1
|
Zhang Y, Guan Z, Gong H, Ni Z, Xiao Q, Guo X, Xu Q. The Role of Progenitor Cells in the Pathogenesis of Arteriosclerosis. CARDIOLOGY DISCOVERY 2024; 4:231-244. [DOI: 10.1097/cd9.0000000000000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The increasing incidence of arteriosclerosis has become a significant global health burden. Arteriosclerosis is characterized by the thickening and hardening of arterial walls, which can lead to the narrowing or complete blockage of blood vessels. However, the pathogenesis of the disease remains incompletely understood. Recent research has shown that stem and progenitor cells found in the bone marrow and local vessel walls play a role in the development of arteriosclerosis by differentiating into various types of vascular cells, including endothelial cells, smooth muscle cells, fibroblasts, and inflammatory cells. This review aims to provide a comprehensive understanding of the role of stem and progenitor cells in the pathogenesis of arteriosclerosis, shedding light on the underlying mechanisms and potential therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Ziyin Guan
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Hui Gong
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Zhichao Ni
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
2
|
CXCR4 Antagonist Reduced the Incidence of Acute Rejection and Controlled Cardiac Allograft Vasculopathy in a Swine Heart Transplant Model Receiving a Mycophenolate-based Immunosuppressive Regimen. Transplantation 2019; 102:2002-2011. [PMID: 30095739 PMCID: PMC6257103 DOI: 10.1097/tp.0000000000002404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND CXC motif chemokine receptor 4 (CXCR4) blockade is pursued as an alternative to mesenchymal stem cell treatment in transplantation based on our previous report that burixafor, through CXCR4 antagonism, mobilizes immunomodulatory mesenchymal stem cells. Here, we explored the efficacy of combining mycophenolate mofetil (MMF)-based immunosuppressants with repetitive burixafor administration. METHODS Swine heterotopic cardiac allograft recipients received MMF and corticosteroids (control, n = 10) combined with burixafor as a 2-dose (burixafor2D, n = 7) or 2-dose plus booster injections (burixafor2D + B, n = 5) regimen. The efficacy endpoints were graft survival, freedom from first acute rejection, and the severity of intimal hyperplasia. Each specimen was sacrificed either at its first graft arrest or after 150 days. RESULTS After 150 days, all specimens in the control group had died, but 28.5% of the burixafor2D group survived, and 60% of the burixafor2D + B group survived (P = 0.0088). Although the control group demonstrated acute rejection at a median of 33.5 days, the burixafor2D + B group survived without acute rejection for a median of 136 days (P = 0.0209). Burixafor administration significantly attenuated the incidence rate of acute rejection (P = 0.002) and the severity of intimal hyperplasia (P = 0.0097) at end point relative to the controls. These findings were associated with reduced cell infiltrates in the allografts, and modulation of C-reactive protein profiles in the circulation. CONCLUSIONS The augmentation of conventional MMF plus corticosteroids with a CXCR4 antagonist is potentially effective in improving outcomes after heart transplantation in minipigs. Future studies are warranted into optimizing the therapeutic regimens for humans.
Collapse
|
3
|
CXCR4-Overexpressing Umbilical Cord Mesenchymal Stem Cells Enhance Protection against Radiation-Induced Lung Injury. Stem Cells Int 2019; 2019:2457082. [PMID: 30867667 PMCID: PMC6379846 DOI: 10.1155/2019/2457082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Less quantity of transplanted mesenchymal stem cells (MSCs) influences the therapeutic effects on radiation-induced lung injury (RILI). Previous studies have demonstrated that MSCs overexpressing Chemokine (C-X-C motif) receptor 4 (CXCR4) could increase the quantity of transplanted cells to local tissues. In the present study, we conducted overexpressing CXCR4 human umbilical cord mesenchymal stem cell (HUMSC) therapy for RILI. C57BL mice received single dose of thoracic irradiation with 13 Gy of X-rays and then were administered saline, control HUMSCs, or CXCR4-overexpressing HUMSCs via tail vein. Transfection with CXCR4 enhanced the quantity of transplanted HUMSCs in the radiation-induced injured lung tissues. CXCR4-overexpressing HUMSCs not only improved histopathological changes but also decreased the radiation-induced expression of SDF-1, TGF-β1, α-SMA, and collagen I and inhibited the radiation-induced decreased expression of E-cadherin. Transplanted CXCR4-overexpressing HUMSCs also could express pro-SP-C, indicated adopting the feature of ATII. These finding suggests that CXCR4-overexpressing HUMSCs enhance the protection against RILI and may be a promising strategy for RILI treatment.
