1
|
Wong JM, Pepper AR. Status of islet transplantation and innovations to sustainable outcomes: novel sites, cell sources, and drug delivery strategies. FRONTIERS IN TRANSPLANTATION 2024; 3:1485444. [PMID: 39553396 PMCID: PMC11565603 DOI: 10.3389/frtra.2024.1485444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
Islet transplantation (ITx) is an effective means to restore physiologic glycemic regulation in those living with type 1 diabetes; however, there are a handful of barriers that prevent the broad application of this functionally curative procedure. The restricted cell supply, requisite for life-long toxic immunosuppression, and significant immediate and gradual graft attrition limits the procedure to only those living with brittle diabetes. While intraportal ITx is the primary clinical site, portal vein-specific factors including low oxygen tension and the instant blood-mediated inflammatory reaction are detrimental to initial engraftment and long-term function. These factors among others prevent the procedure from granting recipients long-term insulin independence. Herein, we provide an overview of the status and limitations of ITx, and novel innovations that address the shortcomings presented. Despite the marked progress highlighted in the review from as early as the initial islet tissue transplantation in 1893, ongoing efforts to improve the procedure efficacy and success are also explored. Progress in identifying unlimited cell sources, more favourable transplant sites, and novel drug delivery strategies all work to broaden ITx application and reduce adverse outcomes. Exploring combination of these approaches may uncover synergies that can further advance the field of ITx in providing sustainable functional cures. Finally, the potential of biomaterial strategies to facilitate immune evasion and local immune modulation are featured and may underpin successful application in alternative transplant sites.
Collapse
Affiliation(s)
| | - Andrew R. Pepper
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Kuppan P, Kelly S, Seeberger K, Castro C, Rosko M, Pepper AR, Korbutt GS. Bioabsorption of Subcutaneous Nanofibrous Scaffolds Influences the Engraftment and Function of Neonatal Porcine Islets. Polymers (Basel) 2022; 14:polym14061120. [PMID: 35335450 PMCID: PMC8954444 DOI: 10.3390/polym14061120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The subcutaneous space is currently being pursued as an alternative transplant site for ß-cell replacement therapies due to its retrievability, minimally invasive procedure and potential for graft imaging. However, implantation of ß-cells into an unmodified subcutaneous niche fails to reverse diabetes due to a lack of adequate blood supply. Herein, poly (ε-caprolactone) (PCL) and poly (lactic-co-glycolic acid) (PLGA) polymers were used to make scaffolds and were functionalized with peptides (RGD (Arginine-glycine-aspartate), VEGF (Vascular endothelial growth factor), laminin) or gelatin to augment engraftment. PCL, PCL + RGD + VEGF (PCL + R + V), PCL + RGD + Laminin (PCL + R + L), PLGA and PLGA + Gelatin (PLGA + G) scaffolds were implanted into the subcutaneous space of immunodeficient Rag mice. After four weeks, neonatal porcine islets (NPIs) were transplanted within the lumen of the scaffolds or under the kidney capsule (KC). Graft function was evaluated by blood glucose, serum porcine insulin, glucose tolerance tests, graft cellular insulin content and histologically. PLGA and PLGA + G scaffold recipients achieved significantly superior euglycemia rates (86% and 100%, respectively) compared to PCL scaffold recipients (0% euglycemic) (* p < 0.05, ** p < 0.01, respectively). PLGA scaffolds exhibited superior glucose tolerance (* p < 0.05) and serum porcine insulin secretion (* p < 0.05) compared to PCL scaffolds. Functionalized PLGA + G scaffold recipients exhibited higher total cellular insulin contents compared to PLGA-only recipients (* p < 0.05). This study demonstrates that the bioabsorption of PLGA-based fibrous scaffolds is a key factor that facilitates the function of NPIs transplanted subcutaneously in diabetic mice.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Chelsea Castro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mandy Rosko
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (A.R.P.); (G.S.K.)
