1
|
Assimakopoulos SF, Bhagani S, Aggeletopoulou I, Tsounis EP, Tsochatzis EA. The role of gut barrier dysfunction in postoperative complications in liver transplantation: pathophysiological and therapeutic considerations. Infection 2024; 52:723-736. [PMID: 38324146 PMCID: PMC11143052 DOI: 10.1007/s15010-024-02182-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE Gut barrier dysfunction is a pivotal pathophysiological alteration in cirrhosis and end-stage liver disease, which is further aggravated during and after the operational procedures for liver transplantation (LT). In this review, we analyze the multifactorial disruption of all major levels of defense of the gut barrier (biological, mechanical, and immunological) and correlate with clinical implications. METHODS A narrative review of the literature was performed using PubMed, PubMed Central and Google from inception until November 29th, 2023. RESULTS Systemic translocation of indigenous bacteria through this dysfunctional barrier contributes to the early post-LT infectious complications, while endotoxin translocation, through activation of the systemic inflammatory response, is implicated in non-infectious complications including renal dysfunction and graft rejection. Bacterial infections are the main cause of early in-hospital mortality of LT patients and unraveling the pathophysiology of gut barrier failure is of outmost importance. CONCLUSION A pathophysiology-based approach to prophylactic or therapeutic interventions may lead to enhancement of gut barrier function eliminating its detrimental consequences and leading to better outcomes for LT patients.
Collapse
Affiliation(s)
- Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504, Patras, Greece.
| | - Sanjay Bhagani
- Department of Infectious Diseases/HIV Medicine, Royal Free Hospital, London, UK
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| |
Collapse
|
2
|
Sucu S, Basarir KE, Mihaylov P, Balik E, Lee JTC, Fridell JA, Emamaullee JA, Ekser B. Impact of gut microbiota on liver transplantation. Am J Transplant 2023; 23:1485-1495. [PMID: 37277064 DOI: 10.1016/j.ajt.2023.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
The gut microbiota has been gaining attention due to its interactions with the human body and its role in pathophysiological processes. One of the main interactions is the "gut-liver axis," in which disruption of the gut mucosal barrier seen in portal hypertension and liver disease can influence liver allograft function over time. For example, in patients who are undergoing liver transplantation, preexisting dysbiosis, perioperative antibiotic use, surgical stress, and immunosuppressive use have each been associated with alterations in gut microbiota, potentially impacting overall morbidity and mortality. In this review, studies exploring gut microbiota changes in patients undergoing liver transplantation are reviewed, including both human and experimental animal studies. Common themes include an increase in Enterobacteriaceae and Enterococcaceae species and a decrease in Faecalibacterium prausnitzii and Bacteriodes, while a decrease in the overall diversity of gut microbiota after liver transplantation.
Collapse
Affiliation(s)
- Serkan Sucu
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Kerem E Basarir
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Plamen Mihaylov
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emre Balik
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Jason T C Lee
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan A Fridell
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Juliet A Emamaullee
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
3
|
Siddiqui OM, Baskaran AB, Lin KA, Najam N, Shah T, Beestrum ML, Thuluvath A, Bonakdarpour B, Kim M, Dietch Z, Wolf M, Ladner DP. Cognitive Impairment in Liver Transplant Recipients With a History of Cirrhosis: A Systematic Review. Transplant Direct 2023; 9:e1479. [PMID: 37096151 PMCID: PMC10121435 DOI: 10.1097/txd.0000000000001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 04/26/2023] Open
Abstract
Cognitive impairment is common among patients with cirrhosis and may persist post-transplantation. This systematic review seeks to (1) describe the prevalence of cognitive impairment in liver transplant (LT) recipients with a history of cirrhosis, (2) describe risk factors for this population, and (3) describe associations between post-transplant cognitive impairment and quality outcome measures. Methods Studies in PubMed, Embase, Scopus, PsychINFO, and the Cochrane Database of Controlled Trials were included through May 2022. Inclusion criteria included (1) population - LT recipient, age ≥18 y, (2) exposure - history of cirrhosis before transplant, and (3) outcome - cognitive impairment after transplant (per validated cognitive testing). Exclusion criteria included (1) wrong study type, (2) abstract-only publication, (3) full-text unavailable, (4) wrong population, (5) wrong exposure, and (6) wrong outcome. The risk of bias was assessed using the Newcastle-Ottawa Scale and the Appraisal tool for Cross-Sectional Studies. The Grading of Recommendations, Assessment, Development, and Evaluations system was used to assess evidence certainty. Data from individual tests were categorized into six cognitive domains: attention, executive function, working memory, long-term memory, visuospatial, and language. Results Twenty-four studies were included covering 847 patients. Follow-up ranged from 1 mo to 1.8 y after LT. Studies had a median of 30 (interquartile range 21.5-50.5) patients. The prevalence of cognitive impairment after LT ranged from 0% to 36%. Forty-three unique cognitive tests were used, the most common being the Psychometric Hepatic Encephalopathy Score. The most frequently assessed cognitive domains were attention (10 studies) and executive function (10 studies). Conclusions The prevalence of cognitive impairment after LT varied across studies depending on cognitive tests utilized and follow-up duration. Attention and executive function were most impacted. Generalizability is limited due to small sample size and heterogeneous methodology. Further studies are needed to examine differences in the prevalence of post-LT cognitive impairment by etiology, risk factors, and ideal cognitive measures.