Collapse
|
4
|
Liu Y, Gao S, Wang Z, Yang Y, Huo H, Tian X. Effect of stromal cell-derived factor-1 on myocardial apoptosis and cardiac function recovery in rats with acute myocardial infarction. Exp Ther Med 2016; 12:3282-3286. [PMID: 27882150 PMCID: PMC5103778 DOI: 10.3892/etm.2016.3770] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/25/2016] [Indexed: 11/15/2022] Open
Abstract
The aim of the study was to investigate the effect of stromal cell-derived factor-1 (SDF-1) on myocardial apoptosis and cardiac function recovery in rats with acute myocardial infarction (AMI) and the mechanism of the Toll-like receptor (TLR)-4/nuclear factor-κB (NF-κB) signaling pathway. A total of 64 healthy male F344 rats were randomly divided into the sham operation, model, SDF-1 intervention and SDF-1 antibody groups, with 16 rats in each group. The method of Olivette was used to establish the AMI model by ligation of the left anterior descending artery. Day 1 after establishing the animal model, the rats in the SDF-1 intervention group were injected with 10 µl recombinant SDF-1 (400 ng/ml) in five regions including the myocardial infarction area and the four surrounding areas. The rats in the model group were injected with 10 µl normal saline including the myocardial infarction area and the four surrounding areas, and those in the SDF-1 antibody group were injected with 1 ml SDF-1 antibody (2 µg/ml). Four rats were sacrificed after 1, 3, 7 and 14 days after the intervention, and the analysis was carried out. TUNEL in situ labeled apoptotic cells were used for cell counting, and immunohistochemical staining was performed to measure vascular density. The animal echocardiographic measurement was for the left ventricular end-diastolic diameter (LVEDd), left ventricular end-systolic diameter (LVESd), left ventricular fractional shortening (FS) and ejection fraction (EF) values. The results showed that the number of apoptotic cells in the SDF-1 treatment group was significantly lower than those in the other groups at each time-point. The vessel densities in the 3–14 days were significantly greater than those in other groups. At each time-point, the LVEDd and LVESd values were smaller compared with the model group, but greater than the sham operation group and decreased over time. FS and EF values were higher than those in the model group at each time-point, but less than those of the sham operation group and increased over time. The expression levels of TLR-4 and NF-κB at each time-point were significantly higher than those of the remaining groups (p<0.05). In conclusion, SDF-1 is capable of decreasing the apoptosis of cardiac muscle cells in AMI, promoting angiogenesis and improving cardiac function, which may be associated with the activation of the TLR-4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Songtao Gao
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Zheng Wang
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yan Yang
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Hong Huo
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Xuefeng Tian
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
5
|
Thomas MN, Kalnins A, Andrassy M, Wagner A, Klussmann S, Rentsch M, Habicht A, Pratschke S, Stangl M, Bazhin AV, Meiser B, Fischereder M, Werner J, Guba M, Andrassy J. SDF-1/CXCR4/CXCR7 is pivotal for vascular smooth muscle cell proliferation and chronic allograft vasculopathy. Transpl Int 2015; 28:1426-35. [PMID: 26265085 DOI: 10.1111/tri.12651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/09/2015] [Accepted: 07/20/2015] [Indexed: 01/29/2023]
Abstract