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (A.R.P.); (G.S.K.)
| |
Collapse
|
3
|
Schreiter JS, Beescho C, Kang J, Kursawe L, Moter A, Kikhney J, Langer S, Osla F, Wellner E, Kurow O. New model in diabetic mice to evaluate the effects of insulin therapy on biofilm development in wounds. GMS INTERDISCIPLINARY PLASTIC AND RECONSTRUCTIVE SURGERY DGPW 2020; 9:Doc06. [PMID: 33520591 PMCID: PMC7818390 DOI: 10.3205/iprs000150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Objective: Diabetic patients suffer more frequently from biofilm-associated infections than normoglycemic patients. Well described in the literature is a relationship between elevated blood glucose levels in patients and the occurrence of biofilm-associated wound infections. Nevertheless, the underlying pathophysiological pathways leading to this increased infection vulnerability and its effects on biofilm development still need to be elucidated. We developed in our laboratory a model to allow the investigation of a biofilm-associated wound infection in diabetic mice under controlled insulin treatment. Methods: A dorsal skinfold chamber was used on 16 weeks old BKS.Cg-Dock7m +/+ Leprdb/J mice and a wound within the observation field of the dorsal skinfold chamber was created. These wounds were infected with Staphylococcus aureus ATCC 49230 (106 cells/mL). Simultaneously, we implanted implants for sustained insulin release into the ventral subcutaneous tissue (N=5 mice). Mice of the control group (N=5) were treated with sham implants. Serum glucose levels were registered before intervention and daily after the operation. Densitometrical analysis of the wound size was performed at day 0, 3, and 6 after intervention. Mice were sacrificed on day 6 and wound tissue was submitted to fluorescence in situ hybridization (FISH) and colony forming unit (CFU) analysis in addition to immunohistochemical staining to observe wound healing. Experiments were carried out in accordance with the National Institute of Health Guidelines for the Care and Use of Laboratory Animals (protocol number 05/19). Results: The insulin implants were able to reduce blood glucose levels in the mice. Hence, the diabetic mice in the intervention group were normoglycemic after the implantation. The combination with the dorsal skinfold chamber allowed for continuous, in vivo measurements of the infection development. Implantation of the insulin implant and the dorsal skinfold chamber was a tolerable condition for the diabetic mice. We succeeded to realize reproducible biofilm infections in the animals. Discussion: We developed a novel model to assess interactions between blood glucose level and S. aureus-induced biofilm-associated wound infections. The combination of the dorsal skinfold chamber model with a sustained insulin treatment has not been described so far. It allows a broad field of glucose and insulin dependent studies of infection.
Collapse
Affiliation(s)
| | - Christian Beescho
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Germany
| | | | - Laura Kursawe
- MoKi Analytics GmbH, Berlin, Germany.,Biofilmzentrum, Department for Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Germany
| | - Annette Moter
- MoKi Analytics GmbH, Berlin, Germany.,Biofilmzentrum, Department for Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Germany
| | - Judith Kikhney
- MoKi Analytics GmbH, Berlin, Germany.,Biofilmzentrum, Department for Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Germany
| | - Stefan Langer
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Germany
| | | | | | - Olga Kurow
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Germany
| |
Collapse
|
4
|
Liu C, Tanaka K, Katsube T, Varès G, Maruyama K, Ninomiya Y, Fardous Z, Sun C, Fujimori A, Moreno SG, Nenoi M, Wang B. Altered Response to Total Body Irradiation of C57BL/6-Tg (CAG-EGFP) Mice. Dose Response 2020; 18:1559325820951332. [PMID: 32922229 PMCID: PMC7453463 DOI: 10.1177/1559325820951332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Application of green fluorescent protein (GFP) in a variety of biosystems as a unique bioindicator or biomarker has revolutionized biological research and made groundbreaking achievements, while increasing evidence has shown alterations in biological properties and physiological functions of the cells and animals overexpressing transgenic GFP. In this work, response to total body irradiation (TBI) was comparatively studied in GFP transgenic C57BL/6-Tg (CAG-EGFP) mice and C57BL/6 N wild type mice. It was demonstrated that GFP transgenic mice were more sensitive to radiation-induced bone marrow death, and no adaptive response could be induced. In the nucleated bone marrow cells of GFP transgenic mice exposed to a middle dose, there was a significant increase in both the percentage of cells expressing pro-apoptotic gene Bax and apoptotic cell death. While in wild type cells, lower expression of pro-apoptotic gene Bax and higher expression of anti-apoptotic gene Bcl-2, and significant lower induction of apoptosis were observed compared to GFP transgenic cells. Results suggest that presence of GFP could alter response to TBI at whole body, cellular and molecular levels in mice. These findings indicate that there could be a major influence on the interpretation of the results obtained in GFP transgenic mice.
