1
|
Voloshin N, Tyurin-Kuzmin P, Karagyaur M, Akopyan Z, Kulebyakin K. Practical Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives. Int J Mol Sci 2023; 24:12716. [PMID: 37628897 PMCID: PMC10454025 DOI: 10.3390/ijms241612716] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In modern science, immortalized cells are not only a convenient tool in fundamental research, but they are also increasingly used in practical medicine. This happens due to their advantages compared to the primary cells, such as the possibility to produce larger amounts of cells and to use them for longer periods of time, the convenience of genetic modification, the absence of donor-to-donor variability when comparing the results of different experiments, etc. On the other hand, immortalization comes with drawbacks: possibilities of malignant transformation and/or major phenotype change due to genetic modification itself or upon long-term cultivation appear. At first glance, such issues are huge hurdles in the way of immortalized cells translation into medicine. However, there are certain ways to overcome such barriers that we describe in this review. We determined four major areas of usage of immortalized cells for practical medicinal purposes, and each has its own means to negate the drawbacks associated with immortalization. Moreover, here we describe specific fields of application of immortalized cells in which these problems are of much lesser concern, for example, in some cases where the possibility of malignant growth is not there at all. In general, we can conclude that immortalized cells have their niches in certain areas of practical medicine where they can successfully compete with other therapeutic approaches, and more preclinical and clinical trials with them should be expected.
Collapse
Affiliation(s)
- Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Zhanna Akopyan
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
2
|
Sato M, Saitoh I, Inada E, Nakamura S, Watanabe S. Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-Directed In Vivo Gene Delivery of Transposons in Mice. Stem Cells Int 2019; 2019:5129526. [PMID: 31281376 PMCID: PMC6589260 DOI: 10.1155/2019/5129526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isolation of hepatocytes and their culture in vitro represent important avenues to explore the function of such cells. However, these studies are often difficult to perform because of the inability of hepatocytes to proliferate in vitro. Immortalization of isolated hepatocytes is thus an important step toward continuous in vitro culture. For cellular immortalization, integration of relevant genes into the host chromosomes is a prerequisite. Transposons, which are mobile genetic elements, are known to facilitate integration of genes of interest (GOI) into chromosomes in vitro and in vivo. Here, we proposed that a combination of transposon- and liver-directed introduction of nucleic acids may confer acquisition of unlimited cellular proliferative potential on hepatocytes, enabling the possible isolation of immortalized hepatocyte cell lines, which has often failed using more traditional immortalization methods.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
3
|
Blais EM, Rawls KD, Dougherty BV, Li ZI, Kolling GL, Ye P, Wallqvist A, Papin JA. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat Commun 2017; 8:14250. [PMID: 28176778 PMCID: PMC5309818 DOI: 10.1038/ncomms14250] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022] Open
Abstract
The laboratory rat has been used as a surrogate to study human biology for more than a century. Here we present the first genome-scale network reconstruction of Rattus norvegicus metabolism, iRno, and a significantly improved reconstruction of human metabolism, iHsa. These curated models comprehensively capture metabolic features known to distinguish rats from humans including vitamin C and bile acid synthesis pathways. After reconciling network differences between iRno and iHsa, we integrate toxicogenomics data from rat and human hepatocytes, to generate biomarker predictions in response to 76 drugs. We validate comparative predictions for xanthine derivatives with new experimental data and literature-based evidence delineating metabolite biomarkers unique to humans. Our results provide mechanistic insights into species-specific metabolism and facilitate the selection of biomarkers consistent with rat and human biology. These models can serve as powerful computational platforms for contextualizing experimental data and making functional predictions for clinical and basic science applications. The rat is a widely-used model for human biology, but we must be aware of metabolic differences. Here, the authors reconstruct the genome-scale metabolic network of the rat, and after reconciling it with an improved human metabolic model, demonstrate the power of the models to integrate toxicogenomics data, providing species-specific biomarker predictions in response to a panel of drugs.