Chronic rejection remains a major obstacle in transplant medicine. Recent studies suggest a crucial role of the chemokine SDF-1 on neointima formation after injury. Here, we investigate the potential therapeutic effect of inhibiting the SDF-1/CXCR4/CXCR7 axis with an anti-SDF-1 Spiegelmer (NOX-A12) on the development of chronic allograft vasculopathy. Heterotopic heart transplants from H-2bm12 to B6 mice and aortic transplants from Balb/c to B6 were performed. Mice were treated with NOX-A12. Control animals received a nonfunctional Spiegelmer (revNOX-A12). Samples were retrieved at different time points and analysed by histology, RT-PCR and proliferation assay. Blockade of SDF-1 caused a significant decrease in neointima formation as measured by intima/media ratio (1.0 ± 0.1 vs. 1.8 ± 0.1, P < 0.001 AoTx; 0.35 ± 0.05 vs. 1.13 ± 0.27, P < 0.05 HTx). In vitro treatment of primary vascular smooth muscle cells with NOX-A12 showed a significant reduction in proliferation (0.42 ± 0.04 vs. 0.24 ± 0.03, P < 0.05). TGF-β, TNF-α and IL-6 levels were significantly reduced under SDF-1 inhibition (3.42 ± 0.37 vs. 1.67 ± 0.33, P < 0.05; 2.18 ± 0.37 vs. 1.0 ± 0.39, P < 0.05; 2.18 ± 0.26 vs. 1.6 ± 0.1, P < 0.05). SDF-1/CXCR4/CXCR7 plays a critical role in the development of chronic allograft vasculopathy (CAV). Therefore, pharmacological inhibition of SDF-1 with NOX-A12 may represent a therapeutic option to ameliorate chronic rejection changes.
Collapse
Affiliation(s)
- Michael N Thomas
- Klinik für Allgemeine-,Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | - Aivars Kalnins
- Klinik für Allgemeine-,Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | - Martin Andrassy
- Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Rupprecht-Karls Universität, Heidelberg, Germany
| | - Anne Wagner
- Klinik für Allgemeine-,Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | | | - Markus Rentsch
- Klinik für Allgemeine-,Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | - Antje Habicht
- Transplantationszentrum, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | - Sebastian Pratschke
- Klinik für Allgemeine-,Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | - Manfred Stangl
- Klinik für Allgemeine-,Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | - Alexandr V Bazhin
- Klinik für Allgemeine-,Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | - Bruno Meiser
- Transplantationszentrum, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | - Michael Fischereder
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | - Jens Werner
- Klinik für Allgemeine-,Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | - Markus Guba
- Klinik für Allgemeine-,Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| | - Joachim Andrassy
- Klinik für Allgemeine-,Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum der Universität München, Ludwig-Maximilians Universität, München, Germany
| |
Collapse
|
6
|
Abstract
A series of studies has been presented in the search for proof of circulating and resident vascular progenitor cells, which can differentiate into endothelial and smooth muscle cells and pericytes in animal and human studies. In terms of pluripotent stem cells, including embryonic stem cells, iPS, and partial-iPS cells, they display a great potential for vascular lineage differentiation. Development of stem cell therapy for treatment of vascular and ischemic diseases remains a major challenging research field. At the present, there is a clear expansion of research into mechanisms of stem cell differentiation into vascular lineages that are tested in animal models. Although there are several clinical trials ongoing that primarily focus on determining the benefits of stem cell transplantation in ischemic heart or peripheral ischemic tissues, intensive investigation for translational aspects of stem cell therapy would be needed. It is a hope that stem cell therapy for vascular diseases could be developed for clinic application in the future.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (L.Z.); and Department of Cardiology, Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Qingbo Xu
- From the Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (L.Z.); and Department of Cardiology, Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.).
