1
|
Gene Cloning, Tissue Expression Profiles and Antiviral Activities of Interferon-β from Two Chinese Miniature Pig Breeds. Vet Sci 2022; 9:vetsci9040190. [PMID: 35448688 PMCID: PMC9030596 DOI: 10.3390/vetsci9040190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
The porcine interferon (PoIFN) complex represents an ideal model for studying IFN evolution which has resulted from viral pressure during domestication. Bama and Banna miniature pigs are the two Chinese miniature pig breeds that have been developed as laboratory animal models for studying virus infection, pathogenesis, and vaccine evaluation. However, the PoIFN complex of such miniature pig breeds remains to be studied. In the present study, we cloned PoIFN-β genes from Bama and Banna miniature pigs, detected their PoIFN-β tissue expression profiles, prepared recombinant PoIFN-β (rPoIFN-β) using the E. coli expression system, and measured their antiviral activities against three different pig viruses. At the amino acid sequence level, PoIFN-βs of the two miniature pig breeds were identical, which shared 100% identity with that of Congjiang Xiang pigs, 99.4–100% identity with that of domestic pigs, and 99.5% identity with that of three species of African wild boars. The tissue expression profiles of PoIFN-β mRNA differed not only between the two miniature pig breeds but between miniature pigs and domestic pigs as well. The four promoter domains of PoIFN-β of the two miniature pig breeds were identical with that of humans, domestic pigs, and three species of African wild boars. The recombinant PoIFN-β prepared from the two miniature pig breeds showed dose-dependent pre-infection and post-infection antiviral activities against vesicular stomatitis virus, porcine respiratory and reproductive syndrome virus, and pig pseudorabies virus. This study provided evidence for the high sequence conservation of PoIFN-β genes within the Suidae family with different tissue expression profiles and antiviral activities.
Collapse
|
2
|
Wei L, Zeng B, Zhang S, Li F, Kong F, Ran H, Wei HJ, Zhao J, Li M, Li Y. Inbreeding Alters the Gut Microbiota of the Banna Minipig. Animals (Basel) 2020; 10:ani10112125. [PMID: 33207622 PMCID: PMC7697339 DOI: 10.3390/ani10112125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The mammalian gut microbiota is an indispensable part of host health. The gut microbiota plays a crucial role in nutrient digestibility, preventing colonization of pathogens and maintaining the host immune system. Host genetics has been conclusively shown to closely related to gut microbiota. Inbreeding can cause a decrease of the host’s genetic diversity, however, remarkably little is understood about the gut microbiota of pigs during inbreeding. The Banna minipig inbred is the world’s first successful large mammalian experimental animal inbred line since 1980 from full and half-siblings of the Diannan small-ear pig. Now, Banna minipig inbred has been inbred for over 37 generations, and the inbreeding coefficient is more than 99%. This study is the first to characterize and compare the composition and function of gut microbiota between the Diannan small-ear pig and Banna minipig inbred, aiming to better understand the influence of inbreeding on the gut microbiota. Abstract The gut microbiota coevolve with the host and can be stably transmitted to the offspring. Host genetics plays a crucial role in the composition and abundance of gut microbiota. Inbreeding can cause a decrease of the host’s genetic diversity and the heterozygosity. In this study, we used 16S rRNA gene sequencing to compare the differences of gut microbiota between the Diannan small-ear pig and Banna minipig inbred, aiming to understand the impact of inbreeding on the gut microbiota. Three dominant bacteria (Stenotrophlomonas, Streptococcus, and Lactobacillus) were steadily enriched in both the Diannan small-ear pig and Banna minipig inbred. After inbreeding, the gut microbiota alpha diversity and some potential probiotics (Bifidobacterium, Tricibacter, Ruminocaccae, Christensenellaceae, etc.) were significantly decreased, while the pathogenic Klebsiella bacteria was significantly increased. In addition, the predicted metagenomic analysis (PICRUSt2) indicated that several amino acid metabolisms (‘‘Valine, leucine, and isoleucine metabolism’’, ‘‘Phenylalanine, tyrosine, and tryptophan biosynthesis’’, ‘‘Histidine metabolism’’) were also markedly decreased after the inbreeding. Altogether our data reveal that host inbreeding altered the composition and the predicted function of the gut microbiome, which provides some data for the gut microbiota during inbreeding.