Collapse
Affiliation(s)
- Edik M Blais
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Kristopher D Rawls
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Bonnie V Dougherty
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Zhuo I Li
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Glynis L Kolling
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Ping Ye
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| |
Collapse
|
4
|
Stem Cell Therapies for Treatment of Liver Disease. Biomedicines 2016; 4:biomedicines4010002. [PMID: 28536370 PMCID: PMC5344247 DOI: 10.3390/biomedicines4010002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
Cell therapy is an emerging form of treatment for several liver diseases, but is limited by the availability of donor livers. Stem cells hold promise as an alternative to the use of primary hepatocytes. We performed an exhaustive review of the literature, with a focus on the latest studies involving the use of stem cells for the treatment of liver disease. Stem cells can be harvested from a number of sources, or can be generated from somatic cells to create induced pluripotent stem cells (iPSCs). Different cell lines have been used experimentally to support liver function and treat inherited metabolic disorders, acute liver failure, cirrhosis, liver cancer, and small-for-size liver transplantations. Cell-based therapeutics may involve gene therapy, cell transplantation, bioartificial liver devices, or bioengineered organs. Research in this field is still very active. Stem cell therapy may, in the future, be used as a bridge to either liver transplantation or endogenous liver regeneration, but efficient differentiation and production protocols must be developed and safety must be demonstrated before it can be applied to clinical practice.
Collapse
|
5
|
Alsaggar M, Liu D. Liver-Targeted Gene and Cell Therapies: An Overview. GENE THERAPY AND CELL THERAPY THROUGH THE LIVER 2016:1-11. [DOI: 10.1007/978-4-431-55666-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Palakkan AA, Drummond R, Anderson RA, Greenhough S, Tv K, Hay DC, Ross JA. Polarisation and functional characterisation of hepatocytes derived from human embryonic and mesenchymal stem cells. Biomed Rep 2015; 3:626-636. [PMID: 26405536 DOI: 10.3892/br.2015.480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023] Open
Abstract
Adult hepatocytes are polarised with their apical and basolateral membranes separated from neighbouring cells by tight junction proteins. Although efficient differentiation of pluripotent stem cells to hepatocytes has been achieved, the formation of proper polarisation in these cells has not been thoroughly investigated. In the present study, human embryonic stem cells (hESCs) and human mesenchymal stem cells (hMSCs) were differentiated to hepatocyte-like cells and the derived hepatocytes were characterised for mature hepatocyte markers. The secretion of hepatic proteins, expression of hepatic genes and the functional hepatic polarisation of stem cell-derived hepatocytes, foetal hepatocytes and the HepG2 hepatic cell line were evaluated and the different lines were compared. The results indicate that hESC-derived hepatocytes are phenotypically more robust and functionally more efficient compared with the hMSC-derived hepatocytes, suggesting their suitability for toxicity studies.
Collapse
Affiliation(s)
- Anwar Azad Palakkan
- Tissue Injury and Repair Group, MRC Centre for Regenerative Medicine, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK ; Tissue Culture Laboratory, Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695012, India
| | - Robert Drummond
- Tissue Injury and Repair Group, MRC Centre for Regenerative Medicine, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK
| | - Richard Alexander Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Sebastian Greenhough
- MRC Centre for Regenerative Medicine, SCRM Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
| | - Kumary Tv
- Tissue Culture Laboratory, Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695012, India
| | - David Colin Hay
- MRC Centre for Regenerative Medicine, SCRM Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
| | - James Alexander Ross
- Tissue Injury and Repair Group, MRC Centre for Regenerative Medicine, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK ; MRC Centre for Regenerative Medicine, SCRM Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
| |
Collapse
|
7
|
Lee SY, Kim HJ, Choi D. Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int J Stem Cells 2015; 8:36-47. [PMID: 26019753 PMCID: PMC4445708 DOI: 10.15283/ijsc.2015.8.1.36] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022] Open
Abstract
The liver is the largest organ in the body; it has a complex architecture, wide range of functions and unique regenerative capacity. The growing incidence of liver diseases worldwide requires increased numbers of liver transplant and leads to an ongoing shortage of donor livers. To meet the huge demand, various alternative approaches are being investigated including, hepatic cell transplantation, artificial devices and bioprinting of the organ itself. Adult hepatocytes are the preferred cell sources, but they have limited availability, are difficult to isolate, propagate poor and undergo rapid functional deterioration in vitro. There have been efforts to overcome these drawbacks; by improving culture condition for hepatocytes, providing adequate extracellular matrix, co-culturing with extra-parenchymal cells and identifying other cell sources. Differentiation of human stem cells to hepatocytes has become a major interest in the field of stem cell research and has progressed greatly. At the same time, use of decellularized organ matrices and 3 D printing are emerging cutting-edge technologies for tissue engineering, opening up new paths for liver regenerative medicine. This review provides a compact summary of the issues, and the locations of liver support systems and tissue engineering, with an emphasis on reproducible and useful sources of hepatocytes including various candidates formed by differentiation from stem cells.
