1
|
Kuzy J, Pulipati Y, Robertson T. Previously undiagnosed genetic disease in adult patient with hepatic masses and reported history of congenital hyperinsulinism. BMJ Case Rep 2024; 17:e259355. [PMID: 38782444 DOI: 10.1136/bcr-2023-259355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Glycogen storage disease type 1A (GSD1A), also known as Von Gierke's disease, is a rare autosomal recessive disorder affecting glycogen metabolism in the liver. It most commonly presents in infancy with hypoglycaemia and failure to thrive, but cases have been reported as undiagnosed until adulthood. A woman in her early 20s with diabetes mellitus presented with right upper quadrant pain and was found to have several haemorrhagic hepatic adenomas. This patient had insulin-dependent diabetes since a pancreatectomy at age 9 months due to continued episodes of hypoglycaemia and suspected insulinoma. During the hospital stay, the hepatic adenomas were embolised, but significant lactic acidosis and hypoglycaemia continued. Further workup revealed a chronic lactic acid level, during several hospital stays, of above 5 mmol/L. After cytology of hepatic tissue ruled out hepatocellular carcinoma, the patient was discharged and recommended to follow-up for genetic testing, which confirmed the diagnosis of GSD1A.
Collapse
Affiliation(s)
- Jacob Kuzy
- Medical College, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Yochitha Pulipati
- Allegheny Health Network Graduate Medical Education, Pittsburgh, Pennsylvania, USA
| | - Thomas Robertson
- Internal Medicine, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Eldredge JA, Hardikar W. Current status and future directions of liver transplantation for metabolic liver disease in children. Pediatr Transplant 2024; 28:e14625. [PMID: 37859572 DOI: 10.1111/petr.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Orthotopic liver transplantation (OLT) in the care of children with inborn errors of metabolism (IEM) is well established and represent the second most common indication for pediatric liver transplantation in most centers worldwide, behind biliary atresia. OLT offers cure of disease when a metabolic defect is confined to the liver, but may still be transformative on a patient's quality of life reducing the chance of metabolic crises causing neurological damage in children be with extrahepatic involvement and no "functional cure." Outcomes post-OLT for inborn errors of metabolism are generally excellent. However, this benefit must be balanced with consideration of a composite risk of morbidity, and commitment to a lifetime of post-transplant chronic disease management. An increasing number of transplant referrals for children with IEM has contributed to strain on graft access in many parts of the world. Pragmatic evaluation of IEM referrals is essential, particularly pertinent in cases where progression of extra-hepatic disease is anticipated, with long-term outcome expected to be poor. Decision to proceed with liver transplantation is highly individualized based on the child's dynamic risk-benefit profile, their family unit, and their treating multidisciplinary team. Also to be considered is the chance of future treatments, such as gene therapies, emerging in the medium term.
Collapse
Affiliation(s)
- Jessica A Eldredge
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Winita Hardikar
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Royal Children's Hospital University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Ito K, Tajima G, Kamisato C, Tsumura M, Iwamoto M, Sekiguchi Y, Numata Y, Watanabe K, Yabe Y, Kanki S, Fujieda Y, Goto K, Sogawa Y, Oitate M, Nagase H, Tsuji S, Nishizawa T, Kakuta M, Masuda T, Onishi Y, Koizumi M, Nakamura H, Okada S, Matsuo M, Takaishi K. A splice-switching oligonucleotide treatment ameliorates glycogen storage disease type 1a in mice with G6PC c.648G>T. J Clin Invest 2023; 133:e163464. [PMID: 37788110 PMCID: PMC10688987 DOI: 10.1172/jci163464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Glycogen storage disease type 1a (GSD1a) is caused by a congenital deficiency of glucose-6-phosphatase-α (G6Pase-α, encoded by G6PC), which is primarily associated with life-threatening hypoglycemia. Although strict dietary management substantially improves life expectancy, patients still experience intermittent hypoglycemia and develop hepatic complications. Emerging therapies utilizing new modalities such as adeno-associated virus and mRNA with lipid nanoparticles are under development for GSD1a but potentially require complicated glycemic management throughout life. Here, we present an oligonucleotide-based therapy to produce intact G6Pase-α from a pathogenic human variant, G6PC c.648G>T, the most prevalent variant in East Asia causing aberrant splicing of G6PC. DS-4108b, a splice-switching oligonucleotide, was designed to correct this aberrant splicing, especially in liver. We generated a mouse strain with homozygous knockin of this variant that well reflected the pathophysiology of patients with GSD1a. DS-4108b recovered hepatic G6Pase activity through splicing correction and prevented hypoglycemia and various hepatic abnormalities in the mice. Moreover, DS-4108b had long-lasting efficacy of more than 12 weeks in mice that received a single dose and had favorable pharmacokinetics and tolerability in mice and monkeys. These findings together indicate that this oligonucleotide-based therapy could provide a sustainable and curative therapeutic option under easy disease management for GSD1a patients with G6PC c.648G>T.
