offered to patients and their families. The dietary treatment aims at avoiding hypoglycemia (frequent meals, nocturnal enteral feeding through a nasogastric tube, and later oral addition of uncooked starch) and acidosis (restricted fructose and galactose intake). Liver transplantation, performed on the basis of poor metabolic control and/or hepatocarcinoma, corrects hypoglycemia, but renal involvement may continue to progress and neutropenia is not always corrected in type Ib. Kidney transplantation can be performed in case of severe renal insufficiency. Combined liver-kidney grafts have been performed in a few cases. Prognosis is usually good: late hepatic and renal complications may occur, however, with adapted management, patients have almost normal life span. DISEASE NAME AND SYNONYMS: Glucose-6-phosphatase deficiency or G6P deficiency or glycogen storage disease type I or GSDI or type I glycogenosis or Von Gierke disease or Hepatorenal glycogenosis.
Collapse
Affiliation(s)
- Roseline Froissart
- Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Service de Pédiatrie, APHP, Clamart cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chava SP, Singh B, Pal S, Dhawan A, Heaton ND. Indications for combined liver and kidney transplantation in children. Pediatr Transplant 2009; 13:661-9. [PMID: 19566856 DOI: 10.1111/j.1399-3046.2008.01046.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A significant number of patients awaiting liver transplantation have associated renal failure and renal dysfunction is associated with increased morbidity and mortality after LT. There has been a recent increase in the number of CLKT in adults. The common indications for CLKT in children are different from those of adults and include metabolic diseases affecting the kidney with or without liver dysfunction and congenital developmental abnormalities affecting both organs. The results are generally encouraging among these groups of patients. Early evaluation and listing of patients before they become severely ill or have major systemic manifestations of their metabolic problem are important.
Collapse
Affiliation(s)
- Srinivas P Chava
- Institute of Liver Studies, Kings College London School of Medicine, King's College Hospital, London, UK
| | | | | | | | | |
Collapse
|
13
|
Reddy SK, Austin SL, Spencer-Manzon M, Koeberl DD, Clary BM, Desai DM, Smith AD, Kishnani PS. Liver transplantation for glycogen storage disease type Ia. J Hepatol 2009; 51:483-90. [PMID: 19596478 DOI: 10.1016/j.jhep.2009.05.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/04/2009] [Accepted: 05/15/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma (HCC) most often occurs within hepatocellular adenomas (HCAs) in glycogen storage disease Ia (GSD Ia) patients. The objective of this retrospective study is to assess outcomes after liver transplantation (LT) for GSD Ia where the principal indication for transplantation was prevention of HCC. METHODS Petitions to the United Network for Organ Sharing region 11 review board for additional model for end-stage liver disease listing points were made on behalf of GSD Ia patients. Demographics, pre-operative comorbidity, and outcomes for GSD Ia patients who underwent LT were reviewed. RESULTS Between 2004 and 2006, five GSD Ia patients underwent LT. Multiple HCAs with focal hemorrhage and/or necrosis but without histological evidence of malignancy were identified in all explanted specimens. Four of five patients had complications after LT, including cytomegalovirus (CMV) infections and steroid responsive allograft rejection. Hemoglobin levels and serum triglyceride, total cholesterol, blood glucose, and lactic acid concentrations improved in all patients after LT. Corn starch feeding was not required in any patient after LT. Renal function worsened in three patients despite modifications to primary immunosuppressive medications. All patients are alive at last follow-up (range 25-48 months) and all post-transplant complications have resolved. CONCLUSIONS By removing all possible adenomatous tissue and reversing the underlying hepatic enzymatic deficiency, LT provides definitive prevention against HCC and correction of most metabolic derangements in GSD Ia patients. Renal dysfunction secondary to GSD Ia persists--underscoring the need for further studies to better understand the mechanisms of renal dysfunction in these patients.