Collapse
Affiliation(s)
- Limin Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (B.Z.); (S.Z.); (F.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (B.Z.); (S.Z.); (F.L.); (H.R.)
| | - Siyuan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (B.Z.); (S.Z.); (F.L.); (H.R.)
| | - Feng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (B.Z.); (S.Z.); (F.L.); (H.R.)
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Haixia Ran
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (B.Z.); (S.Z.); (F.L.); (H.R.)
| | - Hong-Jiang Wei
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Mingzhou Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (B.Z.); (S.Z.); (F.L.); (H.R.)
- Correspondence: (M.L.); (Y.L.)
| | - Ying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (B.Z.); (S.Z.); (F.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China
- Correspondence: (M.L.); (Y.L.)
| |
Collapse
|
3
|
Liu YM, Liu W, Jia JS, Chen BZ, Chen HW, Liu Y, Bie YN, Gu P, Sun Y, Xiao D, Gu WW. Abnormalities of hair structure and skin histology derived from CRISPR/Cas9-based knockout of phospholipase C-delta 1 in mice. J Transl Med 2018; 16:141. [PMID: 29793503 PMCID: PMC5968471 DOI: 10.1186/s12967-018-1512-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/08/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hairless mice have been widely applied in skin-related researches, while hairless pigs will be an ideal model for skin-related study and other biomedical researches because of the similarity of skin structure with humans. The previous study revealed that hairlessness phenotype in nude mice is caused by insufficient expression of phospholipase C-delta 1 (PLCD1), an essential molecule downstream of Foxn1, which encouraged us to generate PLCD1-deficient pigs. In this study, we plan to firstly produce PLCD1 knockout (KO) mice by CRISPR/Cas9 technology, which will lay a solid foundation for the generation of hairless PLCD1 KO pigs. METHODS Generation of PLCD1 sgRNAs and Cas 9 mRNA was performed as described (Shao in Nat Protoc 9:2493-2512, 2014). PLCD1-modified mice (F0) were generated via co-microinjection of PLCD1-sgRNA and Cas9 mRNA into the cytoplasm of C57BL/6J zygotes. Homozygous PLCD1-deficient mice (F1) were obtained by intercrossing of F0 mice with the similar mutation. RESULTS PLCD1-modified mice (F0) showed progressive hair loss after birth and the genotype of CRISPR/Cas9-induced mutations in exon 2 of PLCD1 locus, suggesting the sgRNA is effective to cause mutations that lead to hair growth defect. Homozygous PLCD1-deficient mice (F1) displayed baldness in abdomen and hair sparse in dorsa. Histological abnormalities of the reduced number of hair follicles, irregularly arranged and curved hair follicles, epidermal hyperplasia and disturbed differentiation of epidermis were observed in the PLCD1-deficient mice. Moreover, the expression level of PLCD1 was significantly decreased, while the expression levels of other genes (i.e., Krt1, Krt5, Krt13, loricrin and involucrin) involved in the differentiation of hair follicle were remarkerably increased in skin tissues of PLCD1-deficient mice. CONCLUSIONS In conclusion, we achieve PLCD1 KO mice by CRISPR/Cas9 technology, which provide a new animal model for hair development research, although homozygotes don't display completely hairless phenotype as expected.