Collapse
Affiliation(s)
- Kentaro Ito
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Go Tajima
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Division of Neonatal Screening, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| | - Chikako Kamisato
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | | | | | | | - Kyoko Watanabe
- Drug Metabolism and Pharmacokinetics Research Laboratories
| | - Yoshiyuki Yabe
- Drug Metabolism and Pharmacokinetics Research Laboratories
| | - Satomi Kanki
- Drug Metabolism and Pharmacokinetics Research Laboratories
| | | | - Koichi Goto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | - Hiroyuki Nagase
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Shinnosuke Tsuji
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Tomohiro Nishizawa
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masayo Kakuta
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | | | - Hidefumi Nakamura
- Department of Research and Development Supervision, National Center for Child Health and Development, Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
| | - Kiyosumi Takaishi
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
4
|
Ziogas IA, Tasoudis PT, Serifis N, Alexopoulos SP, Montenovo MI, Shingina A. Liver Transplantation for Hepatic Adenoma: A UNOS Database Analysis and Systematic Review of the Literature. Transplant Direct 2022; 8:e1264. [PMID: 35018302 PMCID: PMC8735769 DOI: 10.1097/txd.0000000000001264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Liver transplantation (LT) has been employed for hepatic adenoma (HA) on a case-oriented basis. We aimed to describe the characteristics, waitlist, and post-LT outcomes of patients requiring LT for HA. METHODS All patients listed or transplanted for HA in the United States were identified in the United Network for Organ Sharing (UNOS) database (1987-2020). A systematic literature review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis statement. RESULTS A total of 199 HA patients were listed for LT in UNOS and the crude waitlist mortality was 9.0%. A total of 142 HA patients underwent LT; 118 of these were among those listed with an indication of HA who underwent LT, and 24 were diagnosed incidentally. Most did not experience hepatocellular carcinoma transformation (89.4%). Over a median follow-up of 62.9 mo, death was reported in 18.3%. The 1-, 3-, and 5-y patient survival rates were 94.2%, 89.7%, and 86.3% in the UNOS cohort. The systematic review yielded 61 articles reporting on 99 nonoverlapping patients undergoing LT for HA and 2 articles reporting on multicenter studies. The most common LT indications were suspected malignancy (39.7%), unresectable HA (31.7%), and increasing size (27.0%), whereas 53.1% had glycogen storage disease. Over a median follow-up of 36.5 mo, death was reported in 6.0% (n=5/84). The 1-, 3-, and 5-y patient survival rates were all 95.0% in the systematic review. CONCLUSIONS LT for HA can lead to excellent long-term outcomes in well-selected patients. Prospective granular data are needed to develop more optimal selection criteria and further improve outcomes.
