1
|
Li N, Sun G, Wang S, Wang Y, Xiu Z, Sun D, Guo X, Zhang Y, Ma X. Engineering islet for improved performance by optimized reaggregation in alginate gel beads. Biotechnol Appl Biochem 2017; 64:400-405. [PMID: 26936645 DOI: 10.1002/bab.1489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
After islet isolation, diffusion has become the main mechanism to transport oxygen and nutrients into the core of islets. However, diffusion has limitations, by which nutrients cannot effectively reach the core of large islets and can eventually cause core cell death and islet loss. This problem can be resolved by dispersing islets into single islet cells, but single islet cells do not exhibit insulin release function in in vitro culture. In this study, we intended to establish a new islet engineering approach by forming islet cell clusters to improve islet survival and function. Therefore, alginate gels were used to encapsulate islet cells to form artificial islets after dispersion of islets into single cells. The shape of the islet cell clusters was similar to native islets, and the size of the islet cell clusters was limited to a maximum diameter of 100 μm. By limiting the diameter of this engineered islet cell cluster, cell viability was nearly 100%, a significant improvement over natural islets. Importantly, islet cell clusters express the genes of islets, including Isl-1, Gcg, and insulin-1, and insulin secretion ability was maintained in vitro.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China.,School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guangwei Sun
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Shujun Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| | - Yu Wang
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhilong Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| | - Dongsheng Sun
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China.,School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Guo
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Ying Zhang
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Xiaojun Ma
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| |
Collapse
|
2
|
Shalaly ND, Ria M, Johansson U, Åvall K, Berggren PO, Hedhammar M. Silk matrices promote formation of insulin-secreting islet-like clusters. Biomaterials 2016; 90:50-61. [PMID: 26986856 DOI: 10.1016/j.biomaterials.2016.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/29/2022]
Abstract
Ex vivo expansion of endocrine cells constitutes an interesting alternative to be able to match the unmet need of transplantable pancreatic islets. However, endocrine cells become fragile once removed from their extracellular matrix (ECM) and typically become senescent and loose insulin expression during conventional 2D culture. Herein we develop a protocol where 3D silk matrices functionalized with ECM-derived motifs are used for generation of insulin-secreting islet-like clusters from mouse and human primary cells. The obtained clusters were shown to attain an islet-like spheroid shape and to maintain functional insulin release upon glucose stimulation in vitro. Furthermore, in vivo imaging of transplanted murine clusters showed engraftment with increasing vessel formation during time. There was no sign of cell death and the clusters maintained or increased in size throughout the period, thus suggesting a suitable cluster size for transplantation.
Collapse
Affiliation(s)
- Nancy Dekki Shalaly
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Massimiliano Ria
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, S-17176 Stockholm, Sweden
| | - Ulrika Johansson
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Karin Åvall
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, S-17176 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, S-17176 Stockholm, Sweden
| | - My Hedhammar
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden.
| |
Collapse
|
3
|
Rady B, Chen Y, Vaca P, Wang Q, Wang Y, Salmon P, Oberholzer J. Overexpression ofE2F3promotes proliferation of functional human β cells without induction of apoptosis. Cell Cycle 2014; 12:2691-702. [DOI: 10.4161/cc.25834] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Ju MK, Jeong JH, Lee JI, Kim YS, Kim MS. Proliferation and functional assessment of pseudo-islets with the use of pancreatic endocrine cells. Transplant Proc 2014; 45:1885-8. [PMID: 23769063 DOI: 10.1016/j.transproceed.2012.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/31/2012] [Indexed: 11/26/2022]
Abstract
Many obstacles beset islet transplantation, particularly insufficient tissue mass. Previously, we reported production of pseudo-islets. In addition, there have been reports in which coculture with pancreatic islet and bone marrow mesenchymal stem cells (BMSCs) demonstrated positive effects on pancreatic islet function. The purpose of this study was to perform morphologic and functional evaluations of pancreatic pseudo-islets cocultured with BMSCs. Pancreatic endocrine cells (PECs) were collected with a previously reported method; bone marrow was aspirated from the rat femur. Subsequently, PECs and BMSCs cocultured at high density on low-cell-binding culture dishes kept suspended by shaking. The functionality and characteristics of the mixed cell complexes were evaluated by glucose challenge, insulin enzyme-linked immunosorbent assay, reverse-transcription polymerase chain reaction, and immunohistochemistry. Through expansion for 2 weeks in continuous culture passages, ∼1 million PECs were recovered after aggregation. They presented spherical shapes and sizes similar to naïve islets, according to phase-contrast microscopy. The spheroid aggregates of pancreatic islet cells and BMSCs showed fortified functions and maintained viability. In conclusion, PECs served as a cell source for pseudo-islets, which were both morphologically and genetically similar to naïve islets. We also suggest a manufacturing method for mixed cellular complexes from 2 different origins that can improve secretion ability and cell differentiation.
