1
|
He L, Wang B, Wang X, Liu Y, Song X, Zhang Y, Li X, Yang H. Uncover diagnostic immunity/hypoxia/ferroptosis/epithelial mesenchymal transformation-related CCR5, CD86, CD8A, ITGAM, and PTPRC in kidney transplantation patients with allograft rejection. Ren Fail 2022; 44:1850-1865. [PMID: 36330810 PMCID: PMC9639483 DOI: 10.1080/0886022x.2022.2141648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to identify predictive immunity/hypoxia/ferroptosis/epithelial mesenchymal transformation (EMT)-related biomarkers, pathways and new drugs in allograft rejection in kidney transplant patients. First, gene expression data were downloaded followed by identification of differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA) and protein–protein interaction (PPI) analysis. Second, diagnostic model was construction based on key genes, followed by correlation analysis between immune/hypoxia/ferroptosis/EMT and key diagnostic genes. Finally, drug prediction of diagnostic key genes was carried out. Five diagnostic genes were further identified, including CCR5, CD86, CD8A, ITGAM, and PTPRC, which were positively correlated with allograft rejection after the kidney transplant. Highly infiltrated immune cells, highly expression of hypoxia-related genes and activated status of EMT were significantly positively correlated with five diagnostic genes. Interestingly, suppressors of ferroptosis (SOFs) and drivers of ferroptosis (DOFs) showed a complex regulatory relationship between ferroptosis and five diagnostic genes. CD86, CCR5, and ITGAM were respectively drug target of ABATACEPT, MARAVIROC, and CLARITHROMYCIN. PTPRC was drug target of both PREDNISONE and EPOETIN BETA. In conclusion, the study could be useful in understanding changes in the microenvironment within transplantation, which may promote or sustain the development of allograft rejection after kidney transplantation.
Collapse
Affiliation(s)
- Long He
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Boqian Wang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Xueyi Wang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Yuewen Liu
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Xing Song
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Yijian Zhang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Xin Li
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Hongwei Yang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| |
Collapse
|
2
|
Dziarmaga R, Ke D, Sapir-Pichhadze R, Cardinal H, Phan V, Piccirillo CA, Mazer B, Foster BJ. Age- and sex-mediated differences in T lymphocyte populations of kidney transplant recipients. Pediatr Transplant 2022; 26:e14150. [PMID: 34569133 DOI: 10.1111/petr.14150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Graft failure rates increase through childhood and adolescence, decline in adulthood, and are higher in female than male kidney transplant recipients (KTR) until middle age. We aimed to describe age- and sex-related differences in T-cell subsets among KTR to determine which differences may help to explain the differences in kidney graft failure rates. METHODS Effector T (Teff)-cell and regulatory T (Treg)-cell phenotypes in PBMCs from healthy controls and KTR, who were at least 1 year post-transplant with stable graft function under immunosuppression, were analyzed by flow cytometry. The effects of age, sex, and status (KTR or control) were analyzed using linear regressions. RESULTS We enrolled 20 male and 21 female KTR and 20 male and 20 female controls between 3 and 29 years of age. CD3+ T-cell frequencies were not associated with age or sex but were higher in KTR than controls. There were no differences in CD4+ and CD8+ frequencies. Th1 (IFNγ+ IL-4- IL-17A-) and Th17 (IL-17A+) frequencies within the CD4+ T-cell population were higher at older ages. The frequencies of FOXP3 + Helios + Treg cells in CD4+ CD25+ CD127- T cells were lower in females than males and in KTR than controls. CONCLUSIONS Increasing frequencies of Th1 and Th17 cells with increasing age mirrors the increasing graft failure rates from childhood to young adulthood. Importantly, sex differences in frequencies of circulating Treg cells may suggest a role in the sex differences in graft failure rates.
Collapse
Affiliation(s)
- Robert Dziarmaga
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Danbing Ke
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ruth Sapir-Pichhadze
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Nephrology and Multi-Organ Transplant Program, McGill University, Montreal, Quebec, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Héloïse Cardinal
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Véronique Phan
- Département de Pédiatrie, Université de Montréal, Montreal, Quebec, Canada.,Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Ciriaco A Piccirillo
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Bruce Mazer
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Bethany J Foster
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Bernaldo-de-Quirós E, Pion M, Martínez-Bonet M, Correa-Rocha R. A New Generation of Cell Therapies Employing Regulatory T Cells (Treg) to Induce Immune Tolerance in Pediatric Transplantation. Front Pediatr 2022; 10:862807. [PMID: 35633970 PMCID: PMC9130702 DOI: 10.3389/fped.2022.862807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney transplantation is the most common solid organ transplant and the preferred treatment for pediatric patients with end-stage renal disease, but it is still not a definitive solution due to immune graft rejection. Regulatory T cells (Treg) and their control over effector T cells is a crucial and intrinsic tolerance mechanism in limiting excessive immune responses. In the case of transplants, Treg are important for the survival of the transplanted organ, and their dysregulation could increase the risk of rejection in transplanted children. Chronic immunosuppression to prevent rejection, for which Treg are especially sensitive, have a detrimental effect on Treg counts, decreasing the Treg/T-effector balance. Cell therapy with Treg cells is a promising approach to restore this imbalance, promoting tolerance and thus increasing graft survival. However, the strategies used to date that employ peripheral blood as a Treg source have shown limited efficacy. Moreover, it is not possible to use this approach in pediatric patients due to the limited volume of blood that can be extracted from children. Here, we outline our innovative strategy that employs the thymus removed during pediatric cardiac surgeries as a source of therapeutic Treg that could make this therapy accessible to transplanted children. The advantageous properties and the massive amount of Treg cells obtained from pediatric thymic tissue (thyTreg) opens a new possibility for Treg therapies to prevent rejection in pediatric kidney transplants. We are recruiting patients in a clinical trial to prevent rejection in heart-transplanted children through the infusion of autologous thyTreg cells (NCT04924491). If its efficacy is confirmed, thyTreg therapy may establish a new paradigm in preventing organ rejection in pediatric transplants, and their allogeneic use would extend its application to other solid organ transplantation.