Collapse
Affiliation(s)
- Ioannis A. Ziogas
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
| | - Panagiotis T. Tasoudis
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Serifis
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sophoclis P. Alexopoulos
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Martin I. Montenovo
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Alexandra Shingina
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
Knotek M, Novak R, Jaklin-Kekez A, Mrzljak A. Combined liver-kidney transplantation for rare diseases. World J Hepatol 2020; 12:722-737. [PMID: 33200012 PMCID: PMC7643210 DOI: 10.4254/wjh.v12.i10.722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Combined liver and kidney transplantation (CLKT) is indicated in patients with failure of both organs, or for the treatment of end-stage chronic kidney disease (ESKD) caused by a genetic defect in the liver. The aim of the present review is to provide the most up-to-date overview of the rare conditions as indications for CLKT. They are major indications for CLKT in children. However, in some of them (e.g., atypical hemolytic uremic syndrome or primary hyperoxaluria), CLKT may be required in adults as well. Primary hyperoxaluria is divided into three types, of which type 1 and 2 lead to ESKD. CLKT has been proven effective in renal function replacement, at the same time preventing recurrence of the disease. Nephronophthisis is associated with liver fibrosis in 5% of cases and these patients are candidates for CLKT. In alpha 1-antitrypsin deficiency, hereditary C3 deficiency, lecithin cholesterol acyltransferase deficiency and glycogen storage diseases, glomerular or tubulointerstitial disease can lead to chronic kidney disease. Liver transplantation as a part of CLKT corrects underlying genetic and consequent metabolic abnormality. In atypical hemolytic uremic syndrome caused by mutations in the genes for factor H, successful CLKT has been reported in a small number of patients. However, for this indication, CLKT has been largely replaced by eculizumab, an anti-C5 antibody. CLKT has been well established to provide immune protection of the transplanted kidney against donor-specific antibodies against class I HLA, facilitating transplantation in a highly sensitized recipient.
Collapse
Affiliation(s)
- Mladen Knotek
- Department of Medicine, Tree Top Hospital, Hulhumale 23000, Maldives
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Rafaela Novak
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | | | - Anna Mrzljak
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia.
| |
Collapse
|
6
|
Pre-emptive Intestinal Transplant: The Surgeon's Point of View. Dig Dis Sci 2017; 62:2966-2976. [PMID: 28918445 DOI: 10.1007/s10620-017-4752-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
Abstract
Pre-emptive transplantation is a well-established practice for certain types of end-organ failure such as in the use of kidney transplantation. For irreversible intestinal failure, total parenteral nutrition (TPN) remains the gold standard, due to the suboptimal long-term results of intestinal transplantation. As such, the only role for pre-emptive transplantation, if at all, will be for patients identified to be at high risk of complications and mortality while on definitive long-term TPN. In these patients, the timing of early listing and transplantation could become life-saving, taking into account that mortality on the waiting list is still the highest for intestinal candidates. The development of simulation models or pre-transplant scoring systems could help in selecting patients based on potential outcome on TPN or with transplantation, and recent reports from high-volume centers identify few underlying pathologic conditions and some TPN complications as at higher risk of increased morbidity and mortality. A pre-emptive transplant could be used as a rehabilitative procedure in a well-selected case-by-case scenario, among TPN patients at risk of liver failure, repeated central line infections, mesenteric infarction, short bowel syndrome (SBS) <50 cm or with end stoma, congenital mucosal disease, desmoid tumors: These conditions must be carefully evaluated, not to underestimate the clinical stage nor to over-estimate the impact of a temporary situation. At the present time, diseases with a variable and unpredictable course, such as intestinal dysmotility disorders, or quality of life and financial issues are still far from being considered as indications for a pre-emptive transplant.