Collapse
Affiliation(s)
- Osama M. Siddiqui
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center (CTC), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Archit B. Baskaran
- Department of Neurology, University of Chicago Medical Center, University of Chicago, Chicago, IL
| | - Katherine A. Lin
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center (CTC), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Naela Najam
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center (CTC), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tahir Shah
- Department of Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Molly L. Beestrum
- Galter Health Sciences Library, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Avesh Thuluvath
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern Medicine, Chicago, IL
| | - Borna Bonakdarpour
- Division of Behavioral Neurology, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Minjee Kim
- Division of Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Zachary Dietch
- Division of Transplant, Department of Surgery, Northwestern Medicine, Chicago, IL
| | - Michael Wolf
- Division of General Internal Medicine & Geriatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Daniela P. Ladner
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center (CTC), Feinberg School of Medicine, Northwestern University, Chicago, IL
- Division of Transplant, Department of Surgery, Northwestern Medicine, Chicago, IL
| |
Collapse
|
4
|
Micó-Carnero M, Rojano-Alfonso C, Álvarez-Mercado AI, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery. Int J Mol Sci 2020; 22:44. [PMID: 33375200 PMCID: PMC7793124 DOI: 10.3390/ijms22010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut-liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Escuela de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Institut of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 03036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
5
|
Lu HF, Ren ZG, Li A, Zhang H, Xu SY, Jiang JW, Zhou L, Ling Q, Wang BH, Cui GY, Chen XH, Zheng SS, Li LJ. Fecal Microbiome Data Distinguish Liver Recipients With Normal and Abnormal Liver Function From Healthy Controls. Front Microbiol 2019; 10:1518. [PMID: 31333622 PMCID: PMC6619441 DOI: 10.3389/fmicb.2019.01518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence suggests that altered intestinal microbiota plays an important role in the pathogenesis of many liver diseases, mainly by promoting inflammation via the "intestinal microbiota-immunity-liver" axis. We aimed to investigate the fecal microbiome of liver recipients with abnormal/normal liver function using 16S rRNA gene sequencing. Fecal samples were collected from 90 liver recipients [42 with abnormal liver function (Group LT_A) and 48 with normal liver function (Group LT_N)] and 61 age- and gender-matched healthy controls (HCs). Fecal microbiomes were analyzed for comparative composition, diversity, and richness of microbial communities. Principal coordinates analysis successfully distinguished the fecal microbiomes of recipients in Group LT_A from healthy subjects, with the significant decrease of fecal microbiome diversity in recipients in Group LT_A. Other than a higher relative abundance of opportunistic pathogens such as Klebsiella and Escherichia/Shigella in all liver recipients, the main difference in gut microbiome composition between liver recipients and HC was the lower relative abundance of beneficial butyrate-producing bacteria in the recipients. Importantly, we established a fecal microbiome index (specific alterations in Staphylococcus and Prevotella) that could be used to distinguish Group LT_A from Group LT_N, with an area under the receiver operating characteristic curve value of 0.801 and sensitivity and specificity values of 0.771 and 0.786, respectively. These findings revealed unique gut microbial characteristics of liver recipients with abnormal and normal liver functions, and identified fecal microbial risk indicators of abnormal liver function in liver recipients.
