1
|
Zhu XL, Wang JZ, Lyu M, Han TT, Zheng FM, Chen YY, Zhang YY, Chen H, Zhang XH, Xu LP, Huang XJ, Wang Y. [Clinical analysis of allogeneic hematopoietic cell transplantation in 9 patients with hematological malignancies complicated by Gilbert's syndrome]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:851-855. [PMID: 39414610 PMCID: PMC11518900 DOI: 10.3760/cma.j.cn121090-20240311-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 10/18/2024]
Abstract
From January 1, 2013, to March 1, 2024, nine patients with hematological malignancies complicated by Gilbert's syndrome in Peking University People's Hospital underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). The patients comprised seven male and two female cases, with a median age of 38 (13-60) years old. Among them, three cases were acute myeloid leukemia, three cases were acute lymphocytic leukemia, two cases were myelodysplastic syndrome, and one case was chronic myelomonocytic leukemia. None of the patients had viral hepatitis. Of the nine cases, seven cases received the Bu-Cy+ATG regimen, while the other two cases received the TBI-Cy+ATG regimen (Bu, busulfan; Cy, cyclophosphamide; ATG, antithymocyte immunoglobulin; and TBI, total body irradiation). All patients achieved neutrophil engraftment, and eight received platelet engraftment. The median total bilirubin level was 45.4 (22.5-71.2) μmol/L before transplantation and 22.0 (18.0-37.2) μmol/L on -1d of preconditioning. The total bilirubin level on +20d after the transplantation of eight patients decreased compared with the baseline level before transplantation. Moreover, one patient had a transient increase in the total bilirubin level on +5d after transplantation, which was considered to be attributed to the toxicity of Bu. No patients were complicated by hepatic veno-occlusive disease. The median follow-up time was 739 (42-2 491) days. During the follow-up period, one patient died of recurrence, and the remaining eight patients had disease-free survival events.
Collapse
Affiliation(s)
- X L Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - J Z Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - M Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - T T Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - F M Zheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Y Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Y Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - H Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - L P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
2
|
Balakrishnan B, Illangeswaran RSS, Rajamani BM, Arunachalam AK, Pai AA, Mohanan E, Srivastava A, Mathews V, Balasubramanian P. Metformin pretreatment ameliorates busulfan-induced liver endothelial toxicity during haematopoietic stem cell transplantation. PLoS One 2023; 18:e0293311. [PMID: 37883349 PMCID: PMC10602364 DOI: 10.1371/journal.pone.0293311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
The success of Haematopoietic cell transplantation (HCT) is often limited by regimen-related toxicity (RRT) caused by conditioning regimen drugs. Among different conditioning drugs, busulfan (Bu) and treosulfan (Treo), although widely used in HCT, exhibit different toxicity profiles, the mechanism of which is still unclear. Here we investigated the effects of Bu and Treo in endothelial cells. While both Bu and Treo induced DNA damage in endothelial cells, we observed Bu alone to induce oxidative stress and sustained activation of phospho-ERK1/2, leading to apoptosis. However, Treo-treated cells exhibited no oxidative stress/apoptosis of endothelial cells. Screening of pharmacological inhibitors of both ROS and p-ERK revealed that metformin effectively ameliorates Bu-mediated toxicity in endothelial cells. In Balb/c mice, we observed a significant reduction in bone marrow endothelial cells in Bu-treated mice compared to Treo-treated mice. Further, liver sinusoidal endothelial cells (LSEC) was damaged by Bu, which is implicated in liver vasculature and their functional capacity to uptake FITC-albumin. However, Treo-treated mice liver vasculature was morphologically and functionally normal. When mice were pretreated with metformin followed by Bu, LSECs damage was ameliorated morphologically and functionally. Bone marrow transplants done on these mice did not affect the engraftment of donor cells.
Collapse
Affiliation(s)
| | | | | | | | - Aswin Anand Pai
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Poonkuzhali Balasubramanian
- Department of Haematology, Christian Medical College, Vellore, India
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, India
| |
Collapse
|
3
|
Habas E, Akbar R, Farfar K, Arrayes N, Habas A, Rayani A, Alfitori G, Habas E, Magassabi Y, Ghazouani H, Aladab A, Elzouki AN. Malignancy diseases and kidneys: A nephrologist prospect and updated review. Medicine (Baltimore) 2023; 102:e33505. [PMID: 37058030 PMCID: PMC10101313 DOI: 10.1097/md.0000000000033505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
Acute kidney injury (AKI), chronic renal failure, and tubular abnormalities represent the kidney disease spectrum of malignancy. Prompt diagnosis and treatment may prevent or reverse these complications. The pathogenesis of AKI in cancer is multifactorial. AKI affects outcomes in cancer, oncological therapy withdrawal, increased hospitalization rate, and hospital stay. Renal function derangement can be recovered with early detection and targeted therapy of cancers. Identifying patients at higher risk of renal damage and implementing preventive measures without sacrificing the benefits of oncological therapy improve survival. Multidisciplinary approaches, such as relieving obstruction, hydration, etc., are required to minimize the kidney injury rate. Different keywords, texts, and phrases were used to search Google, EMBASE, PubMed, Scopus, and Google Scholar for related original and review articles that serve the article's aim well. In this nonsystematic article, we aimed to review the published data on cancer-associated kidney complications, their pathogenesis, management, prevention, and the latest updates. Kidney involvement in cancer occurs due to tumor therapy, direct kidney invasion by tumor, or tumor complications. Early diagnosis and therapy improve the survival rate. Pathogenesis of cancer-related kidney involvement is different and complicated. Clinicians' awareness of all the potential causes of cancer-related complications is essential, and a kidney biopsy should be conducted to confirm the kidney pathologies. Chronic kidney disease is a known complication in malignancy and therapies. Hence, avoiding nephrotoxic drugs, dose standardization, and early cancer detection are mandatory measures to prevent renal involvement.