Collapse
Affiliation(s)
- Soo Young Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Han Joon Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes. Methods Mol Biol 2015; 1250:53-76. [PMID: 26272134 PMCID: PMC4579543 DOI: 10.1007/978-1-4939-2074-7_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium,
| | | | | | | |
Collapse
|
9
|
Eva R, Bram DC, Joery DK, Tamara V, Geert B, Vera R, Mathieu V. Strategies for immortalization of primary hepatocytes. J Hepatol 2014; 61:925-43. [PMID: 24911463 PMCID: PMC4169710 DOI: 10.1016/j.jhep.2014.05.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/17/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
The liver has the unique capacity to regenerate in response to a damaging event. Liver regeneration is hereby largely driven by hepatocyte proliferation, which in turn relies on cell cycling. The hepatocyte cell cycle is a complex process that is tightly regulated by several well-established mechanisms. In vitro, isolated hepatocytes do not longer retain this proliferative capacity. However, in vitro cell growth can be boosted by immortalization of hepatocytes. Well-defined immortalization genes can be artificially overexpressed in hepatocytes or the cells can be conditionally immortalized leading to controlled cell proliferation. This paper discusses the current immortalization techniques and provides a state-of-the-art overview of the actually available immortalized hepatocyte-derived cell lines and their applications.
Collapse
Affiliation(s)
- Ramboer Eva
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - De Craene Bram
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - De Kock Joery
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vanhaecke Tamara
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Berx Geert
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Rogiers Vera
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vinken Mathieu
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
10
|
Närhi MO, Nordström K. Regulation of cell-based therapeutic products intended for human applications in the EU. Regen Med 2014; 9:327-51. [PMID: 24935044 DOI: 10.2217/rme.14.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIMS Recent developments in the field of cell-based therapeutic products (CBTPs) have forced the EU to revise its legislation on therapeutic products by enacting several new legal instruments. In this study, we investigate how CBTPs are regulated and what determines their regulatory classification. Furthermore, we compare the regulatory burden between CBTPs in different product categories. MATERIALS & METHODS Product categories covering CBTPs were identified and characteristics critical for the regulatory classification of a CBTP were determined in each category. The effect of the critical characteristics on the classification was evaluated by constructing a decision tree that covers all possible combinations of the critical characteristics. Differences in the regulatory burden between CBTPs were evaluated by comparing regulations crucial for placing a therapeutic product on the EU market between the product categories. RESULTS Regulation of CBTPs has been divided between the main product categories of the EU legal framework for therapeutic products on the basis of the characteristics of the cells that the CBTPs contain. The regulatory burden is lowest for CBTPs regulated as blood, cells or tissues, and highest for CBTPs regulated as medicinal products. CONCLUSION CBTPs exist in all product categories of the EU legal framework for therapeutic products. However, the current framework does not cover all possible CBTPs. Furthermore, our results indicate that the regulatory burden of a CBTP is related to the risk it may pose to the health and safety of recipients.
Collapse
Affiliation(s)
- Marko O Närhi
- Department of Biotechnology & Chemical Technology, Aalto University, School of Chemical Technology, Espoo, Finland
| | | |
Collapse
|
11
|
Giri S, Bader A. Shortcut route for generation of functional hepatocyte cells from human skin allogenically for autologous treatment of chronic liver diseases. J Clin Exp Hepatol 2014; 4:74-8. [PMID: 25755540 PMCID: PMC4188835 DOI: 10.1016/j.jceh.2014.03.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shibashish Giri
- Address for correspondence: Shibashish Giri, Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center (BBZ), Universität Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany. Tel.: +49 341 9731353; fax: +49 341 9731329.