Collapse
|
7
|
Lu Y, Wang L, Li J, Wu B, Wu H, Luo Y, Jin ZB, Shan X. Molecular genetic analysis and phenotypic characteristics of a consanguineous family with glycogen storage disease type Ia. Mol Med Rep 2016; 14:3251-4. [PMID: 27511118 DOI: 10.3892/mmr.2016.5617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 06/29/2016] [Indexed: 11/05/2022] Open
Abstract
Glycogen storage disease type‑Ia (GSD‑Ia) is a rare autosomal recessive disease caused by a mutation in the gene encoding glucose‑6‑phosphate‑α (G6PC). The present study reported the case of a 3‑month‑old female Chinese patient with GSD‑Ia born to consanguineous parents. The aim of the present study was to identify the precise mutation of the G6PC gene associated with this family and to describe the phenotypic characteristics of the patient. A comprehensive examination was performed on the patient, including physical examination, vein blood gas analysis, abdominal sonography and biochemical analyses. In addition, gene sequencing was performed on the coding region of the G6PC gene to identify the mutation. The patient was diagnosed with GSD‑Ia and a G6PC missense mutation of c.518T>C (p.L173P) located in a highly conserved area was identified. The mutation is in a non‑helical region of the protein, which previous studies have suggested should result in a lesser effect on G6PC enzymatic activity and milder phenotypic characteristics compared with mutations located in helical regions. However, the severity of the disease phenotype in the subject of the present study was inconsistent with that predicted from her genotype. The patient suffered from serious hypoglycemia, lactic acidosis, increased triglycerides, hepatic dysfunction, clear hepatomegaly and nephromegaly. The incidence of the p.L173P mutation may be relatively high in the Chinese population. Knowledge of the various phenotypic presentations of the p.L173P mutation may beneficial for future investigations.
Collapse
Affiliation(s)
- Yili Lu
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Liyin Wang
- College of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Jun Li
- Department of Hand Surgery, Wenzhou Donghua Hospital, Wenzhou, Zhejiang 325027, P.R. China
| | - Beibei Wu
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Huiping Wu
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yue Luo
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Zi-Bing Jin
- Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xiaoou Shan
- Department of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
8
|
Szili B, Görög D, Gerlei Z, Győri G, Lakatos P, Takács I. Rapid height growth after liver transplantation in adulthood. Growth Horm IGF Res 2016; 29:1-3. [PMID: 27041087 DOI: 10.1016/j.ghir.2016.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
Glycogen storage disease Ib is a rare, inherited metabolic disorder caused by glucose-6-phosphatase translocase deficiency. Its main symptoms are hypoglycemia, hyperlipidemia, neutropenia, hepatomegaly, liver adenomas and short stature. The exact mechanism of short stature in this disease is unclear, the most feasible possibility is that it is caused by impairment of growth-hormone and insulin-like growth factor I axis. Here we report the case of a patient who showed typical symptoms of glycogen storage disease Ib since his infancy, his height being under 1 percentile since then. Later-developed hypothyroidism and hypogonadism have also contributed to his short stature. Hypothyroidism was treated but sexual steroid substitution was not started because of an increased risk of hepatic adenomas. Because he developed hepatic adenoma at the age of 23, he had to undergo orthotopic liver transplantation. At the time of the transplantation his height was 128cm. The transplantation was followed by rapid height growth; our patient's height reached 160.3cm 62months after transplantation. We observed that while his IGF-I level increased, his GH level remained unchanged. During the post-transplantation period we ensured adequate calcium and vitamin D supplementation, leaving hormonal substitution unchanged. According to our knowledge, this is the first report of a rapid height growth as big as 32cm, of an individual over the age of 20, not related to endocrine treatment but liver transplantation.
Collapse
Affiliation(s)
- Balázs Szili
- Semmelweis University, 1st Department of Internal Medicine, Korányi S. u. 2/A, H-1083 Budapest, Hungary.
| | - Dénes Görög
- Semmelweis University, Department of Transplantation Surgery, Baross u. 23-25, H-1082 Budapest, Hungary.
| | - Zsuzsanna Gerlei
- Semmelweis University, Department of Transplantation Surgery, Baross u. 23-25, H-1082 Budapest, Hungary.
| | - Gabriella Győri
- Semmelweis University, Department of Radiology and Oncotherapy, Üllői út 78/A, H-1083 Budapest, Hungary.
| | - Péter Lakatos
- Semmelweis University, 1st Department of Internal Medicine, Korányi S. u. 2/A, H-1083 Budapest, Hungary.
| | - István Takács
- Semmelweis University, 1st Department of Internal Medicine, Korányi S. u. 2/A, H-1083 Budapest, Hungary.