Collapse
Affiliation(s)
- Elmukhtar Habas
- Facharzt Internal Medicine, Facharzt Nephrology, Medical Department, Hamad General Hospital, Doha, Qatar
| | - Raza Akbar
- Medical Department, Hamad General Hospital, Doha, Qatar
| | - Kalifa Farfar
- Facharzt Internal Medicine, Medical Department, Alwakra General Hospital, Alwakra, Qatar
| | - Nada Arrayes
- Medical Education Fellow, Lincoln Medical School, University of Lincoln, Lincoln, UK
| | - Aml Habas
- Hematology-Oncology Department, Tripoli Children Hospital, Tripoli, Libya
| | - Amnna Rayani
- Facharzt Pediatric, Facharzt Hemotoncology, Hematology-Oncology Department, Tripoli Children Hospital, Tripoli, Libya
| | | | - Eshrak Habas
- Medical Department, Tripoli Central Hospital, University of Tripoli, Tripoli, Libya
| | | | - Hafidh Ghazouani
- Quality Department, Senior Epidemiologist, Hamad Medical Corporation, Doha, Qatar
| | | | | |
Collapse
|
4
|
Critchley BJ, Gaspar HB, Benedetti S. Targeting the central nervous system in lysosomal storage diseases: Strategies to deliver therapeutics across the blood-brain barrier. Mol Ther 2023; 31:657-675. [PMID: 36457248 PMCID: PMC10014236 DOI: 10.1016/j.ymthe.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are multisystem inherited metabolic disorders caused by dysfunctional lysosomal activity, resulting in the accumulation of undegraded macromolecules in a variety of organs/tissues, including the central nervous system (CNS). Treatments include enzyme replacement therapy, stem/progenitor cell transplantation, and in vivo gene therapy. However, these treatments are not fully effective in treating the CNS as neither enzymes, stem cells, nor viral vectors efficiently cross the blood-brain barrier. Here, we review the latest advancements in improving delivery of different therapeutic agents to the CNS and comment upon outstanding questions in the field of neurological LSDs.
Collapse
Affiliation(s)
- Bethan J Critchley
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK
| | - H Bobby Gaspar
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; Orchard Therapeutics Ltd., London EC4N 6EU, UK
| | - Sara Benedetti
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
5
|
Smutova V, Pará C, Foret MK, Bennamoune N, Hung S, Spickler C, Riffon R, Rowe J, Festin S, Authier S. Non-Clinical Cell Therapy Development Using the NCG Mouse Model as a Test System. Int J Toxicol 2023; 42:232-253. [PMID: 36630195 DOI: 10.1177/10915818221150790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The NCG triple immunodeficient mice on a NOD/Nju background lack functional/mature T, B, and NK cells, and have reduced macrophage and dendritic cell function. This study characterized the NCG mouse model for toxicity, engraftment and tumorigenicity assessments of cell therapies, using CD34+ hHSPC adult mobilized cells with two myeloablation regimens.Mice received sub-lethal irradiation or busulfan and were then injected intravenously with CD34+ hHSPCs (1.0 x 106 cells/mouse) or PBS (control), while positive control animals received 2 x 106 HL-60 cells/mouse. hCD34+ cell donors were treated with the mobilizing agent G-CSF prior to leukapheresis. Following injections, mouse blood samples were collected to assess engraftment rates by flow cytometry with body weights recorded periodically up to 20 weeks post-cell injection. No significant clinical signs or body weight changes were observed. At week 10 post-cell injection, the peripheral blood chimerism of hCD45+ cells was above 20%. While mCD45+ concentration was constant between week 10 and 17 in whole blood samples, hCD45+ concentration and chimerism slightly decreased at week 17. However, chimerism remained above 10%, with busulfan-treated mice presenting higher values. Chimerism was further assessed by quantifying human Alu sequences in blood and multiple organs using qPCR. Alu sequences were most abundant in the spleen and bone marrow, while lowest in the testes. In the positive control group, expected mortalities due to tumorigenesis were observed between days 27 and 40 post-cell injection. Overall, study results may be used to inform study design and potential toxicological endpoints relevant to non-clinical cell therapy development.