| |
Collapse
|
7
|
Liu J, Yang X, Shi W. Overexpression of CXCR4 in tracheal epithelial cells promotes their proliferation and migration to a stromal cell-derived factor-1 gradient. Exp Biol Med (Maywood) 2013; 238:144-50. [PMID: 23576796 DOI: 10.1177/1535370213477598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tracheal reconstruction has been an important issue in clinic, but it is limited for the ability of epithelial regeneration. Several reports have shown that stromal cell-derived factor-1 (SDF-1) and chemokine receptor CXCR4 play an important role in cell proliferation and migration of multiple cell types. But there is no report of SDF-1 and CXCR4 in tracheal cells. In this paper, the rat tracheal epithelial cells covered with cilium were isolated and cultured using two enzyme digestions, and CXCR4 lentivirus was constructed and infected to the tracheal cells successfully. The results showed that the expression of CXCR4 which was covered on cellular membrane majorly was low in normal cells, and the cell proliferation was increased accompanied with the increase in SDF-1 concentration. The cell proliferation, migration and intracellular free calcium were increased significantly in CXCR4 lentivirus infected groups in a dose-dependent manner, and these effects could be inhibited after CXCR4 inhibitor AMD3100 treated because the expression of CXCR4 was decreased. Our findings indicate that the activation of CXCR4 may promote tracheal cell proliferation and migration to the sites of airway injury where SDF-1 is regulated.
Collapse
Affiliation(s)
- Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | | | | |
Collapse
|
8
|
Liang Z, Zhan W, Zhu A, Yoon Y, Lin S, Sasaki M, Klapproth JMA, Yang H, Grossniklaus HE, Xu J, Rojas M, Voll RJ, Goodman MM, Arrendale RF, Liu J, Yun CC, Snyder JP, Liotta DC, Shim H. Development of a unique small molecule modulator of CXCR4. PLoS One 2012; 7:e34038. [PMID: 22485156 PMCID: PMC3317778 DOI: 10.1371/journal.pone.0034038] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/21/2012] [Indexed: 01/07/2023] Open
Abstract
Background Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4) and its ligand stromal cell-derived factor-1 (CXCL12) interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites. Methodology/Principal Findings We describe the actions of N,N′-(1,4-phenylenebis(methylene))dipyrimidin-2-amine (designated MSX-122), a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using 18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles. Conclusions/Significance We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can be safer for long-term blockade of metastasis than other reported CXCR4 antagonists.
Collapse
Affiliation(s)
- Zhongxing Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Weiqiang Zhan
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
| | - Aizhi Zhu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Younghyoun Yoon
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Songbai Lin
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Maiko Sasaki
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | | | - Hua Yang
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States of America
| | - Hans E. Grossniklaus
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States of America
| | - Jianguo Xu
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Mauricio Rojas
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Ronald J. Voll
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Mark M. Goodman
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Richard F. Arrendale
- The Emory Institute for Drug Discovery, Emory University, Atlanta, Georgia, United States of America
| | - Jin Liu
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
| | - C. Chris Yun
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - James P. Snyder
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
- The Emory Institute for Drug Discovery, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (HS); (DCL); (JPS)
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- The Emory Institute for Drug Discovery, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (HS); (DCL); (JPS)
| | - Hyunsuk Shim
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (HS); (DCL); (JPS)
| |
Collapse
|
9
|
Effects of SDF-1α/CXCR4 on vascular smooth muscle cells and bone marrow mesenchymal cells in a rat carotid artery balloon injury model. J Appl Biomed 2011. [DOI: 10.2478/v10136-011-0001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
CXCR4 in Cancer and Its Regulation by PPARgamma. PPAR Res 2011; 2008:769413. [PMID: 18779872 PMCID: PMC2528256 DOI: 10.1155/2008/769413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/25/2008] [Accepted: 07/10/2008] [Indexed: 12/20/2022] Open
Abstract
Chemokines are peptide mediators involved in normal development,
hematopoietic and immune regulation, wound healing, and
inflammation. Among the chemokines is CXCL12, which binds
principally to its receptor CXCR4 and regulates leukocyte
precursor homing to bone marrow and other sites. This role of
CXCL12/CXCR4 is “commandeered” by cancer cells to facilitate the
spread of CXCR4-bearing tumor cells to tissues with high CXCL12
concentrations. High CXCR4 expression by cancer cells predisposes
to aggressive spread and metastasis and ultimately to poor patient
outcomes. As well as being useful as a marker for disease
progression, CXCR4 is a potential target for anticancer therapies.