| |
Collapse
|
9
|
Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med 2015; 16:e1. [PMID: 25356975 DOI: 10.1038/gim.2014.128] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Glycogen storage disease type I (GSD I) is a rare disease of variable clinical severity that primarily affects the liver and kidney. It is caused by deficient activity of the glucose 6-phosphatase enzyme (GSD Ia) or a deficiency in the microsomal transport proteins for glucose 6-phosphate (GSD Ib), resulting in excessive accumulation of glycogen and fat in the liver, kidney, and intestinal mucosa. Patients with GSD I have a wide spectrum of clinical manifestations, including hepatomegaly, hypoglycemia, lactic acidemia, hyperlipidemia, hyperuricemia, and growth retardation. Individuals with GSD type Ia typically have symptoms related to hypoglycemia in infancy when the interval between feedings is extended to 3–4 hours. Other manifestations of the disease vary in age of onset, rate of disease progression, and severity. In addition, patients with type Ib have neutropenia, impaired neutrophil function, and inflammatory bowel disease. This guideline for the management of GSD I was developed as an educational resource for health-care providers to facilitate prompt, accurate diagnosis and appropriate management of patients. METHODS A national group of experts in various aspects of GSD I met to review the evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management. RESULTS This management guideline specifically addresses evaluation and diagnosis across multiple organ systems (hepatic, kidney, gastrointestinal/nutrition, hematologic, cardiovascular, reproductive) involved in GSD I. Conditions to consider in the differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, hepatic and renal transplantation, and prenatal diagnosis, are also addressed. CONCLUSION A guideline that facilitates accurate diagnosis and optimal management of patients with GSD I was developed. This guideline helps health-care providers recognize patients with all forms of GSD I, expedite diagnosis, and minimize adverse sequelae from delayed diagnosis and inappropriate management. It also helps to identify gaps in scientific knowledge that exist today and suggests future studies.
Collapse
|
10
|
Maya Aparicio AC, Bernal Bellido C, Tinoco González J, Garcia Ruíz S, Aguilar Romero L, Marín Gómez LM, Suárez Artacho G, Alamo Martínez JM, Serrano Díez-Canedo J, Padillo Ruíz FJ, Gomez Bravo MA. Fifteen years of follow-up of a liver transplant recipient with glycogen storage disease type Ia (Von Gierke disease). Transplant Proc 2014; 45:3668-9. [PMID: 24314991 DOI: 10.1016/j.transproceed.2013.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Von Gierke's disease or glycogen storage disease type Ia (GSD-Ia) is an infrequent metabolic disease caused by an atypical accumulation of glycogen. The principal cause of this pathology is deficiency of the glucose-6-phosphatase enzyme. Herein we have reported a case of a young man with a history of Von Gierke's disease (GSD-Ia) since childhood who developed hepatocellular adenomatosis brought to light by ultrasounds and TACs. The patient began to develop early chronic renal failure, necessitating simultaneous liver and kidney transplantation. Years later continuous reviews at the nephrology and hepatobiliopancreatic surgery services show he has a good quality of life and a normal hepatorenal profile.
Collapse
Affiliation(s)
- A C Maya Aparicio
- General Surgery and Digestive, Hepatobiliopancreatic Surgery, Virgen del Rocio University Hospitals, Seville, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Combined liver and kidney transplantation in children. Pediatr Nephrol 2014; 29:805-14; quiz 812. [PMID: 23644898 DOI: 10.1007/s00467-013-2487-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/25/2013] [Accepted: 04/08/2013] [Indexed: 12/25/2022]
Abstract
Simultaneous combined liver-kidney transplantation (CLKT) is a rare operation in pediatric patients so that annually only 10-30 operations are performed worldwide. The main indications for CLKT are primary hyperoxaluria type 1 and autosomal recessive polycystic kidney disease. In addition, CLKT is indicated in individual patients with metabolic or cirrhotic liver diseases and end-stage kidney disease. The surgery and immediate post-operative management of CLKT remain challenging in infants and small children. The patients should be operated on before they become severely ill or develop major systemic manifestations of their metabolic disorder. The liver allograft is immunologically protective of the kidney graft in simultaneous CLKT, often resulting in well-preserved kidney function. The long-term outcome after CLKT is nowadays comparable to that of isolated liver and kidney transplantations.