Collapse
Affiliation(s)
| | - Camila Pará
- Charles River Laboratories, Laval, QC, Canada
| | | | | | - Selly Hung
- Charles River Laboratories, Laval, QC, Canada
| | | | | | - Jenny Rowe
- Charles River Laboratories, Wilmington, MA, USA
| | | | - Simon Authier
- Charles River Laboratories, Laval, QC, Canada.,Faculty of Veterinary Medicine, University of Montreal, Laval, QC, Canada
| |
Collapse
|
6
|
Neidemire-Colley L, Robert J, Ackaoui A, Dorrance AM, Guimond M, Ranganathan P. Role of endothelial cells in graft-versus-host disease. Front Immunol 2022; 13:1033490. [PMID: 36505438 PMCID: PMC9727380 DOI: 10.3389/fimmu.2022.1033490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
To date, the only curative treatment for high-risk or refractory hematologic malignancies non-responsive to standard chemotherapy is allogeneic hematopoietic transplantation (allo-HCT). Acute graft-versus-host disease (GVHD) is a donor T cell-mediated immunological disorder that is frequently fatal and the leading cause of non-relapse mortality (NRM) in patients post allo-HCT. The pathogenesis of acute GVHD involves recognition of minor and/or major HLA mismatched host antigens by donor T cells followed by expansion, migration and finally end-organ damage due to combination of inflammatory cytokine secretion and direct cytotoxic effects. The endothelium is a thin layer of endothelial cells (EC) that line the innermost portion of the blood vessels and a key regulator in vascular homeostasis and inflammatory responses. Endothelial cells are activated by a wide range of inflammatory mediators including bacterial products, contents released from dying/apoptotic cells and cytokines and respond by secreting cytokines/chemokines that facilitate the recruitment of innate and adaptive immune cells to the site of inflammation. Endothelial cells can also be damaged prior to transplant as well as by alloreactive donor T cells. Prolonged EC activation results in dysfunction that plays a role in multiple post-transplant complications including but not limited to veno-occlusive disease (VOD), transplant associated thrombotic microangiopathy (TA-TMA), and idiopathic pneumonia syndrome. In this mini review, we summarize the biology of endothelial cells, factors regulating EC activation and the role of ECs in inflammation and GVHD pathogenesis.
Collapse
Affiliation(s)
- Lotus Neidemire-Colley
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Jérémy Robert
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Antoine Ackaoui
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Adrienne M. Dorrance
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Martin Guimond
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada,Collège Bois de Boulogne, Montréal, QC, Canada,Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States,*Correspondence: Parvathi Ranganathan,
| |
Collapse
|
7
|
Tan YW, Shi YC. Early diagnostic value of liver stiffness measurement in hepatic sinusoidal obstruction syndrome induced by hematopoietic stem cell transplantation. World J Clin Cases 2022; 10:9241-9253. [PMID: 36159435 PMCID: PMC9477689 DOI: 10.12998/wjcc.v10.i26.9241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT)-sinusoidal obstruction syndrome (SOS), also known as veno-occlusive disease, is a clinical syndrome characterized by symptoms, such as right upper quadrant pain, jaundice, fluid retention, and hepatomegaly, and is caused by pre-treatment-related hepatotoxicity during the early stages after HSCT. Clinical diagnosis of HSCT-SOS is based on the revised Seattle or Baltimore standards. The revised standard by the European Society for Bone Marrow Transplantation in 2016 has good practicability and can be used in combination with these two standards. Eight studies have shown the value of liver stiffness measurement (LSM) in the early diagnosis of HSCT-SOS. Four studies investigated LSM specificity and sensitivity for the early diagnosis of HSCT-SOS. LSM can distinguish SOS from other post-HSCT complications, enabling a clear differential diagnosis. It has been shown that median LSM of patients with SOS is significantly higher than that of patients with other treatment-related liver complications (e.g., acute cholecystitis, cholangitis, antifungal drug-related liver injury, liver graft-versus-host disease, isolated liver biochemical changes, and fulminant Epstein Barr virus related hepatitis reactivation). Therefore, the above data confirmed the utility of LSM and strongly suggested that LSM improves the positive predictive value of the SOS diagnostic clinical score after allogeneic HSCT. Early diagnosis of SOS is beneficial in preventing severe HSCT complications.