Collapse
Affiliation(s)
- Cuihua Liu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Guillaume Varès
- Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Kouichi Maruyama
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Zeenath Fardous
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, People’s Republic of Bangladesh
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Stéphanie G. Moreno
- LRTS—François Jacob Institute of Biology, Fundamental Research Division, Atomic Energy and Alternative Energies Commission, Inserm, Fontenay-aux-Roses Cedex, France
| | - Mitsuru Nenoi
- Department of Safety Administration, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
5
|
Kuppan P, Seeberger K, Kelly S, Rosko M, Adesida A, Pepper AR, Korbutt GS. Co‐transplantation of human adipose‐derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function. Xenotransplantation 2020; 27:e12581. [DOI: 10.1111/xen.12581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Karen Seeberger
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Sandra Kelly
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Mandy Rosko
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Adetola Adesida
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| |
Collapse
|
6
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
|
8
|
Schreiter J, Meyer S, Schmidt C, Schulz RM, Langer S. Dorsal skinfold chamber models in mice. GMS INTERDISCIPLINARY PLASTIC AND RECONSTRUCTIVE SURGERY DGPW 2017; 6:Doc10. [PMID: 28706772 PMCID: PMC5506728 DOI: 10.3205/iprs000112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 01/07/2023]
Abstract
Background/purpose: The use of dorsal skinfold chamber models has substantially improved the understanding of micro-vascularisation in pathophysiology over the last eight decades. It allows in vivo pathophysiological studies of vascularisation over a continuous period of time. The dorsal skinfold chamber is an attractive technique for monitoring the vascularisation of autologous or allogenic transplants, wound healing, tumorigenesis and compatibility of biomaterial implants. To further reduce the animals’ discomfort while carrying the dorsal skinfold chamber, we developed a smaller chamber (the Leipzig Dorsal Skinfold Chamber) and summarized the commercial available chamber models. In addition we compared our model to the common chamber. Methods: The Leipzig Dorsal Skinfold Chamber was applied to 66 C57Bl/6 female mice with a mean weight of 22 g. Angiogenesis within the dorsal skinfold chamber was evaluated after injection of fluorescein isothiocyanate dextran with an Axio Scope microscope. The mean vessel density within the dorsal skinfold chamber was assessed over a period of 21 days at five different time points. The gained data were compared to previous results using a bigger and heavier dorsal skinfold model in mice. A PubMed and a patent search were performed and all papers related to “dorsal skinfold chamber” from 1st of January 2006 to 31st of December 2015 were evaluated regarding the dorsal skinfold chamber models and their technical improvements. The main models are described and compared to our titanium Leipzig Dorsal Skinfold Chamber model. Results: The Leipzig Dorsal Skinfold Chamber fulfils all requirements of continuous in vivo models known from previous chamber models while reducing irritation to the mice. Five different chamber models have been identified showing substantial regional diversity. The newly elaborated titanium dorsal skinfold chamber may replace the pre-existing titanium chamber model used in Germany so far, as it is smaller and lighter than the former ones. However, the new chamber does not reach the advantages of already existing chamber models used in Asia and the US, which are smaller and lighter. Conclusion: Elaborating a smaller and lighter dorsal skinfold chamber allows research studies on smaller animals and reduces the animals’ discomfort while carrying the chamber. Greater research exchange should be done to spread the use of smaller and lighter chamber models.