Collapse
|
12
|
Boers SJB, Visser G, Smit PGPA, Fuchs SA. Liver transplantation in glycogen storage disease type I. Orphanet J Rare Dis 2014; 9:47. [PMID: 24716823 PMCID: PMC4113191 DOI: 10.1186/1750-1172-9-47] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/01/2014] [Indexed: 12/17/2022] Open
Abstract
Glycogen storage disease type I (GSDI), an inborn error of carbohydrate metabolism, is caused by defects in the glucose-6-transporter/glucose-6-phosphatase complex, which is essential in glucose homeostasis. Two types exist, GSDIa and GSDIb, each caused by different defects in the complex. GSDIa is characterized by fasting intolerance and subsequent metabolic derangements. In addition to these clinical manifestations, patients with GSDIb suffer from neutropenia with neutrophil dysfunction and inflammatory bowel disease. With the feasibility of novel cell-based therapies, including hepatocyte transplantations and liver stem cell transplantations, it is essential to consider long term outcomes of liver replacement therapy. We reviewed all GSDI patients with liver transplantation identified in literature and through personal communication with treating physicians. Our review shows that all 80 GSDI patients showed improved metabolic control and normal fasting tolerance after liver transplantation. Although some complications might be caused by disease progression, most complications seemed related to the liver transplantation procedure and subsequent immune suppression. These results highlight the potential of other therapeutic strategies, like cell-based therapies for liver replacement, which are expected to normalize liver function with a lower risk of complications of the procedure and immune suppression.
Collapse
Affiliation(s)
| | | | | | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands.
| |
Collapse
|
13
|
Mazariegos G, Shneider B, Burton B, Fox IJ, Hadzic N, Kishnani P, Morton DH, McIntire S, Sokol RJ, Summar M, White D, Chavanon V, Vockley J. Liver transplantation for pediatric metabolic disease. Mol Genet Metab 2014; 111:418-27. [PMID: 24495602 DOI: 10.1016/j.ymgme.2014.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/12/2014] [Accepted: 01/12/2014] [Indexed: 12/22/2022]
Abstract
Liver transplantation (LTx) was initially developed as a therapy for liver diseases known to be associated with a high risk of near-term mortality but is based upon a different set of paradigms for inborn metabolic diseases. As overall outcomes for the procedure have improved, LTx has evolved into an attractive approach for a growing number of metabolic diseases in a variety of clinical situations. No longer simply life-saving, the procedure can lead to a better quality of life even if not all symptoms of the primary disorder are eliminated. Juggling the risk-benefit ratio thus has become more complicated as the list of potential disorders amenable to treatment with LTx has increased. This review summarizes presentations from a recent conference on metabolic liver transplantation held at the Children's Hospital of Pittsburgh of UPMC on the role of liver or hepatocyte transplantation in the treatment of metabolic liver disease.
Collapse
Affiliation(s)
- George Mazariegos
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Faculty Pavilion, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; University of Pittsburgh School of Medicine/UPMC Department of Surgery, Thomas E. Starzl Transplantation Institute, E1540 Biomedical Science Tower (BST), 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Benjamin Shneider
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 4401 Penn Avenue, 7th Floor, Pittsburgh, PA 15224, USA.
| | - Barbara Burton
- Department of Pediatrics, Northwestern University Feinberg School of Medicine/Ann & Robert H. Lurie Children's Hospital of Chicago, Box MC 59, 225 E Chicago Avenue, Chicago, IL 60611, USA.
| | - Ira J Fox
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Faculty Pavilion, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; University of Pittsburgh School of Medicine/UPMC Department of Surgery, Thomas E. Starzl Transplantation Institute, E1540 Biomedical Science Tower (BST), 200 Lothrop Street, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Nedim Hadzic
- King's College Hospital, Paediatric Liver Center, London, UK.
| | - Priya Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, DUMC 103856, 595 Lasalle Street, GSRB 1, 4th Floor, Room 4010, Durham, NC 27710, USA.