Collapse
Affiliation(s)
- You-Wen Tan
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang 212003, Jiangsu Province, China
| | - Yi-Chun Shi
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang 212003, Jiangsu Province, China
| |
Collapse
|
8
|
[Chinese expert consensus on the diagnosis and management of sinusoidal obstruction syndrome after hematopoietic stem cell transplantation (2022)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:177-183. [PMID: 35405774 PMCID: PMC9072071 DOI: 10.3760/cma.j.issn.0253-2727.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/11/2022]
|
9
|
Hagenburg J, Savale L, Lechartier B, Ghigna MR, Chaumais MC, Jaïs X, Sitbon O, Humbert M, Montani D. Pulmonary hypertension associated with busulfan. Pulm Circ 2021; 11:20458940211030170. [PMID: 34616544 PMCID: PMC8488760 DOI: 10.1177/20458940211030170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Busulfan is widely used to treat malignant diseases, particularly for therapeutic intensification prior to an autologous stem cell graft. Numerous side effects consecutive to busulfan are described, but few descriptions of pulmonary hypertension exist, while bronchiolitis obliterans remains a rare complication. We report the clinical observations of four patients from the French Pulmonary Hypertension Registry who experienced subacute pulmonary hypertension after receiving busulfan as preparation regimen before an autologous stem cell graft for malignancies (Hodgkin's disease, Ewing's sarcoma and primary large B cell lymphoma of the brain). Patients experienced severe pulmonary arterial hypertension 2 to 4.5 months after busulfan administration. Pulmonary hypertension improved after treatment with approved drugs for pulmonary arterial hypertension and/or corticosteroids. During the follow-up period, two patients developed chronic respiratory insufficiency due to interstitial lung disease, leading to double lung transplantation. The pathological assessment of explanted lungs revealed interstitial lung fibrosis with advanced bronchiolar lesions and severe pulmonary vascular damage. Three of the four patients were still alive after 36 to 80 months and the fourth died unexpectedly and suddenly after 5 months. In conclusion, PAH is a rare but severe complication associated with busulfan chemotherapy in adults. Histological examinations provide evidence for diffuse pulmonary vascular damage combined with interstitial lung injury in most cases.
Collapse
Affiliation(s)
- Jean Hagenburg
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Benoit Lechartier
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Service d'anatomopathologie, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Marie-Camille Chaumais
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique Hôpitaux de Paris, Service de Pharmacie, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Xavier Jaïs
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Olivier Sitbon
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
10
|
Ju W, Lu W, Ding L, Bao Y, Hong F, Chen Y, Gao H, Xu X, Wang G, Wang W, Zhang X, Fu C, Qi K, Li Z, Xu K, Qiao J, Zeng L. PEDF promotes the repair of bone marrow endothelial cell injury and accelerates hematopoietic reconstruction after bone marrow transplantation. J Biomed Sci 2020; 27:91. [PMID: 32873283 PMCID: PMC7466818 DOI: 10.1186/s12929-020-00685-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background Preconditioning before bone marrow transplantation such as irradiation causes vascular endothelial cells damage and promoting the repair of damaged endothelial cells is beneficial for hematopoietic reconstitution. Pigment epithelium-derived factor (PEDF) regulates vascular permeability. However, PEDF’s role in the repair of damaged endothelial cells during preconditioning remains unclear. The purpose of our study is to investigate PEDF’s effect on preconditioning-induced damage of endothelial cells and hematopoietic reconstitution. Methods Damaged endothelial cells induced by irradiation was co-cultured with hematopoietic stem cells (HSC) in the absence or presence of PEDF followed by analysis of HSC number, cell cycle, colony formation and differentiation. In addition, PEDF was injected into mice model of bone marrow transplantation followed by analysis of bone marrow injury, HSC number and peripheral hematopoietic reconstitution as well as the secretion of cytokines (SCF, TGF-β, IL-6 and TNF-α). Comparisons between two groups were performed by student t-test and multiple groups by one-way or two-way ANOVA. Results Damaged endothelial cells reduced HSC expansion and colony formation, induced HSC cell cycle arrest and apoptosis and promoted HSC differentiation as well as decreased PEDF expression. Addition of PEDF increased CD144 expression in damaged endothelial cells and inhibited the increase of endothelial permeability, which were abolished after addition of PEDF receptor inhibitor Atglistatin. Additionally, PEDF ameliorated the inhibitory effect of damaged endothelial cells on HSC expansion in vitro. Finally, PEDF accelerated hematopoietic reconstitution after bone marrow transplantation in mice and promoted the secretion of SCF, TGF-β and IL-6. Conclusions PEDF inhibits the increased endothelial permeability induced by irradiation and reverse the inhibitory effect of injured endothelial cells on hematopoietic stem cells and promote hematopoietic reconstruction.