Collapse
Affiliation(s)
- Hai-Feng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Gang Ren
- Department of Infectious Diseases, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Infectious Diseases, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shao-Yan Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian-Wen Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
- Health Management Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Qi Ling
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Bao-Hong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guang-Ying Cui
- Department of Infectious Diseases, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Hua Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
He Y, Tai S, Deng M, Fan Z, Ping F, He L, Zhang C, Huang Y, Cheng B, Xia J. Metformin and 4SC-202 synergistically promote intrinsic cell apoptosis by accelerating ΔNp63 ubiquitination and degradation in oral squamous cell carcinoma. Cancer Med 2019; 8:3479-3490. [PMID: 31025540 PMCID: PMC6601594 DOI: 10.1002/cam4.2206] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common and aggressive epithelial tumor in the head and neck region with a rising incidence. Despite the advances in basic science and clinical research, the overall survival rate of OSCC remains low. Thus finding novel effective therapeutic agents for OSCC is necessary. In this study, we investigated the effects and mechanisms of combined metformin and 4SC-202 in OSCC. Our results showed that metformin and 4SC-202 synergistically suppressed the proliferation and promoted the intrinsic apoptosis of OSCC cells in vitro and in vivo. Importantly, the proteasome inhibitor MG132 impeded the ΔNp63-decreasing effects after metformin and 4SC-202 treatment, indicating that metformin and 4SC-202 could promote the degradation of ΔNp63 protein. Moreover, ubiquitination level of ΔNp63 increased after metformin or/and 4SC-202 administration. Furthermore, we revealed that ΔNp63 mediated anticancer effects of metformin and 4SC-202, as overexpression or suppression of ΔNp63 could attenuate or facilitate the apoptosis rate of OSCC under metformin or/and 4SC-202 treatment. Collectively, metformin and 4SC-202 synergistically promote intrinsic apoptosis through accelerating ubiquitin-mediated degradation of ΔNp63 in OSCC, and this co-treatment can serve as a potential therapeutic scheme for OSCC.
Collapse
Affiliation(s)
- Yuan He
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Shanshan Tai
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Miao Deng
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Zhaona Fan
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Fan Ping
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Lihong He
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Chi Zhang
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Yulei Huang
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Bin Cheng
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Juan Xia
- Department of Oral MedicineGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouP.R. China
| |
Collapse
|
7
|
Ponziani FR, Zocco MA, Cerrito L, Gasbarrini A, Pompili M. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol 2018; 12:641-656. [PMID: 29806487 DOI: 10.1080/17474124.2018.1481747] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
The gut liver axis is an operative unit that works to protect the human body against potentially harmful substances and microorganisms, maintaining the homeostasis of the immune system. Liver cirrhosis profoundly alters this complex system. The intestine becomes more permeable allowing the translocation of bacteria, bacterial products and fragments into the portal circulation, triggering an abnormal local and systemic inflammatory response and a condition of perpetual immunologic alarm. This immune-inflammatory disorder related to dysbiosis is involved in the development of liver damage and liver cirrhosis complications and increases intestinal permeability in a vicious circle. Areas covered: The most relevant studies on bacterial translocation, the mechanism of intestinal barrier dysfunction and its consequences in patients with liver cirrhosis have been revised through a PubMed search. Data have been discussed with particular regard to their significance in clinical practice. Expert commentary: The assessment of bacterial translocation and intestinal permeability is not currently used in clinical practice but may be useful to stratify patients' prognosis.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Maria Assunta Zocco
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Lucia Cerrito
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Antonio Gasbarrini
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Maurizio Pompili
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| |
Collapse
|
8
|
Cirrhosis regression: extrahepatic angiogenesis and liver hyperarterialization persist. Clin Sci (Lond) 2018; 132:1341-1343. [PMID: 29954952 DOI: 10.1042/cs20180129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Data on the consequences of cirrhosis regression on portal hypertension and on splanchnic and systemic hemodynamic are scarce. Previous studies have reported a decrease in hepatic venous pressure gradient following antiviral treatment in patients with hepatitis B or C related cirrhosis. However, these studies did not investigate splanchnic and systemic hemodynamic changes associated with virus control. To fill this gap in knowledge, in a recent issue of Clinical Science, Hsu et al. (vol. 132, issue 6, 669-683) used rat models of cirrhosis induced by thioacetamide and by bile duct ligation and provided a comprehensive analysis of the effects of cirrhosis regression on splanchnic and systemic hemodynamics. They observed a significant reduction in portal pressure accompanied by a normalization of systemic hemodynamic (normal cardiac index and systemic vascular resistance) and a decrease in intrahepatic vascular resistance. No change in extrahepatic vascular structures were observed despite normalization of collateral shunting, meaning that portosystemic collaterals persist but are not perfused. One intriguing part of their results is the only marginal effect of cirrhosis regression on liver hyperarterialisation. This result suggests that changes in splanchnic hemodynamic features induced by cirrhosis remain when hepatic vascular resistance decreases, raising the hypothesis of an autonomous mechanism persisting despite regression of intrahepatic vascular resistance. Microbiota changes and bacterial translocation might account for this effect. In conclusion cirrhosis regression normalizes systemic hemodynamics, but some splanchnic hemodynamic changes persist including extrahepatic angiogenesis and liver hyperarterialization.
Collapse
|
9
|
Shen TCD, Pyrsopoulos N, Rustgi VK. Microbiota and the liver. Liver Transpl 2018; 24:539-550. [PMID: 29316191 DOI: 10.1002/lt.25008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 12/01/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiome outnumbers the human genome by 150-fold and plays important roles in metabolism, immune system education, tolerance development, and prevention of pathogen colonization. Dysbiosis has been associated with nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and alcoholic liver disease (ALD) as well as cirrhosis and complications. This article provides an overview of this relationship. Liver Transplantation 24 539-550 2018 AASLD.