It is possible to interfere directly with the CXCL12:CXCR4 axis
using peptide or small-molecular-weight antagonists. A further
opportunity is offered by promoting strategies that downregulate
CXCR4 pathways: CXCR4 expression in the tumor microenvironment is
modulated by factors such as hypoxia, nucleosides, and
eicosanoids. Another promising approach is through targeting PPAR
to suppress CXCR4 expression. Endogenous PPARγ such as 15-deoxy-Δ12,14-PGJ2 and synthetic agonists such as the
thiazolidinediones both cause downregulation of CXCR4 mRNA and
receptor. Adjuvant therapy using PPARγ agonists may, by
stimulating PPARγ-dependent downregulation of CXCR4 on cancer cells, slow the rate of metastasis and impact beneficially on
disease progression.
Collapse
|
11
|
Zhu A, Zhan W, Liang Z, Yoon Y, Yang H, Grossniklaus HE, Xu J, Rojas M, Lockwood M, Snyder JP, Liotta DC, Shim H. Dipyrimidine amines: a novel class of chemokine receptor type 4 antagonists with high specificity. J Med Chem 2010; 53:8556-68. [PMID: 21105715 PMCID: PMC3003753 DOI: 10.1021/jm100786g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The C-X-C chemokine receptor type 4 (CXCR4)/stromal cell derived factor-1 (SDF-1 or CXCL12) interaction and the resulting cell signaling cascade play a key role in metastasis and inflammation. On the basis of the previously published CXCR4 antagonist 5 (WZ811), a series of novel nonpeptidic anti-CXCR4 small molecules have been designed and synthesized to improve potency. Following a structure-activity profile around 5, more advanced compounds in the N,N'-(1, 4-phenylenebis(methylene)) dipyrimidin-2-amines series were discovered and shown to possess higher CXCR4 binding potential and specificity than 5. Compound 26 (508MCl) is the lead compound and exhibits subnanomolar potency in three in vitro assays including competitive binding, Matrigel invasion and Gα(i) cyclic adenosine monophosphate (cAMP) modulation signaling. Furthermore, compound 26 displays promising effects by interfering with CXCR4 function in three mouse models: paw inflammation, Matrigel plug angiogenesis, and uveal melanoma micrometastasis. These data demonstrate that dipyrimidine amines are unique CXCR4 antagonists with high potency and specificity.