Collapse
Affiliation(s)
- Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenyi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lan Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yurong Bao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fei Hong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuting Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Gao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoqi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guozhang Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Weiwei Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China. .,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China. .,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China. .,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China. .,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China. .,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
11
|
Bonifazi F, Barbato F, Ravaioli F, Sessa M, Defrancesco I, Arpinati M, Cavo M, Colecchia A. Diagnosis and Treatment of VOD/SOS After Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:489. [PMID: 32318059 PMCID: PMC7147118 DOI: 10.3389/fimmu.2020.00489] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 03/03/2020] [Indexed: 12/27/2022] Open
Abstract
Hepatic veno-occlusive disease (VOD) or sinusoidal obstruction syndrome (SOS) is a rare complication characterized by hepatomegaly, right-upper quadrant pain, jaundice, and ascites, occurring after high-dose chemotherapy, hematopoietic stem cell transplantation (HSCT) and, less commonly, other conditions. We review pathogenesis, clinical appearance and diagnostic criteria, risk factors, prophylaxis, and treatment of the VOD occurring post-HSCT. The injury of the sinusoidal endothelial cells with loss of wall integrity and sinusoidal obstruction is the basis of development of postsinusoidal portal hypertension responsible for clinical syndrome. Risk factors associated with the onset of VOD and diagnostic tools have been recently updated both in the pediatric and adult settings and here are reported. Treatment includes supportive care, intensive management, and specific drug therapy with defibrotide. Because of its severity, particularly in VOD with associated multiorgan disease, prophylaxis approaches are under investigation. During the last years, decreased mortality associated to VOD/SOS has been reported being it attributable to a better intensive and multidisciplinary approach.
Collapse
Affiliation(s)
- Francesca Bonifazi
- Institute of Hematology "L. and A. Seràgnoli", S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Francesco Barbato
- Institute of Hematology "L. and A. Seràgnoli", S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Mariarosaria Sessa
- Institute of Hematology "L. and A. Seràgnoli", Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-Bologna University School of Medicine S. Orsola's University Hospital, Bologna, Italy
| | - Irene Defrancesco
- Institute of Hematology "L. and A. Seràgnoli", S. Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mario Arpinati
- Institute of Hematology "L. and A. Seràgnoli", S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Michele Cavo
- Institute of Hematology "L. and A. Seràgnoli", S. Orsola-Malpighi University Hospital, Bologna, Italy.,Institute of Hematology "L. and A. Seràgnoli", Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-Bologna University School of Medicine S. Orsola's University Hospital, Bologna, Italy
| | - Antonio Colecchia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Gastroenterology Unit, Borgo Trento University Hospital, Verona, Italy
| |
Collapse
|
12
|
Kim YH, Cho KA, Lee HJ, Park M, Shin SJ, Park JW, Woo SY, Ryu KH. Conditioned Medium from Human Tonsil-Derived Mesenchymal Stem Cells Enhances Bone Marrow Engraftment via Endothelial Cell Restoration by Pleiotrophin. Cells 2020; 9:cells9010221. [PMID: 31952360 PMCID: PMC7017309 DOI: 10.3390/cells9010221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cotransplantation of mesenchymal stem cells (MSCs) with hematopoietic stem cells (HSCs) has been widely reported to promote HSC engraftment and enhance marrow stromal regeneration. The present study aimed to define whether MSC conditioned medium could recapitulate the effects of MSC cotransplantation. Mouse bone marrow (BM) was partially ablated by the administration of a busulfan and cyclophosphamide (Bu–Cy)-conditioning regimen in BALB/c recipient mice. BM cells (BMCs) isolated from C57BL/6 mice were transplanted via tail vein with or without tonsil-derived MSC conditioned medium (T-MSC CM). Histological analysis of femurs showed increased BM cellularity when T-MSC CM or recombinant human pleiotrophin (rhPTN), a cytokine readily secreted from T-MSCs with a function in hematopoiesis, was injected with BMCs. Microstructural impairment in mesenteric and BM arteriole endothelial cells (ECs) were observed after treatment with Bu–Cy-conditioning regimen; however, T-MSC CM or rhPTN treatment restored the defects. These effects by T-MSC CM were disrupted in the presence of an anti-PTN antibody, indicating that PTN is a key mediator of EC restoration and enhanced BM engraftment. In conclusion, T-MSC CM administration enhances BM engraftment, in part by restoring vasculature via PTN production. These findings highlight the potential therapeutic relevance of T-MSC CM for increasing HSC transplantation efficacy.