Collapse
Affiliation(s)
- Ting-Chin David Shen
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nikolaos Pyrsopoulos
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, NJ
| | - Vinod K Rustgi
- Division of Gastroenterology and Hepatology, Robert Wood Johnson School of Medicine, Rutgers Health, New Brunswick, NJ
| |
Collapse
|
10
|
Zhang J, Ren FG, Liu P, Zhang HK, Zhu HY, Feng Z, Zhang XF, Wang B, Liu XM, Zhang XG, Wu RQ, Lv Y. Characteristics of fecal microbial communities in patients with non-anastomotic biliary strictures after liver transplantation. World J Gastroenterol 2017; 23:8217-8226. [PMID: 29290658 PMCID: PMC5739928 DOI: 10.3748/wjg.v23.i46.8217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/13/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the possible relationship between fecal microbial communities and non-anastomotic stricture (NAS) after liver transplantation (LT). METHODS A total of 30 subjects including 10 patients with NAS, 10 patients with no complications after LT, and 10 non-LT healthy individuals were enrolled. Fecal microbial communities were assessed by the 16S rRNA gene sequencing technology. RESULTS Different from the uncomplicated and healthy groups, unbalanced fecal bacterium ratio existed in patients with NAS after LT. The results showed that NAS patients were associated with a decrease of Firmicutes and Bacteroidetes and an increase of Proteobacteria at the phylum level, with the proportion-ratio imbalance between potential pathogenic families including Enterococcaceae, Streptococcaceae, Enterobacteriaceae, Pseudomonadaceae and dominant families including Bacteroidaceae. CONCLUSION The compositional shifts of the increase of potential pathogenic bacteria as well as the decrease of dominant bacteria might contribute to the incidence of NAS.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Feng-Gang Ren
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Peng Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Hong-Ke Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Hao-Yang Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhe Feng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xue-Ming Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xiao-Gang Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Rong-Qian Wu
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
11
|
Bajaj JS, Fagan A, Sikaroodi M, White MB, Sterling RK, Gilles H, Heuman D, Stravitz RT, Matherly SC, Siddiqui MS, Puri P, Sanyal AJ, Luketic V, John B, Fuchs M, Ahluwalia V, Gillevet PM. Liver transplant modulates gut microbial dysbiosis and cognitive function in cirrhosis. Liver Transpl 2017; 23:907-914. [PMID: 28240840 DOI: 10.1002/lt.24754] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/14/2022]
Abstract
Liver transplantation (LT) improves daily function and cognition in patients with cirrhosis, but a subset of patients can remain impaired. Unfavorable microbiota or dysbiosis is observed in patients with cirrhosis, but the effect of LT on microbial composition, especially with poor post-LT cognition, is unclear. The aims were to determine the effect of LT on gut microbiota and to determine whether gut microbiota are associated with cognitive dysfunction after LT. We enrolled outpatient patients with cirrhosis on the LT list and followed them until 6 months after LT. Cognition (Psychometric Hepatic Encephalopathy score [PHES]), health-related quality of life (HRQOL), and stool microbiota (multitagged sequencing for diversity and taxa) tests were performed at both visits. Persistent cognitive impairment was defined as a stable/worsening PHES. Both pre-/post-LT data were compared with age-matched healthy controls. We enrolled 45 patients (56 ± 7 years, Model for End-Stage Liver Disease score 26 ± 8). They received LT 6 ± 3 months after enrollment and were re-evaluated 7 ± 2 months after LT with a stable course. A significantly improved HRQOL, PHES, with increase in microbial diversity, increase in autochthonous, and decrease in potentially pathogenic taxa were seen after LT compared with baseline. However, there was continued dysbiosis and HRQOL/cognitive impairment after LT compared with controls in 29% who did not improve PHES after LT. In these, Proteobacteria relative abundance was significantly higher and Firmicutes were lower after LT, whereas the reverse occurred in the group that improved. Delta PHES was negatively correlated with delta Proteobacteria and positively with delta Firmicutes. In conclusion, LT improves gut microbiota diversity and dysbiosis compared with pre-LT baseline but residual dysbiosis remains compared with controls. There is cognitive and HRQOL enhancement in general after LT, but a higher Proteobacteria relative abundance change is associated with posttransplant cognitive impairment. Liver Transplantation 23 907-914 2017 AASLD.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | | | - Melanie B White
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Richard K Sterling
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - HoChong Gilles
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Douglas Heuman
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Richard T Stravitz
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Scott C Matherly
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Mohammed S Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Puneet Puri
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Velimir Luketic
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Binu John
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Michael Fuchs
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Vishwadeep Ahluwalia
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | | |
Collapse
|
12
|