Collapse
Affiliation(s)
- Aizhi Zhu
- Department of Radiology, Emory University, Atlanta, Georgia 30322
| | - Weiqiang Zhan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Zhongxing Liang
- Department of Radiology, Emory University, Atlanta, Georgia 30322
| | - Younghyoun Yoon
- Department of Radiology, Emory University, Atlanta, Georgia 30322
| | - Hua Yang
- Department of Ophthalmology, Emory University, Atlanta, Georgia 30322
| | | | - Jianguo Xu
- Division of Pulmonary, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | - Mauricio Rojas
- Division of Pulmonary, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | - Mark Lockwood
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - James P. Snyder
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Hyunsuk Shim
- Department of Radiology, Emory University, Atlanta, Georgia 30322
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
12
|
Jie W, Wang X, Zhang Y, Guo J, Kuang D, Zhu P, Wang G, Ao Q. SDF-1α/CXCR4 axis is involved in glucose-potentiated proliferation and chemotaxis in rat vascular smooth muscle cells. Int J Exp Pathol 2010; 91:436-44. [PMID: 20586815 DOI: 10.1111/j.1365-2613.2010.00720.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Excessive proliferation of vascular smooth muscle cells (VSMCs), which migrate from the tunica media to the subendothelial region, is one of the primary lesions involved in atherogenesis in diabetes. Here, we investigated whether high glucose potentiated the proliferation and chemotaxis of VSMCs by activating SDF-1α/CXCR4/PI-3K/Akt signalling. The expression of SDF-1α, CXCR4 and PCNA was up-regulated in tunica media of thoracic aortas by streptozotocin-induced hyperglycaemic Sprague-Dawley rats. Exposure of primary VSMCs to high glucose (25 mM) led to the up-regulated expression of SDF-1α and CXCR4, activated PI-3K/Akt signalling, and consequently promoted the proliferation and chemotaxis of VSMCs. Interestingly, the administration of SDF-1 siRNA or neutralizing antibody against SDF-1α abolished high glucose-induced up-regulation of CXCR4. Moreover, pretreatment with SDF-1α neutralizing antibody, CXCR4 specific inhibitor (AMD3100) or PI-3K inhibitor (LY294002) attenuated the high glucose-potentiated proliferation and chemotaxis in VSMCs. These results suggested that high glucose activated the SDF-1α/CXCR4/PI-3K/Akt signalling pathway in VSMCs in an autocrine manner, which enhanced the proliferation and chemotaxis of VSMCs.
Collapse
Affiliation(s)
- Wei Jie
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Stromal-derived factor-1 up-regulated the expression of MIC on mouse keratinocyte stem cells. Transplant Proc 2008; 40:3653-5. [PMID: 19100459 DOI: 10.1016/j.transproceed.2008.03.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/09/2008] [Accepted: 03/26/2008] [Indexed: 11/21/2022]
Abstract
Although previous studies have demonstrated that stromal-derived factor-1 (SDF-1) played a key role in chronic graft dysfunction (CGD), the precise mechanisms underlying this process are not clear. In this study, SDF-1 was injected into keratinocyte stem cells (KSCs) which were isolated and purified from neonatal C57BL/6 (H-2b) mice. Adenylyl cyclase (AC) activity of KSCs was measured and expressions of the human major histocompatibility complex (MHC) class I chain-related antigens A and B (MICA, MICB) detected by immunofluorescence. Cultured KSCs were negative for IA/IE MHC class II molecules by immunofluorescence, indicating the absence of any contamination with Langerhans cells and certifying the purity of KSCs. Over a 7-day culture period, SDF-1 up-regulated AC activity to 2.783 +/- 0.799, which was higher than that of the control group (1.290 +/- 0.476; P < .01). Immunostaining showed that KSCs expressed increased amounts of MICA protein (0.790 +/- 0.134 versus 0.200 +/- 0.022; P < .01) and MICB protein (0.610 +/- 0.832 versus 0.230 +/- 0.016; P < .01). Mixed lymphocyte reaction assays showed that KSCs cultured with SDF-1 injection for 7 days stimulated allogeneic T-cell proliferation. The data indicated that SDF-1 may accelerate the ultimate rejection of allogeneic keratinocytes by enhancing MIC through the AC signal pathway.