Collapse
Affiliation(s)
- Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Hyun-Ji Lee
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Minhwa Park
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Sang-Jin Shin
- Department of Orthopaedic Surgery, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea;
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea;
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea
- Correspondence: ; Tel.: +82-2-6986-1666; Fax: +82-2-6986-7000
| |
Collapse
|
13
|
Levy M, Moshous D, Szezepanski I, Galmiche L, Castelle M, Lesage F, Dupic L, Neven B, Fischer A, Blanche S, Bonnet D. Pulmonary hypertension after bone marrow transplantation in children. Eur Respir J 2019; 54:13993003.00612-2019. [PMID: 31649064 DOI: 10.1183/13993003.00612-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/13/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pulmonary hypertension is a rare but important cause of mortality after haematopoietic stem cell transplantation (HSCT) in children. This complication is poorly characterised in the literature. We report here a series of children who developed pulmonary hypertension after HSCT. METHODS Between January 2008 and December 2015, we retrospectively analysed 366 children who underwent HSCT (age range 0.5-252 months; median 20.3 months). During the post-HSCT course, echocardiography scans motivated by respiratory symptoms identified 31 patients with elevated tricuspid regurgitation velocity (>2.8 m·s-1), confirmed when possible by right heart catheterisation (RHC). RESULTS 22 patients had confirmed pulmonary hypertension with mean±sd pulmonary arterial pressure 40.1±10 mmHg (range 28-62 mmHg) and pulmonary vascular resistance 17.3±9.2 Wood Units (range 8-42 Wood Units). Among the 13 responders at reactivity test, only one patient responded to calcium channel blockers. Seven patients (32%) died. 15 pulmonary hypertension patients were alive after a mean±sd follow-up of 6.5±2.3 years (range 2-10 years). All survivors could be weaned off pulmonary hypertension treatment after a median follow-up of 5 months (range 3-16). The delay between clinical symptoms and initiation of pulmonary hypertension therapy was significantly longer in patients who subsequently died (mean±sd 33.5±23 days; median 30 days) than in survivors (mean±sd 7±3 days) (p<0.001). CONCLUSION Pulmonary hypertension is a severe complication of HSCT with an underestimated incidence and high mortality. Aggressive and timely up-front combination therapy allowed normalisation of pulmonary pressure and improved survival.
Collapse
Affiliation(s)
- Marilyne Levy
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France .,M3C-Unité Médico-Chirurgicale de Cardiologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,UE3C-Unité d'Explorations Cardiologiques-Cardiopathies Congénitales, Paris, France
| | - Despina Moshous
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Pediatric Haematology-Immunology and Rheumatology Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,INSERM U1163 and Institut Imagine, Paris, France
| | - Isabelle Szezepanski
- M3C-Unité Médico-Chirurgicale de Cardiologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Louise Galmiche
- Service d'Anatomopathologie, Hôpital Necker-Enfants Malades, Paris, France
| | - Martin Castelle
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Pediatric Haematology-Immunology and Rheumatology Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Fabrice Lesage
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Pediatric Intensive Care Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Laurent Dupic
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Pediatric Intensive Care Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Bénédicte Neven
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Pediatric Haematology-Immunology and Rheumatology Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,INSERM U1163 and Institut Imagine, Paris, France
| | - Alain Fischer
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Pediatric Haematology-Immunology and Rheumatology Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,INSERM U1163 and Institut Imagine, Paris, France.,Collège de France, Paris, France
| | - Stéphane Blanche
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Pediatric Haematology-Immunology and Rheumatology Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Damien Bonnet
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,M3C-Unité Médico-Chirurgicale de Cardiologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
14
|
Kishimoto K, Hasegawa D, Kawasaki K, Tamura A, Yamamoto N, Saito A, Kozaki A, Ishida T, Kosaka Y. Early posttransplant plasma ADAMTS13 activity reduction in stem cell transplantation: a prospective study of 46 pediatric patients. Bone Marrow Transplant 2019; 54:1926-1929. [PMID: 30890772 DOI: 10.1038/s41409-019-0506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Kenji Kishimoto
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Kobe, Japan.
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Kobe, Japan
| | - Keiichiro Kawasaki
- Department of Pediatrics, Kita-Harima Medical Center, Ichibacho, Ono, Japan
| | - Akihiro Tamura
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Kobe, Japan
| | - Nobuyuki Yamamoto
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Kobe, Japan
| | - Atsuro Saito
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Kobe, Japan
| | - Aiko Kozaki
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Kobe, Japan
| | - Toshiaki Ishida
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Kobe, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Kobe, Japan
| |
Collapse
|
15
|
Validation of Housekeeping Genes as Reference for Reverse-Transcription-qPCR Analysis in Busulfan-Injured Microvascular Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4953806. [PMID: 30386793 PMCID: PMC6189687 DOI: 10.1155/2018/4953806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
Endothelial cells (ECs) could express some important cytokines and signal molecules which play a key role in normal hematopoiesis and repopulation. Busulfan-induced vascular endothelial injury is an important feature after hematopoietic stem cell transplantation (HSCT). But the molecular mechanism of how the injured ECs affect hematopoietic reconstruction is still unknown. It is possibly through modulation of the change of some gene expression. RT-qPCR is one of the most popular methods used to accurately determine gene expression levels, based on stable reference gene (RG) selection from housekeeping genes. So our aim is to select stable RGs for more accurate measures of mRNA levels during Busulfan-induced vascular endothelial injury. In this study, 14 RGs were selected to investigate their expression stability in ECs during 72 hours of EC injury treated with Busulfan. Our results revealed extreme variation in RG stability compared by five statistical algorithms. ywhaz and alas1 were recognized as the two idlest RGs on account of the final ranking, while the two most usually used RGs (gapdh and actb) were not the most stable RGs. Next, these data were verified by testing signalling pathway genes ctnnb1, robo4, and notch1 based on the above four genes ywha, alas1, gapdh, and actb. It shows that the normalization of mRNA expression data using unstable RGs greatly affects gene fold change, which means the reliability of the biological conclusions is questionable. Based on the best RGs used, we also found that robo4 is significantly overexpressed in Busulfan-impaired ECs. In conclusion, our data reaffirms the importance of RGs selection for the valid analysis of gene expression in Busulfan-impaired ECs. And it also provides very useful guidance and basis for more accurate differential expression gene screening and future expanding biomolecule study of different drugs such as cyclophosphamide and fludarabine-injured ECs.