Collapse
Affiliation(s)
- Jeannine Schreiter
- Department of Plastic, Aesthetic and Special Hand Surgery, Clinic and Polyclinic for Orthopaedics, Traumatology and Plastic Surgery, University Hospital Leipzig, Germany
| | - Sophia Meyer
- Department of Plastic, Aesthetic and Special Hand Surgery, Clinic and Polyclinic for Orthopaedics, Traumatology and Plastic Surgery, University Hospital Leipzig, Germany
| | - Christian Schmidt
- Department of Plastic, Aesthetic and Special Hand Surgery, Clinic and Polyclinic for Orthopaedics, Traumatology and Plastic Surgery, University Hospital Leipzig, Germany.,Centre for Biotechnology and Biomedicine, Leipzig, Germany
| | - Ronny M Schulz
- Department of Plastic, Aesthetic and Special Hand Surgery, Clinic and Polyclinic for Orthopaedics, Traumatology and Plastic Surgery, University Hospital Leipzig, Germany.,Centre for Biotechnology and Biomedicine, Leipzig, Germany
| | - Stefan Langer
- Department of Plastic, Aesthetic and Special Hand Surgery, Clinic and Polyclinic for Orthopaedics, Traumatology and Plastic Surgery, University Hospital Leipzig, Germany
| |
Collapse
|
9
|
Ye Y, Yu J, Wang C, Nguyen NY, Walker GM, Buse JB, Gu Z. Microneedles Integrated with Pancreatic Cells and Synthetic Glucose-Signal Amplifiers for Smart Insulin Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3115-3121. [PMID: 26928976 PMCID: PMC4998837 DOI: 10.1002/adma.201506025] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/12/2016] [Indexed: 05/19/2023]
Abstract
An innovative microneedle (MN)-based cell therapy is developed for glucose-responsive regulation of the insulin secretion from exogenous pancreatic β-cells without implantation. One MN patch can quickly reduce the blood-sugar levels (BGLs) of chemically induced type-1 diabetic mice and stabilize BGLs at a reduced level for over 10 h.
Collapse
Affiliation(s)
- Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nhu-Y Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Glenn M. Walker
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - John B. Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Langer S, Beescho C, Ring A, Dorfmann O, Steinau HU, Spindler N. A new in vivo model using a dorsal skinfold chamber to investigate microcirculation and angiogenesis in diabetic wounds. GMS INTERDISCIPLINARY PLASTIC AND RECONSTRUCTIVE SURGERY DGPW 2016; 5:Doc09. [PMID: 26955508 PMCID: PMC4764794 DOI: 10.3205/iprs000088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction: Diabetes mellitus describes a dysregulation of glucose metabolism due to improper insulin secretion, reduced insulin efficacy or both. It is a well-known fact that diabetic patients are likely to suffer from impaired wound healing, as diabetes strongly affects tissue angiogenesis. Until now, no satisfying in vivo murine model has been established to analyze the dynamics of angiogenesis during diabetic wound healing. To help understand the pathophysiology of diabetes and its effect on angiogenesis, a novel in vivo murine model was established using the skinfold chamber in mice. Materials and Methods: Mutant diabetic mice (db; BKS.Cg-m+/+Leprdb/J), wildtype mice (dock7Leprdb+/+m) and laboratory BALB/c mice were examined. They were kept in single cages with access to laboratory chow with an 12/12 hour day/night circle. Lesions of the panniculus muscle (Ø 2 mm) were created in the center of the transparent window chamber and the subsequent muscular wound healing was then