| | | |
Collapse
|
12
|
Palakkan AA, Hay DC, Anil Kumar PR, Kumary TV, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int 2013; 33:666-76. [PMID: 23490085 DOI: 10.1111/liv.12134] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/27/2013] [Indexed: 02/13/2023]
Abstract
Liver diseases are of major concern as they now account for millions of deaths annually. As a result of the increased incidence of liver disease, many patients die on the transplant waiting list, before a donor organ becomes available. To meet the huge demand for donor liver, alternative approaches using liver tissue engineering principles are being actively pursued. Even though adult hepatocytes, the primary cells of the liver are most preferred for tissue engineering of liver, their limited availability, isolation from diseased organs, lack of in vitro propagation and deterioration of function acts as a major drawback to their use. Various approaches have been taken to prevent the functional deterioration of hepatocytes including the provision of an adequate extracellular matrix and co-culture with non-parenchymal cells of liver. Great progress has also been made to differentiate human stem cells to hepatocytes and to use them for liver tissue engineering applications. This review provides an overview of recent challenges, issues and cell sources with regard to liver tissue engineering.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, University of Edinburgh - MRC Centre for Regenerative Medicine, Edinburgh, UK
| | | | | | | | | |
Collapse
|
13
|
Golse N, Bucur PO, Adam R, Castaing D, Sa Cunha A, Vibert E. New paradigms in post-hepatectomy liver failure. J Gastrointest Surg 2013; 17:593-605. [PMID: 23161285 DOI: 10.1007/s11605-012-2048-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/04/2012] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Liver failure after hepatectomy remains the most feared postoperative complication. Many risk factors are already known, related to patient's comorbidities, underlying liver disease, received treatments and type of resection. Preoperative assessment of functional liver reserve must be a priority for the surgeon. METHODS Physiopathology of post-hepatectomy liver failure is not comparable to fulminant liver failure. Liver regeneration is an early phenomenon whose cellular mechanisms are beginning to be elucidated and allowing most of the time to quickly recover a functional organ. In some cases, microscopic and macroscopic disorganization appears. The hepatocyte hyperproliferation and the asynchronism between hepatocytes and non-hepatocyte cells mitosis probably play a major role in this pathogenesis. RESULTS Many peri- or intra-operative techniques try to prevent the occurrence of this potentially lethal complication, but a better understanding of involved mechanisms might help to completely avoid it, or even to extend the possibilities of resection. CONCLUSION Future prevention and management may include pharmacological slowing of proliferation, drug or physical modulation of portal flow to reduce shear-stress, stem cells or immortalized hepatocytes injection, and liver bioreactors. Everything must be done to avoid the need for transplantation, which remains today the most efficient treatment of liver failure.
Collapse
Affiliation(s)
- Nicolas Golse
- Centre Hépatobiliaire, Hôpital Paul Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris XI, Paris, France.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure. In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the key words such as liver failure, bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines, the incorporation of BAL with GS-HepG2 cells or alginate-encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functional hepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | |
Collapse
|
15
|
Abstract
Cell therapies, which include bioartificial liver support and hepatocyte transplantation, have emerged as potential treatments for a variety of liver diseases. Acute liver failure, acute-on-chronic liver failure, and inherited metabolic liver diseases are examples of liver diseases that have been successfully treated with cell therapies at centers around the world. Cell therapies also have the potential to be widely applied to other liver diseases, including noninherited liver diseases and liver cancer, and to improve the success of liver transplantation. Here we briefly summarize current concepts of cell therapy for liver diseases.
Collapse
Affiliation(s)
- Yue Yu
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN,Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - James E. Fisher
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| | - Joseph B. Lillegard
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| | - Brian Rodysill
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| | | | - Scott L. Nyberg
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
16
|
Francipane MG, Cervello M, Vizzini GB, Pietrosi G, Montalto G. Management of Liver Failure: From Transplantation to Cell-Based Therapy. CELL MEDICINE 2011; 2:9-25. [PMID: 26998399 DOI: 10.3727/215517911x575993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The severe shortage of deceased donor organs has driven a search for alternative methods of treating liver failure. In this context, cell-based regenerative medicine is emerging as a promising interdisciplinary field of tissue repair and restoration, able to contribute to improving health in a minimally invasive fashion. Several cell types have allowed long-term survival in experimental models of liver injury, but their therapeutic potential in humans should be regarded with deep caution, because few clinical trials are currently available and the number of patients enrolled so far is too small to assess benefits versus risks. This review summarizes the current literature on the physiological role of endogenous stem cells in liver regeneration and on the therapeutic benefits of exogenous stem cell administration with specific emphasis on the potential clinical uses of mesenchymal stem cells. Moreover, critical points that still need clarification, such as the exact identity of the stem-like cell population exerting the beneficial effects, as well as the limitations of stem cell-based therapies, are discussed.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy," National Research Council (CNR), Palermo, Italy; †Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy," National Research Council (CNR) , Palermo , Italy
| | - Giovanni Battista Vizzini
- ‡ Istituto Mediterraneo Trapianti e Terapie ad Alta Specializzazione, University of Pittsburgh Medical Center in Italy , Palermo , Italy
| | - Giada Pietrosi
- ‡ Istituto Mediterraneo Trapianti e Terapie ad Alta Specializzazione, University of Pittsburgh Medical Center in Italy , Palermo , Italy
| | - Giuseppe Montalto
- † Department of Internal Medicine and Specialties, University of Palermo , Palermo , Italy
| |
Collapse
|