| | - D Holmes Morton
- Franklin and Marshall College, Clinic for Special Children, 535 Bunker Hill Road, Strasburg, PA 17579, USA.
| | - Sara McIntire
- Department of Pediatrics, Paul C. Gaffney Diagnostic Referral Service, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Suite Floor 3, Pittsburgh, PA 15224, USA.
| | - Ronald J Sokol
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Section of Gastroenterology, Hepatology and Nutrition, 13123 E. 16th Avenue, B290, Aurora, CO 80045-7106, USA.
| | - Marshall Summar
- Division of Genetics and Metabolism, George Washington University, Children's National Medical Center, Center for Genetic Medicine Research (CGMR), 111 Michigan Avenue, NW, Washington, DC 20010-2970, USA.
| | - Desiree White
- Department of Psychology, Washington University, Psychology Building, Room 221, Campus Box 1125, St. Louis, MO 63130-4899, USA.
| | - Vincent Chavanon
- Division of Plastic and Reconstructive Surgery, Mount Sinai Hospital, 5 East 98th Street, 15th Floor, New York, NY 10029, USA.
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
14
|
Glycogen Storage Disease type 1a - a secondary cause for hyperlipidemia: report of five cases. J Diabetes Metab Disord 2013; 12:25. [PMID: 23738826 PMCID: PMC3937210 DOI: 10.1186/2251-6581-12-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 05/27/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Glycogen storage disease type Ia (GSD Ia) is a rare metabolic disorder, caused by deficient activity of glucose-6-phosphatase-α. It produces fasting induced hypoglycemia and hepatomegaly, usually manifested in the first semester of life. Besides, it is also associated with growth delay, anemia, platelet dysfunction, osteopenia and sometimes osteoporosis. Hyperlipidemia and hyperuricemia are almost always present and hepatocellular adenomas and renal dysfunction frequent late complications. METHODS The authors present a report of five adult patients with GSD Ia followed in internal medicine appointments and subspecialties. RESULTS Four out of five patients were diagnosed in the first 6 months of life, while the other one was diagnosed in adult life after the discovery of hepatocellular adenomas. In two cases genetic tests were performed, being identified the missense mutation R83C in one, and the mutation IVS4-3C > G in the intron 4 of glucose-6-phosphatase gene, not previously described, in the other. Growth retardation was present in 3 patients, and all of them had anemia, increased bleeding tendency and hepatocellular adenomas; osteopenia/osteoporosis was present in three cases. All but one patient had marked hyperlipidemia and hyperuricemia, with evidence of endothelial dysfunction in one case and of brain damage with refractory epilepsy in another case. Proteinuria was present in two cases and end-stage renal disease in another case. There was a great variability in the dietary measures; in one case, liver transplantation was performed, with correction of the metabolic derangements. CONCLUSIONS Hyperlipidemia is almost always present and only partially responds to dietary and drug therapy; liver transplantation is the only definitive solution. Although its association with premature atherosclerosis is rare, there have been reports of endothelial dysfunction, raising the possibility for increased cardiovascular risk in this group of patients. Being a rare disease, no single metabolic center has experience with large numbers of patients and the recommendations are based on clinical experience more than large scale studies.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The demand for organ transplantation has increased over time, increasingly exceeding the supply of organs. Whether and how new or old technologies separately or together could be applied to replacing organs will thus remain a question of importance. RECENT FINDINGS Estimating how the demand for organ transplantation will evolve over the decades and the need to bring forward and test new technologies will help establish the dimensions of the problem and the priorities for investigation. Pluripotent stem cells can in principle expand to sufficient numbers, differentiate, and assemble complex and functional organs. However, the devising of effective and reliable means to coax the stem cells to do so remains beyond the current grasp. SUMMARY Given the time during which novel therapies are devised and applied, which organ transplantation reaches to 2-3 decades, one can anticipate the need for organ replacement will grow dramatically, but advances in science and technology will overcome the hurdles in generating new organs. Whether these advances will address the needs and priorities of society, however, is unclear.
Collapse
|