Collapse
|
16
|
Przybyla B, Pinomäki A, Petäjä J, Joutsi-Korhonen L, Strandberg K, Hillarp A, Öhlin AK, Ruutu T, Volin L, Lassila R. Coordinated responses of natural anticoagulants to allogeneic stem cell transplantation and acute GVHD - A longitudinal study. PLoS One 2017; 12:e0190007. [PMID: 29272282 PMCID: PMC5741247 DOI: 10.1371/journal.pone.0190007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background Allogeneic stem cell transplantation (SCT) enhances coagulation via endothelial perturbation and inflammation. Role of natural anticoagulants in interactions between coagulation and inflammation as well as in acute graft-versus-host disease (GVHD) are not well known. The purpose of this study was to define changes in natural anticoagulants over time in association with GVHD. Patients and methods This prospective study included 30 patients who received grafts from siblings (n = 19) or unrelated donors (n = 11). Eight patients developed GVHD. Standard clinical assays were applied to measure natural anticoagulants, represented by protein C (PC), antithrombin (AT), protein S (PS), complex of activated PC with its inhibitor (APC-PCI) and by markers of endothelial activation: Factor VIII coagulant activity (FVIII:C) and soluble thrombomodulin (s-TM) at 6–8 time points over three months. Results Overall, PC, AT and FVIII:C increased in parallel after engraftment. Significant correlations between PC and FVIII:C (r = 0.64–0.82, p<0.001) and between PC and AT (r = 0.62–0.81, p<0.05) were observed at each time point. Patients with GVHD had 21% lower PC during conditioning therapy and 55% lower APC-PCI early after transplantation, as well as 37% higher values of s-TM after engraftment. The GVHD group had also increases of PC (24%), FVIII: C (28%) and AT (16%) three months after transplantation. Conclusion The coordinated activation of natural anticoagulants in our longitudinal study indicates the sustained ability of adaptation to endothelial and inflammatory activation during allogenic SCT treatment. The suboptimal control of coagulation by natural anticoagulants at early stage of SCT may contribute to onset of GVHD.
Collapse
Affiliation(s)
- Beata Przybyla
- Coagulation Disorders Unit, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Anne Pinomäki
- Stem Cell Transplantation Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Jari Petäjä
- Department of Paediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Lotta Joutsi-Korhonen
- Hematology and Clinical Chemistry and HUSLAB Laboratory Services, Helsinki University Hospital, Helsinki, Finland
| | - Karin Strandberg
- Department of Clinical Chemistry, Lund University, Lund University Hospital, Lund, Sweden
- University and Regional Laboratories, Skane County Council, Coagulation Laboratory, Clinical Chemistry, Malmö, Sweden
| | - Andreas Hillarp
- Department of Clinical Chemistry, Lund University, Lund University Hospital, Lund, Sweden
- University and Regional Laboratories, Skane County Council, Coagulation Laboratory, Clinical Chemistry, Malmö, Sweden
| | - Ann-Kristin Öhlin
- Department of Clinical Chemistry, Lund University, Lund University Hospital, Lund, Sweden
- University and Regional Laboratories, Skane County Council, Coagulation Laboratory, Clinical Chemistry, Malmö, Sweden
| | - Tapani Ruutu
- Stem Cell Transplantation Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Liisa Volin
- Stem Cell Transplantation Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Riitta Lassila
- Coagulation Disorders Unit, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Hematology and Clinical Chemistry and HUSLAB Laboratory Services, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Cañete A, Comaills V, Prados I, Castro AM, Hammad S, Ybot-Gonzalez P, Bockamp E, Hengstler JG, Gottgens B, Sánchez MJ. Characterization of a Fetal Liver Cell Population Endowed with Long-Term Multiorgan Endothelial Reconstitution Potential. Stem Cells 2016; 35:507-521. [PMID: 27615355 PMCID: PMC5298023 DOI: 10.1002/stem.2494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022]
Abstract
Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL‐PLAP+ cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL‐PLAP+ hematopoietic or endothelial cell subset responsible for the long‐term reconstituting endothelial cell (LTR‐EC) activity and its confinement to FL developmental stages remained unknown. Using a busulfan‐treated newborn transplantation model, we show that LTR‐EC activity is restricted to the SCL‐PLAP+VE‐cadherin+CD45− cell population, devoid of hematopoietic reconstitution activity and largely composed by Lyve1+ endothelial‐committed cells. SCL‐PLAP+ Ve‐cadherin+CD45− cells contributed to the liver sinusoidal endothelium and also to the heart, kidney and lung microvasculature. LTR‐EC activity was detected at different stages of FL development, yet marginal activity was identified in the adult liver, revealing unknown functional differences between fetal and adult liver endothelial/endothelial progenitors. Importantly, the observations that expanding donor‐derived vascular grafts colocalize with proliferating hepatocyte‐like cells and participate in the systemic circulation, support their functional integration into young livers. These findings offer new insights into the engraftment, phonotypical, and developmental characterization of a novel endothelial/endothelial progenitor cell subtype with multiorgan LTR‐EC activity, potentially instrumental for the treatment/genetic correction of vascular diseases. Stem Cells2017;35:507–521