observed for a period of 22 days. Important analytic parameters included vessel diameter, red blood cell velocity, vascular permeability, and leakage of muscle capillaries and post capillary venules. The key parameters were functional capillary density (FCD) and angiogenesis positive area (APA). Results: We established a model which allows high resolution in vivo imaging of functional angiogenesis in diabetic wounds. As expected, db mice showed impaired wound closure (day 22) compared to wounds of BALB/c or WT mice (day 15). FCD was lower in diabetic mice compared to WT and BALB/c during the entire observation period. The dynamics of angiogenesis also decreased in db mice, as reflected by the lowest APA levels. Significant variations in the skin buildup were observed, with the greatest skin depth in db mice. Furthermore, in db mice, the dermis:subcutaneous ratio was highly shifted towards the subcutaneous layers as opposed to WT or BALB/c mice. Conclusion: Using this new in vivo model of the skinfold chamber, it was possible to analyze and quantify microangiopathical changes which are essential for a better understanding of the pathophysiology of disturbed wound healing. Research in microcirculation is important to display perfusion in wounds versus healthy tissue. Using our model, we were able to compare wound healing in diabetic and healthy mice. We were also able to objectively analyze perfusion in wound edges and compare microcirculatory parameters. This model may be well suited to augment different therapeutic options.
Collapse
Affiliation(s)
- Stefan Langer
- Department of Plastic, Esthetic and Special Hand Surgery, University Hospital Leipzig, Germany
| | - Christian Beescho
- Department of Plastic, Esthetic and Special Hand Surgery, University Hospital Leipzig, Germany
| | - Andrej Ring
- Department of Plastic Surgery and Severe Burns, University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Olivia Dorfmann
- Department of Plastic, Esthetic and Special Hand Surgery, University Hospital Leipzig, Germany
| | | | - Nick Spindler
- Department of Plastic, Esthetic and Special Hand Surgery, University Hospital Leipzig, Germany
| |
Collapse
|
11
|
Pepper AR, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro AMJ. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol 2015; 33:518-523. [PMID: 25893782 DOI: 10.1038/nbt.3211] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
Transplantation of donor-derived islets into the liver is a successful cellular replacement therapy for individuals with diabetes. However, the hepatic vasculature is not an optimal transplant site for several reasons, including graft attrition and the inability to retrieve or image the islets. Here we describe islet transplantation into a prevascularized, subcutaneous site created by temporary placement of a medically approved vascular access catheter. In mice with streptozotocin (STZ)-induced diabetes, transplantation of ∼500 syngeneic islets into the resulting 'device-less' space reversed diabetes in 91% of mice and maintained normoglycemia for >100 days. The approach was also effective in mice with pre-existing diabetes, in another mouse strain that mounts a more vigorous inflammatory response, and across an allogeneic barrier. These results demonstrate that transient priming of a subcutaneous site supports diabetes-reversing islet transplantation in mouse models without the need for a permanent cell-encapsulation device.