Collapse
Affiliation(s)
- Srinevas K Reddy
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Koeberl DD, Kishnani PS, Bali D, Chen YT. Emerging therapies for glycogen storage disease type I. Trends Endocrinol Metab 2009; 20:252-8. [PMID: 19541498 DOI: 10.1016/j.tem.2009.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 10/20/2022]
Abstract
Glycogen storage disease type I (GSD I) is caused by deficiency of the glucose-6-phosphatase catalytic subunit in type Ia or of glucose-6-phosphate transporter in type Ib. The cellular bases for disruptions of homeostasis have been increasingly understood in GSD I, including those for anemia, renal failure and neutropenia. Advances in the understanding of cellular abnormalities in GSD I have provided rationales for new therapy, and recent developments in gene therapy have led to potential curative treatments for GSD I. These advances will benefit patients with GSD I in the future, improving both quality of life and survival, as well as illuminating the molecular effects of altered metabolism upon multiple organ systems.
Collapse
Affiliation(s)
- D D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
15
|
Chava SP, Singh B, Zaman MB, Rela M, Heaton ND. Current indications for combined liver and kidney transplantation in adults. Transplant Rev (Orlando) 2009; 23:111-9. [PMID: 19298942 DOI: 10.1016/j.trre.2009.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
UNLABELLED A significant number of patients awaiting liver transplantation have associated renal failure. Combined Liver and Kidney Transplantation (CLKT) is increasingly offered especially since the introduction of Model for End-Stage Liver Disease (MELD). Decision to perform CLKT is straightforward when both organs suffer end-stage failure. However, the indications for CLKT are not well defined and there is controversy concerning some. We reviewed available data on PUBMED, United Network for Organ Sharing (UNOS), Organ Procurement Transplantation Network (OPTN), European Society for Organ Transplantation (ESOT) and discuss all current indications for CLKT. CONCLUSION Overall long-term outcome following CLKT is acceptable. There is an urgent need to further refine our ability to identify the cases with reversible renal injury in the setting of end-stage liver disease to avoid unnecessary CLKT. Liver protects the kidney from disease recurrence and allograft loss in metabolic diseases. However, the use of liver allograft for immunological protection of kidneys in highly sensitised patients with positive cross-match and previously failed renal transplants is still experimental.
Collapse
Affiliation(s)
- Srinivas P Chava
- King's College London School of Medicine at King's College Hospital, Institute of Liver Studies, Denmark Hill, Camberwell, SE5 9RS London, UK
| | | | | | | | | |
Collapse
|
16
|
Sutherland SM, Alexander SR, Sarwal MM, Berquist WE, Concepcion W. Combined liver-kidney transplantation in children: indications and outcome. Pediatr Transplant 2008; 12:835-46. [PMID: 19000066 DOI: 10.1111/j.1399-3046.2008.01041.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although it remains a relatively infrequent procedure in children, CLKT has become a viable option for a select group of pediatric patients with severe liver and kidney disease. Most are performed for rare primary diseases such as PH1, but a selected few are performed in the setting of concomitant hepatic and renal failure of uncertain etiology and prognosis. This article reviews the indications for and outcomes following CLKT in children. While it focuses on the specific primary diseases which impact liver and kidney function simultaneously, it addresses the indications based on concomitant hepatic and renal failure, such as seen in the hepatorenal syndrome, as well.
Collapse
Affiliation(s)
- Scott M Sutherland
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | |
Collapse
|
17
|
Perioperative management of benign hepatic tumors in patients with glycogen storage disease type Ia. ACTA ACUST UNITED AC 2008; 15:200-3. [PMID: 18392715 DOI: 10.1007/s00534-007-1244-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 03/05/2007] [Indexed: 01/10/2023]
Abstract
Glycogen storage disease type Ia (GSD-Ia; von Gierke disease) is an inherited disorder caused by glucose-6-phosphatase deficiency, and there have been some reports of hepatic tumors in patients with this disease. We report two patients with benign hepatic tumors with GSD-Ia. One is a 19-year-old man who underwent segmentectomy 4 for a focal nodular hyperplasia, and the other is a 31-year-old woman who underwent segmentectomies 3, 5, and 6 for hepatic adenomas. Two significant perioperative complications, resulting from the carbohydrate metabolic disorders, hypoglycemia and metabolic acidosis, occurred in both patients. We managed the metabolic complications successfully by administering a sufficient volume of glucose intravenously. Close perioperative monitoring of blood glucose and lactate concentrations is essential in the perioperative management of patients with GSD-Ia. The intravenous administration of glucose, starting with a smaller dose and then increasing the dose, is adequate management for lactic acidosis with or without hypoglycemia during the perioperative period.