Collapse
Affiliation(s)
- M K Ju
- Research Institute for Transplantation, Yonsei University Health System, Seoul, South Korea; Department of Transplantation Surgery, Yonsei University Health System, Seoul, South Korea
| | | | | | | | | |
Collapse
|
6
|
Jo Y, Nam B, Kim B, Nemeno J, Lee S, Yeo J, Yang W, Park S, Kim Y, Lee J. Pseudoislet of Hybrid Cellular Spheroids From Commercial Cell Lines. Transplant Proc 2013; 45:3113-7. [DOI: 10.1016/j.transproceed.2013.07.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Lee JI, Kim JY, Kim HW, Bae SJ, Joo DJ, Huh KH, Fang YH, Jeong JH, Kim MS, Kim YS. Long-term viability of transplanted hybrid cellular spheroids within chondrocyte sheets. Transplant Proc 2012; 44:1162-5. [PMID: 22564653 DOI: 10.1016/j.transproceed.2012.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Encapsulation of transplanted cells within an immunoisolating membrane may provide a new strategy for protecting these cells from recipient immune responses without the use of immunosuppressive drugs. We have previously reported a novel concept of immunoisolation and immunodelusion using recipient cells instead of traditional artificial materials. We developed a chondrocyte sheeting immunodelusive immunoisolated bioartificial pancreas (CSI-BAP) that would enable transplantation of cells across allogeneic and xenogeneic barriers without the cells being recognized as donor cells and without the need for immunosuppression. Recently, we have constructed hybrid cellular spheroids (HCSs) containing cells from two different cell lines (RIN-5F, an insulin-secreting cell line, and Hep-G2, a hepatocellular carcinoma cell line) to enhance the function and biocompatibility of the HCSs. These HCSs were then encapsulated with multiple layers of chondrocyte sheets obtained from the auricular cartilage of Sprague-Dawley (SD) rats. The in vitro ability of the CSI-BAP to secrete insulin was tested before transplantation. Histological evaluation of CSI-BAP chondrocyte microencapsulated immunoisolated islet morphology and viability of allogeneic or xenogeneic cell lines was performed 100 days after the CSI-BAP was transplanted into SD rats. Morphological evaluations revealed good viability of the islets and progression of islet encapsulation. In vitro insulin secretion from the CSI-BAP was well maintained. Additionally, insulin and albumin secretion from the CSI-BAP was confirmed by in vivo immunohistochemical examination. Moreover, the cell lines transplanted into the subcutaneous space in the form of HCSs within the chondrocyte sheets showed good viability of more than 100 days and sustained insulin and albumin secreting ability.
Collapse
Affiliation(s)
- J I Lee
- Department of Biomedical Science and Technology, Regenerative Medicine Laboratory, Konkuk University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Joo D, Kim J, Lee J, Kim Y, Fang Y, Jeong J, Kim M, Huh K. Impact of Coculture with Ischemic Preconditioned Hepatocellular Carcinoma Cell Line (Hep-G2) Cells on Insulin Secreting Function of Rat Insulin-secreting Cell Line (RIN-5F) Cells. Transplant Proc 2012; 44:1099-103. [DOI: 10.1016/j.transproceed.2012.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|