Collapse
Affiliation(s)
- Andrew R Pepper
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Boris Gala-Lopez
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rena Pawlick
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Shaheed Merani
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tatsuya Kin
- 1] Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada. [2] Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- 1] Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada. [2] Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Effects of glucagon-like peptide 1 analogue on the early phase of revascularization of transplanted pancreatic islets in a subcutaneous site. Transplant Proc 2014; 45:1892-4. [PMID: 23769065 DOI: 10.1016/j.transproceed.2013.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/03/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The subcutaneous space is an ideal site for pancreatic islet transplantation. However, one of the main obstacles is poor revascularization. Recently, glucagon-like peptide 1 (GLP-1) analogues are emerging as a new treatment option for patients with type 2 diabetes, because they have been shown to decrease β-cell apoptosis. Therefore, we hypothesized that administration of a GLP-1 analogue in the early phase may facilitate revascularization of transplanted pancreatic islets by decreasing apoptotic changes of vascular endothelial cells within and without the graft. In this study, we evaluated the effects of GLP-1 analogue liraglutide on revascularization at a subcutaneous site with the use of a highly sensitive imaging system. We combined a dorsal skinfold chamber (DSC) technique with multiphoton laser-scanning microscopy (MPLSM). METHODS Donor pancreatic islets isolated from C57BL/6-Tg (CAG-EGFP) mice were syngeneically transplanted into a dorsal skinfold chamber mounted on recipient mice. Male C57BL/6N mouse as recipients were divided into 3 groups: control, donor islet-treated, and recipient-treated groups. In the donor islet-treated group, the pancreatic islets were cultured with liraglutide (1 μmol/L) for 24 hours. The recipient-treated mice were injected with liraglutide (100 μg/kg subcutaneously) twice daily for 8 days. The time-dependent changes of newly formed vessels surrounding the islet grafts were imaged with MPLSM on days 1, 4, and 7. To evaluate islet graft revascularization, we measured vascular volume surrounding the islet with the Volocity system. RESULTS In the first 4 days after pancreatic islet transplantation, no significant difference was detected in newly formed vessels among the 3 groups. Also, no significant difference was detected to increase rates at 7 days after transplantation. CONCLUSIONS In this study, administration of GLP-1 analogue liraglutide in the early phase after pancreatic islet transplantation did not promote revascularization of transplanted islet grafts.
Collapse
|
13
|
Nishimura R, Nishioka S, Fujisawa I, Shiku H, Shimada M, Sekiguchi S, Fujimori K, Ushiyama A, Matsue T, Ohuchi N, Satomi S, Goto M. Tacrolimus inhibits the revascularization of isolated pancreatic islets. PLoS One 2013; 8:e56799. [PMID: 23613708 PMCID: PMC3629082 DOI: 10.1371/journal.pone.0056799] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/16/2013] [Indexed: 01/10/2023] Open
Abstract
AIMS Immunosuppressive drugs could be crucial factors for a poor outcome after islet allotransplantation. Unlike rapamycin, the effects of tacrolimus, the current standard immunosuppressant used in islet transplantation, on graft revascularization remain unclear. We examined the effects of tacrolimus on islet revascularization using a highly sensitive imaging system, and analyzed the gene expression in transplanted islets by introducing laser microdissection techniques. METHODS Islets isolated from C57BL/6-Tg (CAG-EGFP) mice were transplanted into the nonmetallic dorsal skinfold chamber on the recipients. Balb/c athymic mice were used as recipients and were divided into two groups: including a control group (n = 9) and tacrolimus-treated group (n = 7). The changes in the newly-formed vessels surrounding the islet grafts were imaged and semi-quantified using multi-photon laser-scanning microscopy and a Volocity system. Gene expression in transplanted islets was analyzed by the BioMark dynamic system. RESULTS The revascularization process was completed within 14 days after pancreatic islet transplantation at subcutaneous sites. The newly-formed vascular volume surrounding the transplanted islets in the tacrolimus-treated group was significantly less than that in the control group (p<0.05). Although the expression of Vegfa (p<0.05) and Ccnd1 (p<0.05) was significantly upregulated in the tacrolimus-treated group compared with that of the control group, no differences were observed between the groups in terms of other types of gene expression. CONCLUSIONS The present study demonstrates that tacrolimus inhibits the revascularization of isolated pancreatic islets without affecting the characteristics of the transplanted grafts. Further refinements of this immunosuppressive regimen, especially regarding the revascularization of islet grafts, could improve the outcome of islet allotransplantation.
Collapse
Affiliation(s)
- Ryuichi Nishimura
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Sho Nishioka
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Ikuma Fujisawa
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Miki Shimada
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Satoshi Sekiguchi
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Keisei Fujimori
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Tomokazu Matsue
- WorldPremier InternationalResearch Center Initiative Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Noriaki Ohuchi
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Susumu Satomi
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Masafumi Goto
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|