Collapse
Affiliation(s)
- Yu-Min Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, 510515 China
- Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan, 523808 China
| | - Wei Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, 510515 China
- Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan, 523808 China
- Jing Brand Co., Ltd., Daye, 435100 Hubei China
| | - Jun-Shuang Jia
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, 510515 China
| | - Bang-Zhu Chen
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, 510515 China
- Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan, 523808 China
| | - Heng-Wei Chen
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, 510515 China
| | - Yu Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, 510515 China
| | - Ya-Nan Bie
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, 510515 China
| | - Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, 510515 China
- Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan, 523808 China
| | - Yan Sun
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Dong Xiao
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, 510515 China
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, 510515 China
| | - Wei-Wang Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, 510515 China
- Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan, 523808 China
| |
Collapse
|
4
|
Nucleus transfer efficiency of ear fibroblast cells isolated from Bama miniature pigs at various ages. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11596-015-1475-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Xin J, Yang H, Fan N, Zhao B, Ouyang Z, Liu Z, Zhao Y, Li X, Song J, Yang Y, Zou Q, Yan Q, Zeng Y, Lai L. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One 2013; 8:e84250. [PMID: 24358349 PMCID: PMC3866186 DOI: 10.1371/journal.pone.0084250] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022] Open
Abstract
Inbred mini-pigs are ideal organ donors for future human xenotransplantations because of their clear genetic background, high homozygosity, and high inbreeding endurance. In this study, we chose fibroblast cells from a highly inbred pig line called Banna mini-pig inbred line (BMI) as donor nuclei for nuclear transfer, combining with transcription activator-like effector nucleases (TALENs) and successfully generated α-1,3-galactosyltransferase (GGTA1) gene biallelic knockout (KO) pigs. To validate the efficiency of TALEN vectors, in vitro-transcribed TALEN mRNAs were microinjected into one-cell stage parthenogenetically activated porcine embryos. The efficiency of indel mutations at the GGTA1-targeting loci was as high as 73.1% (19/26) among the parthenogenetic blastocysts. TALENs were co-transfected into porcine fetal fibroblasts of BMI with a plasmid containing neomycin gene. The targeting efficiency reached 89.5% (187/209) among the survived cell clones after a 10 d selection. More remarkably 27.8% (58/209) of colonies were biallelic KO. Five fibroblast cell lines with biallelic KO were chosen as nuclear donors for somatic cell nuclear transfer (SCNT). Three miniature piglets with biallelic mutations of the GGTA1 gene were achieved. Gal epitopes on the surface of cells from all the three biallelic KO piglets were completely absent. The fibroblasts from the GGTA1 null piglets were more resistant to lysis by pooled complement-preserved normal human serum than those from wild-type pigs. These results indicate that a combination of TALENs technology with SCNT can generate biallelic KO pigs directly with high efficiency. The GGTA1 null piglets with inbred features created in this study can provide a new organ source for xenotransplantation research.
Collapse
Affiliation(s)
- Jige Xin
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun, China
- Key Laboratory of Banna Mini-pig Inbred Line of Yunnan Province, Animal Science and Technology College, Yunnan Agricultural University, Kunming, China
| | - Huaqiang Yang
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Nana Fan
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Bentian Zhao
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Zhen Ouyang
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Zhaoming Liu
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yu Zhao
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Xiaoping Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun, China
| | - Jun Song
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yi Yang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun, China
| | - Qingjian Zou
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Quanmei Yan
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yangzhi Zeng
- Key Laboratory of Banna Mini-pig Inbred Line of Yunnan Province, Animal Science and Technology College, Yunnan Agricultural University, Kunming, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun, China
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- Key Laboratory of Banna Mini-pig Inbred Line of Yunnan Province, Animal Science and Technology College, Yunnan Agricultural University, Kunming, China
- * E-mail:
| |
Collapse
|
6
|
Wei H, Qing Y, Pan W, Zhao H, Li H, Cheng W, Zhao L, Xu C, Li H, Li S, Ye L, Wei T, Li X, Fu G, Li W, Xin J, Zeng Y. Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells. PLoS One 2013; 8:e57728. [PMID: 23469059 PMCID: PMC3585185 DOI: 10.1371/journal.pone.0057728] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/25/2013] [Indexed: 11/18/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is an important method of breeding quality varieties, expanding groups, and preserving endangered species. However, the viability of SCNT embryos is poor, and the cloned rate of animal production is low in pig. This study aims to investigate the gene function and establish a disease model of Banna miniature inbred pig. SCNT with donor cells derived from fetal, newborn, and adult fibroblasts was performed, and the cloning efficiencies among the donor cells were compared. The results showed that the cleavage and blastocyst formation rates did not significantly differ between the reconstructed embryos derived from the fetal (74.3% and 27.4%) and newborn (76.4% and 21.8%) fibroblasts of the Banna miniature inbred pig (P>0.05). However, both fetal and newborn fibroblast groups showed significantly higher rates than the adult fibroblast group (61.9% and 13.0%; P<0.05). The pregnancy rates of the recipients in the fetal and newborn fibroblast groups (60% and 80%, respectively) were higher than those in the adult fibroblast group. Eight, three, and one cloned piglet were obtained from reconstructed embryos of the fetal, newborn, and adult fibroblasts, respectively. Microsatellite analyses results indicated that the genotypes of all cloning piglets were identical to their donor cells and that the genetic homozygosity of the Banna miniature inbred pig was higher than those of the recipients. Therefore, the offspring was successfully cloned using the fetal, newborn, and adult fibroblasts of Banna miniature inbred pig as donor cells.