Aguirre Valadez JM, Rivera-Espinosa L, Méndez-Guerrero O, Chávez-Pacheco JL, García Juárez I, Torre A. Intestinal permeability in a patient with liver cirrhosis. Ther Clin Risk Manag 2016; 12:1729-1748. [PMID: 27920543 PMCID: PMC5125722 DOI: 10.2147/tcrm.s115902] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a worldwide public health problem, and patients with this disease are at high risk of developing complications, bacterial translocation from the intestinal lumen to the mesenteric nodes, and systemic circulation, resulting in the development of severe complications related to high mortality rate. The intestinal barrier is a structure with a physical and biochemical activity to maintain balance between the external environment, including bacteria and their products, and the internal environment. Patients with liver cirrhosis develop a series of alterations in different components of the intestinal barrier directly associated with the severity of liver disease that finally increased intestinal permeability. A "leaky gut" is an effect produced by damaged intestinal barrier; alterations in the function of tight junction proteins are related to bacterial translocation and their products. Instead, increasing serum proinflammatory cytokines and hemodynamics modification, which results in the appearance of complications of liver cirrhosis such as hepatic encephalopathy, variceal hemorrhage, bacterial spontaneous peritonitis, and hepatorenal syndrome. The intestinal microbiota plays a fundamental role in maintaining the proper function of the intestinal barrier; bacterial overgrowth and dysbiosis are two phenomena often present in people with liver cirrhosis favoring bacterial translocation. Increased intestinal permeability has an important role in the genesis of these complications, and treating it could be the base for prevention and partial treatment of these complications.
Collapse
Affiliation(s)
| | | | - Osvely Méndez-Guerrero
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| | | | - Ignacio García Juárez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| | - Aldo Torre
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| |
Collapse
|
13
|
Doycheva I, Leise MD, Watt KD. The Intestinal Microbiome and the Liver Transplant Recipient: What We Know and What We Need to Know. Transplantation 2016; 100:61-8. [PMID: 26647107 DOI: 10.1097/tp.0000000000001008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal microbiome and immune system are in close symbiotic relationship in health. Gut microbiota plays a role in many chronic liver diseases and cirrhosis. However, alterations in the gut microbiome after liver transplantation and the implications for liver transplant recipients are not well understood and rely mainly on experimental animal studies. Recent advances in molecular techniques have identified that increased intestinal permeability, decreased beneficial bacteria, and increased pathogenic species may play important roles in the early posttransplant period. The associations between microbiota perturbation and postliver transplant infections and acute rejection are evolving. The link with metabolic syndrome, obesity, and cardiac disease in the general population require translation into the transplant recipient. This review focuses on our current knowledge of the known and potential interaction of the microbiome in the liver transplant recipient. Future human studies focused on microbiota changes in liver transplant patients are warranted and expected.
Collapse
Affiliation(s)
- Iliana Doycheva
- 1 Division of Gastroenterology and Hepatology, Medical University, Sofia, Bulgaria. 2 Division of Gastroenterology and Hepatology, Mayo Clinic Transplant Center, Rochester, MN
| | | | | |
Collapse
|
14
|
Wang W, Xu S, Ren Z, Jiang J, Zheng S. Gut microbiota and allogeneic transplantation. J Transl Med 2015; 13:275. [PMID: 26298517 PMCID: PMC4546814 DOI: 10.1186/s12967-015-0640-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023] Open
Abstract
The latest high-throughput sequencing technologies show that there are more than 1000 types of microbiota in the human gut. These microbes are not only important to maintain human health, but also closely related to the occurrence and development of various diseases. With the development of transplantation technologies, allogeneic transplantation has become an effective therapy for a variety of end-stage diseases. However, complications after transplantation still restrict its further development. Post-transplantation complications are closely associated with a host's immune system. There is also an interaction between a person's gut microbiota and immune system. Recently, animal and human studies have shown that gut microbial populations and diversity are altered after allogeneic transplantations, such as liver transplantation (LT), small bowel transplantation (SBT), kidney transplantation (KT) and hematopoietic stem cell transplantation (HTCT). Moreover, when complications, such as infection, rejection and graft versus host disease (GVHD) occur, gut microbial populations and diversity present a significant dysbiosis. Several animal and clinical studies have demonstrated that taking probiotics and prebiotics can effectively regulate gut microbiota and reduce the incidence of complications after transplantation. However, the role of intestinal decontamination in allogeneic transplantation is controversial. This paper reviews gut microbial status after transplantation and its relationship with complications. The role of intervention methods, including antibiotics, probiotics and prebiotics, in complications after transplantation are also discussed. Further research in this new field needs to determine the definite relationship between gut microbial dysbiosis and complications after transplantation. Additionally, further research examining gut microbial intervention methods to ameliorate complications after transplantation is warranted. A better understanding of the relationship between gut microbiota and complications after allogeneic transplantation may make gut microbiota as a therapeutic target in the future.