Collapse
|
18
|
Belingheri M, Ghio L, Sala A, Menni F, Trespidi L, Ferraresso M, Berardinelli L, Rossi G, Edefonti A, Parini R. Combined liver-kidney transplantation in glycogen storage disease Ia: a case beyond the guidelines. Liver Transpl 2007; 13:762-4. [PMID: 17457869 DOI: 10.1002/lt.21147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glycogen storage disease type Ia (GSD Ia) is a rare metabolic disorder due to hepatic glucose-6-phosphatase deficiency. Although great progress has been made in managing affected patients, severe hypoglycemia, lactic acidosis, hyperlipidemia, hepatic cytolysis, and impaired kidney function are frequent. Liver transplantation is the only radical treatment, for which the main indications are hepatic adenomatosis, hepatocellular carcinoma, or severe hepatic dysfunction. We present the case of a patient with end-stage renal disease without focal hepatic lesions and with moderate hepatic metabolic control, and we explain how combined liver-kidney transplantation (LKT) made it possible to correct the metabolic defects responsible for the impaired glucose homeostasis, liberalize the diet, and give birth to a healthy child after an uneventful pregnancy. Patients with end-stage renal disease that resulted from GSD Ia should be considered for LKT even in the absence of hepatic lesions with the aim of improving their quality of life.
Collapse
Affiliation(s)
- Mirco Belingheri
- Pediatric Nephrology Unit, Maggiore Policlinico Hospital, Mangiagalli and Regina Elena Foundation, IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Martin AP, Bartels M, Schreiber S, Buehrdel P, Hauss J, Fangmann J. Successful staged kidney and liver transplantation for glycogen storage disease type Ib: A case report. Transplant Proc 2007; 38:3615-9. [PMID: 17175348 DOI: 10.1016/j.transproceed.2006.10.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Indexed: 11/26/2022]
Abstract
Glycogen storage disease type Ib is a rare metabolic disease caused by a defect of the G6P transporter. Patients suffer from hypoglycemic episodes; growth and developmental delay; osteoporosis; neutropenia; and tendency to infections, ovarian cysts, and liver adenomas. Terminal kidney disease is a rare complication. Liver transplantation has been performed to prevent malignant transformation of hepatic adenomas. We present the case of a female patient with glycogenosis type Ib who had severe hypoglycemic episodes and recurrent infections since early childhood. She became dialysis dependent at the age of 24 years. Kidney transplantation was performed at age 30, and liver transplantation 2 years later. The main indication for liver transplantation were the persistent, therapy-refractory hypoglycemic episodes. The transplanted kidney function is stable. The liver transplantation resulted in the disappearance of hypoglycemic episodes, with the patient leading a normal life and eating a normal diet. The neutropenia did not recover, but there were no more significant infectious episodes after liver transplantation. This is, to the best of our knowledge, the first communication of a dual kidney and liver transplant performed in a patient with glycogenosis type Ib. It confirmed the beneficial effect of liver transplantation on the quality of life of patients with severe hypoglycemia. The transplantation should be attempted earlier in the course of the disease to reduce complications and allow catch-up growth. Hepatocyte transplantation may be considered; however, long-term results seem to be rather poor in the few documented cases.
Collapse
Affiliation(s)
- A P Martin
- Department of Visceral and Transplant Surgery, Universitätsklinik Leipzig, Leipzig, Sachsen, Germany
| | | | | | | | | | | |
Collapse
|