Collapse
Affiliation(s)
- Hongjiang Wei
- Key Laboratory of Banna Miniature Inbred Pig of Yunnan Province, Yunnan Agricultural University, Kunming, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang S, Huo J, Miao Y, Cheng W, Zeng Y. Complementary DNA cloning, sequence analysis, and tissue transcription profile of a novel U2AF2 gene from the Chinese Banna mini-pig inbred line. GENETICS AND MOLECULAR RESEARCH 2013; 12:925-34. [DOI: 10.4238/2013.april.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Gu C, Wei X, Wang Y, Chen Y, Liu J, Wang H, Sun G, Yi D. No infection with porcine endogenous retrovirus in recipients of acellular porcine aortic valves: a two-year study. Xenotransplantation 2008; 15:121-8. [PMID: 18447885 DOI: 10.1111/j.1399-3089.2008.00447.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Engineered tissue heart valves may become a promising therapeutics for heart valve disease. Compared with synthetic materials, acellular porcine scaffolds are considered as suitable matrices for tissue-engineered heart valves for the mechanical and structural properties of native tissue. Whether acellular porcine scaffolds can cause infection in recipients with porcine endogenous retrovirus (PERV) is critical for evaluating the safety of transplantation of tissue-engineered heart valves based on acellular porcine scaffolds. This study was completed to evaluate the risk of PERV transmission for application of acellular porcine aortic valves (PAVs). METHODS Native aortic valves obtained from Chinese pigs of different species were acellularized by our modified detergent-enzymatic acellularization procedure. Polymerase chain reaction and reverse transcriptase polymerase chain reaction for pol sequences were used to detect PERV infection. In vitro, ovine endothelial cells (ECs) were inoculated and cocultured with supernatants of porcine aortic endothelial cells (PAECs) and acellualr PAVs, respectively. On 7th day, DNA and RNA of ovine ECs were isolated and tested for PERV. In vivo, acellular PAVs were implanted in the descending thoracic aorta in 40 sheep. Blood samples from the sheep and implanted acellular PAVs were collected 24 months after operation and tested for PERV. RESULTS All cells were removed from the PAVs. Acellularized PAVs were repopulated by autologous cells of the host 24 months after implantation. PERV was detected in all native PAVs, porcine blood samples, acellularized PAVs and ovine ECs inoculated with supernatants of PAECs; no PERV was detected in ovine ECs cocultured with acellularized PAVs, ovine blood samples, and implanted acellular PAVs. CONCLUSIONS Acellularized PAVs processed by modified detergent-enzymatic acellularization procedure can be used for cardiovascular tissue-engineered grafts as matrix scaffolds without risk of PERV transmission.
Collapse
Affiliation(s)
- Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
YU P, ZHANG L, LI S, CHENG J, LU Y, ZENG Y, LI Y, BU H. A RAPID METHOD FOR DETECTION OF THE COPY NUMBER OF PORCINE ENDOGENOUS RETROVIRUS IN SWINE. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1745-4581.2007.00082.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Expressed sequence tags analysis of a liver tissue cDNA library from a highly inbred minipig line. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200705010-00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
|