Collapse
Affiliation(s)
- Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Shaoyan Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Zhigang Ren
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Jianwen Jiang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
15
|
Abstract
This opinion statement discusses indications, efficacy and safety of probiotics in immunosuppressed patients. The best evidence available is for the prophylaxis of infections in patients after liver transplantation and for patients with liver cirrhosis. For other organ transplantations and for bone marrow transplantation the efficacy of probiotic interventions has not been proven yet, but in these patient groups safety is a concern. Also in critically ill patients, the data on efficacy are inconclusive and safety is a concern. In HIV patients and patients after major surgery, probiotic bacteria seem to be safe since there are no associations with increased risks of side effects.
Collapse
Affiliation(s)
- V Stadlbauer
- 1 Medical University of Graz, Department of Gastroenterology and Hematology, Auenbruggerplatz, 8010 Graz, Austria
| |
Collapse
|
16
|
Tsiaoussis GI, Assimakopoulos SF, Tsamandas AC, Triantos CK, Thomopoulos KC. Intestinal barrier dysfunction in cirrhosis: Current concepts in pathophysiology and clinical implications. World J Hepatol 2015; 7:2058-2068. [PMID: 26301048 PMCID: PMC4539399 DOI: 10.4254/wjh.v7.i17.2058] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023] Open
Abstract
The intestinal lumen is a host place for a wide range of microbiota and sets a unique interplay between local immune system, inflammatory cells and intestinal epithelium, forming a physical barrier against microbial invaders and toxins. Bacterial translocation is the migration of viable or nonviable microorganisms or their pathogen-associated molecular patterns, such as lipopolysaccharide, from the gut lumen to the mesenteric lymph nodes, systemic circulation and other normally sterile extraintestinal sites. A series of studies have shown that translocation of bacteria and their products across the intestinal barrier is a commonplace in patients with liver disease. The deterioration of intestinal barrier integrity and the consulting increased intestinal permeability in cirrhotic patients play a pivotal pathophysiological role in the development of severe complications as high rate of infections, spontaneous bacterial peritonitis, hepatic encephalopathy, hepatorenal syndrome, variceal bleeding, progression of liver injury and hepatocellular carcinoma. Nevertheless, the exact cellular and molecular mechanisms implicated in the phenomenon of microbial translocation in liver cirrhosis have not been fully elucidated yet.
Collapse
Affiliation(s)
- Georgios I Tsiaoussis
- Georgios I Tsiaoussis, Christos K Triantos, Konstantinos C Thomopoulos, Department of Gastroenterology and Hepatology, University Hospital of Patras, CP 26504 Patras, Greece
| | - Stelios F Assimakopoulos
- Georgios I Tsiaoussis, Christos K Triantos, Konstantinos C Thomopoulos, Department of Gastroenterology and Hepatology, University Hospital of Patras, CP 26504 Patras, Greece
| | - Athanassios C Tsamandas
- Georgios I Tsiaoussis, Christos K Triantos, Konstantinos C Thomopoulos, Department of Gastroenterology and Hepatology, University Hospital of Patras, CP 26504 Patras, Greece
| | - Christos K Triantos
- Georgios I Tsiaoussis, Christos K Triantos, Konstantinos C Thomopoulos, Department of Gastroenterology and Hepatology, University Hospital of Patras, CP 26504 Patras, Greece
| | - Konstantinos C Thomopoulos
- Georgios I Tsiaoussis, Christos K Triantos, Konstantinos C Thomopoulos, Department of Gastroenterology and Hepatology, University Hospital of Patras, CP 26504 Patras, Greece
| |
Collapse
|
17
|
Portela-Cidade JP, Borges-Canha M, Leite-Moreira AF, Pimentel-Nunes P. Systematic Review of the Relation Between Intestinal Microbiota and Toll-Like Receptors in the Metabolic Syndrome: What Do We Know So Far? GE-PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2015; 22:240-258. [PMID: 28868416 PMCID: PMC5580162 DOI: 10.1016/j.jpge.2015.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/17/2015] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Metabolic syndrome is an emerging problem in developed countries and presents itself as a potential threat worldwide. The role of diabetes, dyslipidaemia and hepatic steatosis as pivotal components of the metabolic syndrome is well known. However, their common persistent chronic inflammation and its potential cause still elude. This systematic review aims to present evidence of the mechanisms that link the intestinal microbioma, innate immunity and metabolic syndrome. METHODS A comprehensive research was made using PubMed database and 35 articles were selected. RESULTS We found that metabolic syndrome is associated to increased levels of innate immunity receptors, namely, Toll-like receptors, both in intestine and systemically and its polymorphisms may change the risk of metabolic syndrome development. Microbioma dysbiosis is also present in metabolic syndrome, with lower prevalence of Bacteroidetes and increased prevalence of Firmicutes populations. The data suggest that the link between intestinal microbiota and Toll-like receptors can negatively endanger the metabolic homeostasis. CONCLUSION Current evidence suggests that innate immunity and intestinal microbiota may be the hidden link in the metabolic syndrome development mechanisms. In the near future, this can be the key in the development of new prophylactic and therapeutic strategies to treat metabolic syndrome patients.