Collapse
Affiliation(s)
- Ana Cañete
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Valentine Comaills
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Isabel Prados
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Ana María Castro
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Seddik Hammad
- Faculty of Veterinary Medicine, Department of Forensic Medicine and Veterinary Toxicology, South Valley University, Qena, Egypt.,Leibniz Research Center for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - Patricia Ybot-Gonzalez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Ernesto Bockamp
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Jan G Hengstler
- Leibniz Research Center for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - Bertie Gottgens
- Cambridge Institute for Medical Research & Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge University, United Kingdom
| | - María José Sánchez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| |
Collapse
|
18
|
Sancho M, Ferrero JJ, Triguero D, Torres M, Garcia-Pascual A. Altered neuronal and endothelial nitric oxide synthase expression in the bladder and urethra of cyclophosphamide-treated rats. Nitric Oxide 2014; 39:8-19. [DOI: 10.1016/j.niox.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/31/2014] [Accepted: 04/05/2014] [Indexed: 10/25/2022]
|
19
|
Al-Hashmi S, Boels PJM, Zadjali F, Sadeghi B, Sällström J, Hultenby K, Hassan Z, Arner A, Hassan M. Busulphan-cyclophosphamide cause endothelial injury, remodeling of resistance arteries and enhanced expression of endothelial nitric oxide synthase. PLoS One 2012; 7:e30897. [PMID: 22303468 PMCID: PMC3267746 DOI: 10.1371/journal.pone.0030897] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022] Open
Abstract
Stem cell transplantation (SCT) is a curative treatment for malignant and non malignant diseases. However, transplantation-related complications including cardiovascular disease deteriorate the clinical outcome and quality of life. We have investigated the acute effects of conditioning regimen on the pharmacology, physiology and structure of large elastic arteries and small resistance-sized arteries in a SCT mouse model. Mesenteric resistance arteries and aorta were dissected from Balb/c mice conditioned with busulphan (Bu) and cyclophosphamide (Cy). In vitro isometric force development and pharmacology, in combination with RT-PCR, Western blotting and electron microscopy were used to study vascular properties. Compared with controls, mesenteric resistance arteries from the Bu-Cy group had larger internal circumference, showed enhanced endothelium mediated relaxation and increased expression of endothelial nitric oxide synthase (eNOS). Bu-Cy treated animals had lower mean blood pressure and signs of endothelial injury. Aortas of treated animals had a higher reactivity to noradrenaline. We conclude that short-term consequences of Bu-Cy treatment divergently affect large and small arteries of the cardiovascular system. The increased noradrenaline reactivity of large elastic arteries was not associated with increased blood pressure at rest. Instead, Bu-Cy treatment lowered blood pressure via augmented microvascular endothelial dependent relaxation, increased expression of vascular eNOS and remodeling toward a larger lumen. The changes in the properties of resistance arteries can be associated with direct effects of the compounds on vascular wall or possibly indirectly induced via altered translational activity associated with the reduced hematocrit and shear stress. This study contributes to understanding the mechanisms that underlie the early effects of conditioning regimen on resistance arteries and may help in designing further investigations to understand the late effects on vascular system.
Collapse
Affiliation(s)
- Sulaiman Al-Hashmi
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Piet J. M. Boels
- 3Ph_S Biomedical, Stockholm, Sweden
- Division Genetic Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fahad Zadjali
- Department of Molecular Medicine and Surgery (MMK), CMM, Karolinska Institutet, Stockholm, Sweden
| | - Behnam Sadeghi
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Kjell Hultenby
- EMIL, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zuzana Hassan
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinincal Research Center, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | | | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinincal Research Center, Karolinska University Hospital-Huddinge, Stockholm, Sweden
- * E-mail:
| |
Collapse
|