Collapse
|
14
|
Li W, Xu T, Wang JF, Wu XF, Li M, Lu PY. Gene transfer using recombinant simian virus 40 viral vectors into mice bone marrow progenitor cells depressed the immunogenicity of keratinocyte stem cells. Transplant Proc 2008; 40:3656-9. [PMID: 19100460 DOI: 10.1016/j.transproceed.2008.06.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 05/24/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
Hematopoietic stem cell (HSC) gene transfer has been attempted almost entirely ex vivo and has been limited by loss of self-renewal capacity and transplantation-related defects in homing and engraftment. Herein we have attempted to overcome these limitations by injecting vectors directly into the bone marrow (BM) to transduce HSCs in their native environment. Simian virus 40 (SV40)-derived gene delivery vectors were used because they efficiently transduce resting CD34+ cells. Neonatal C57BL/6 (H-2b) mice (3 days old) received SV(Nef-FLAG), carrying FLAG marker epitope directly into both femoral marrow cavities. Keratinocyte stem cells (KSCs) were purified at 7 and 14 days after SV40 injection. The KSCs from 10-day-old C57BL/6 mice were designated as controls. Flow cytometric (FCM) analyses indicated that KSCs from transgenic mice showed strong down-regulation of surface immunological molecules CD40, CD80, CD86, and human major histocompatibility complex class I chain-related antigen A (MICA). Mixed lymphocyte reaction (MLR) assays showed that transgenic KSCs depressed allogeneic T-cell proliferation. Immunofluorescence showed transgenic KSCs expressed FLAG for the entire study as well as high levels of transforming growth factor (TGF)-beta and BCL-2. Thus, direct intramarrow administration of recombinant SV40 yielded efficient gene transfer to mice BM progenitor cells. KSCs with low immunogenicity may be obtained for further investigations of skin transplantation immunity.
Collapse
Affiliation(s)
- W Li
- Burn and Plastic Surgery Department, Chemical Accident Rescue & Treatment Center, Jinshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent developments in stem cell research have suggested novel mechanisms of vascular remodeling in allografts. For example, stem cells derived from the recipient may repair damaged endothelial cells of arteries in transplant organs. Further evidence suggests that stem cells or endothelial progenitor cells may be released from both bone marrow and non–bone marrow tissues. Vascular stem cells appear to replenish cells that died in donor vessels. Concomitantly, stem/progenitor cells may also accumulate in the intima, where they differentiate into smooth muscle cells. However, several issues concerning the contribution of stem cells to the pathogenesis of transplant arteriosclerosis are controversial, eg, whether bone marrow–derived stem cells can differentiate into smooth muscle cells that form neointimal lesions of the vessel wall. This review summarizes recent research on the role of stem cells in transplant arteriosclerosis, discusses the mechanisms of stem cell homing and differentiation into mature endothelial and smooth muscle cells, and highlights the controversial issues in the field.
Collapse
Affiliation(s)
- Qingbo Xu
- From the Cardiovascular Division, King’s College London, United Kingdom
| |
Collapse
|
16
|
Liu C, Pan S, Jiang H, Sun X. Gene transfer of antisense B7.1 attenuates acute rejection against splenic allografts in rats. Transplant Proc 2007; 39:3391-3395. [PMID: 18089391 DOI: 10.1016/j.transproceed.2007.08.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 06/18/2007] [Accepted: 08/08/2007] [Indexed: 01/01/2023]
Abstract
Blockade of CD80-CD28 costimulatory pathway induces unresponsiveness of T cells to alloantigens and protects allografts against immune rejection in numerous animal models. The aim of this study was to investigate whether blocking expression of B7.1 (CD80) on donor splenocytes by an antisense technique protected splenic allografts against immune rejection. Splenic grafts from Wistar-Furth rats were intra-arterially transfused with an antisense B7.1 expression vector, before they were transplanted into Sprague-Dawley rats. The rats were sacrificed at scheduled times, and the splenic allografts histologically examined. Antisense gene transfer resulted in marked down-regulation of B7.1 in donor spleens, hyporesponsiveness of recipient T cells, and attenuated acute immune rejection against splenic allografts. No obvious damage to skin, liver, or gut due to graft-versus-host disease was detected in the recipients. In conclusion, blocking expression of B7.1 in donor spleens by antisense gene therapy represented a potential alloantigen-specific immunosuppressive strategy to inhibit acute rejection against splenic allografts.
Collapse
Affiliation(s)
- C Liu
- Department of General Surgery, the Fourth Affiliated Hospital, and the First Clinical Medical School, Harbin Medical University, China
| | | | | | | |
Collapse
|