Collapse
Affiliation(s)
- José Pedro Portela-Cidade
- Physiology and Cardiothoracic Surgery Department, Cardiovascular Research & Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marta Borges-Canha
- Physiology and Cardiothoracic Surgery Department, Cardiovascular Research & Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Ferreira Leite-Moreira
- Physiology and Cardiothoracic Surgery Department, Cardiovascular Research & Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro Pimentel-Nunes
- Physiology and Cardiothoracic Surgery Department, Cardiovascular Research & Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Gastroenterology Department, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal.,CINTESIS/Biostatistics and Medical Informatics Department, Porto Faculty of Medicine, Porto, Portugal
| |
Collapse
|
18
|
Tran CD, Grice DM, Wade B, Kerr CA, Bauer DC, Li D, Hannan GN. Gut permeability, its interaction with gut microflora and effects on metabolic health are mediated by the lymphatics system, liver and bile acid. Future Microbiol 2015; 10:1339-53. [PMID: 26234760 DOI: 10.2217/fmb.15.54] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is evidence to link obesity (and metabolic syndrome) with alterations in gut permeability and microbiota. The underlying mechanisms have been questioned and have prompted this review. We propose that the gut barrier function is a primary driver in maintaining metabolic health with poor health being linked to ‘gut leakiness'. This review will highlight changes in intestinal permeability and how it may change gut microflora and subsequently affect metabolic health by influencing the functioning of major bodily organs/organ systems: the lymphatic system, liver and pancreas. We also discuss the likelihood that metabolic syndrome undergoes a cyclic worsening facilitated by an increase in intestinal permeability leading to gut dysbiosis, culminating in ongoing poor health leading to further exacerbated gut leakiness.
Collapse
Affiliation(s)
- Cuong D Tran
- CSIRO Food & Nutrition Flagship, Adelaide, SA 5000, Australia
| | - Desma M Grice
- CSIRO Food & Nutrition Flagship, North Ryde, NSW 2113, Australia
| | - Ben Wade
- CSIRO Biosecurity Flagship, Geelong, VIC 3219, Australia
| | - Caroline A Kerr
- CSIRO Food & Nutrition Flagship, North Ryde, NSW 2113, Australia
| | - Denis C Bauer
- CSIRO Digital Productivity & Services Flagship, North Ryde, NSW 1670, Australia
| | - Dongmei Li
- CSIRO Food & Nutrition Flagship, North Ryde, NSW 2113, Australia
| | - Garry N Hannan
- CSIRO Food & Nutrition Flagship, North Ryde, NSW 2113, Australia
| |
Collapse
|
19
|
Shi SH, Jiang L, Xie HY, Xu J, Zhu YF, Zheng SS. The effect of secondary cholestasis on the CD68-positive and CD163-positive macrophage population, cellular proliferation, and apoptosis in rat testis. J Reprod Immunol 2015; 110:36-47. [DOI: 10.1016/j.jri.2015.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022]
|
20
|
Fukui H. Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia. World J Hepatol 2015; 7:425-442. [PMID: 25848468 PMCID: PMC4381167 DOI: 10.4254/wjh.v7.i3.425] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/14/2014] [Accepted: 12/31/2014] [Indexed: 02/06/2023] Open
Abstract
A “leaky gut” may be the cutting edge for the passage of toxins, antigens or bacteria into the body, and may play a pathogenic role in advanced liver cirrhosis and its complications. Plasma endotoxin levels have been admitted as a surrogate marker of bacterial translocation and close relations of endotoxemia to hyperdynamic circulation, portal hypertension, renal, cardiac, pulmonary and coagulation disturbances have been reported. Bacterial overgrowth, increased intestinal permeability, failure to inactivate endotoxin, activated innate immunity are all likely to play a role in the pathological states of bacterial translocation. Therapeutic approach by management of the gut-liver axis by antibiotics, probiotics, synbiotics, prebiotics and their combinations may improve the clinical course of cirrhotic patients. Special concern should be paid on anti-endotoxin treatment. Adequate management of the gut-liver axis may be effective for prevention of liver cirrhosis itself by inhibiting the progression of fibrosis.
Collapse
|
21
|
Abstract
Lung transplantation survival remains significantly impacted by infections and the development of chronic rejection manifesting as bronchiolitis obliterans syndrome (BOS). Traditional microbiologic data has provided insight into the role of infections in BOS. Now, new non-culture-based techniques have been developed to characterize the entire population of microbes resident on the surfaces of the body, also known as the human microbiome. Early studies have identified that lung transplant patients have a different lung microbiome and have demonstrated the important finding that the transplant lung microbiome changes over time. Furthermore, both unique bacterial populations and longitudinal changes in the lung microbiome have now been suggested to play a role in the development of BOS. In the future, this technology will need to be combined with functional assays and assessment of the immune responses in the lung to help further explain the microbiome's role in the failing lung allograft.
Collapse
Affiliation(s)
- Julia Becker
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
22
|
Xie Y, Chen H, Zhu B, Qin N, Chen Y, Li Z, Deng M, Jiang H, Xu X, Yang J, Ruan B, Li L. Effect of intestinal microbiota alteration on hepatic damage in rats with acute rejection after liver transplantation. MICROBIAL ECOLOGY 2014; 68:871-880. [PMID: 25004996 DOI: 10.1007/s00248-014-0452-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/19/2014] [Indexed: 02/08/2023]
Abstract
The previous studies all focus on the effect of probiotics and antibiotics on infection after liver transplantation. Here, we focus on the effect of gut microbiota alteration caused by probiotics and antibiotics on hepatic damage after allograft liver transplantation. Brown-Norway rats received saline, probiotics, or antibiotics via daily gavage for 3 weeks. Orthotopic liver transplantation (OLT) was carried out after 1 week of gavage. Alteration of the intestinal microbiota, liver function and histopathology, serum and liver cytokines, and T cells in peripheral blood and Peyer's patch were evaluated. Distinct segregation of fecal bacterial diversity was observed in the probiotic group and antibiotic group when compared with the allograft group. As for diversity of intestinal mucosal microbiota and pathology of intestine at 2 weeks after OLT, antibiotics and probiotics had a significant effect on ileum and colon. The population of Lactobacillus and Bifidobacterium in the probiotic group was significantly greater than the antibiotic group and the allograft group. The liver injury was significantly reduced in the antibiotic group and the probiotic group compared with the allograft group. The CD4/CD8 and Treg cells in Peyer's patch were decreased in the antibiotic group. The intestinal Treg cell and serum and liver TGF-β were increased markedly while CD4/CD8 ratio was significantly decreased in the probiotic group. It suggested that probiotics mediate their beneficial effects through increase of Treg cells and TGF-β and deduction of CD4/CD8 in rats with acute rejection (AR) after OLT.
Collapse
Affiliation(s)
- Yirui Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lu H, He J, Wu Z, Xu W, Zhang H, Ye P, Yang J, Zhen S, Li L. Assessment of microbiome variation during the perioperative period in liver transplant patients: a retrospective analysis. MICROBIAL ECOLOGY 2013; 65:781-791. [PMID: 23504024 DOI: 10.1007/s00248-013-0211-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/05/2013] [Indexed: 02/05/2023]
Abstract
Understanding the composition of the microbial populations in the intestines of liver transplant patients is important to preventing postoperative infection. We investigated the relationship between the risk of postoperative infection and variation in the predominant fecal microbial composition during the perioperative period. We prospectively analyzed the predominant intestinal microbiome of five asymptomatic adult carriers of hepatitis B virus (as controls without any antibiotics) at four weekly follow-up visits and 12 patients before operation and at three weekly postoperative follow-up visits within the first month. Analysis was by denaturing gradient gel electrophoresis (DGGE) and sequencing with digital processing of DGGE profiles using BioNumerics software. Our results showed that the predominant intestinal microbial diversity decreased substantially in eight patients during the perioperative period. Among these, five patients experienced infection with a postoperative hospital stay of more than 30 days. The rest of the four patients who experienced shorter postoperative hospital stays showed only slight variation in predominant intestinal bacterial composition and temporal stability similar to asymptomatic controls. Postoperative fecal DGGE profiles showed mostly bands assigned to Bacteroides and Firmicutes. We conclude that an empiric prophylaxis strategy that destructs gut microecological balance will not be effective in reducing the risk of postoperative infection. Instead, the destruction of intestinal microbiota might result in the appearance of opportunistic pathogens such as Bifidobacterium dentium which rarely appears in the intestinal DGGE profiles of normal humans. Cognizance of the variation of intestinal microbial profiles during the perioperative period is a critical aspect of caring for liver transplant recipients.
Collapse
Affiliation(s)
- Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|