Collapse
Affiliation(s)
- Esther Bernaldo-de-Quirós
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
4
|
Chellappa S, Kushekhar K, Hagness M, Horneland R, Taskén K, Aandahl EM. The Presence of Activated T Cell Subsets prior to Transplantation Is Associated with Increased Rejection Risk in Pancreas Transplant Recipients. THE JOURNAL OF IMMUNOLOGY 2021; 207:2501-2511. [PMID: 34607938 DOI: 10.4049/jimmunol.2001103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Pancreas and islet transplantation (PTx) are currently the only curative treatment options for type 1 diabetes. CD4+ and CD8+ T cells play a pivotal role in graft function, rejection, and survival. However, characterization of immune cell status from patients with and without rejection of the pancreas graft is lacking. We performed multiparameter immune phenotyping of T cells from PTx patients prior to and 1 y post-PTx in nonrejectors and histologically confirmed rejectors. Our results suggest that rejection is associated with presence of elevated levels of activated CD4+ and CD8+ T cells with a gut-homing phenotype both prior to and 1 y post-PTx. The CD4+ and CD8+ T cells were highly differentiated, with elevated levels of type 1 inflammatory markers (T-bet and INF-γ) and cytotoxic components (granzyme B and perforin). Furthermore, we observed increased levels of activated FOXP3+ regulatory T cells in rejectors, which was associated with a hyporesponsive phenotype of activated effector T cells. Finally, activated T and B cell status was correlated in PTx patients, indicating a potential interplay between these cell types. In vitro treatment of healthy CD4+ and CD8+ T cells with tacrolimus abrogated the proliferation and cytokine (INF-γ, IL-2, and TNF-α) secretion associated with the type 1 inflammatory phenotype observed in pre- and post-PTx rejectors. Together, our results suggest the presence of activated CD4+ and CD8+ T cells prior to PTx confer increased risk for rejection. These findings may be used to identify patients that may benefit from more intense immunosuppressive treatment that should be monitored more closely after transplantation.
Collapse
Affiliation(s)
- Stalin Chellappa
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Kushi Kushekhar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Morten Hagness
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Einar Martin Aandahl
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; .,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
5
|
Chutipongtanate A, Prukviwat S, Pongsakul N, Srisala S, Kamanee N, Arpornsujaritkun N, Gesprasert G, Apiwattanakul N, Hongeng S, Ittichaikulthol W, Sumethkul V, Chutipongtanate S. Effects of Desflurane and Sevoflurane anesthesia on regulatory T cells in patients undergoing living donor kidney transplantation: a randomized intervention trial. BMC Anesthesiol 2020; 20:215. [PMID: 32854613 PMCID: PMC7450591 DOI: 10.1186/s12871-020-01130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Volatile anesthetic agents used during surgery have immunomodulatory effects which could affect postoperative outcomes. Recognizing that regulatory T cells (Tregs) plays crucial roles in transplant tolerance and high peripheral blood Tregs associated with stable kidney graft function, knowing which volatile anesthetic agents can induce peripheral blood Tregs increment would have clinical implications. This study aimed to compare effects of desflurane and sevoflurane anesthesia on peripheral blood Tregs induction in patients undergoing living donor kidney transplantation. METHODS A prospective, randomized, double-blind trial in living donor kidney transplant recipients was conducted at a single center, tertiary-care, academic university hospital in Thailand during August 2015 - June 2017. Sixty-six patients were assessed for eligibility and 40 patients who fulfilled the study requirement were equally randomized and allocated to desflurane versus sevoflurane anesthesia during transplant surgery. The primary outcome included absolute changes of peripheral blood CD4+CD25+FoxP3+Tregs which measured by flow cytometry and expressed as the percentage of the total population of CD4+ T lymphocytes at pre-exposure (0-h) and post-exposure (2-h and 24-h) to anesthetic gas. P-value < 0.05 denoted statistical significance. RESULTS Demographic data were comparable between groups. No statistical difference of peripheral blood Tregs between desflurane and sevoflurane groups observed at the baseline pre-exposure (3.6 ± 0.4% vs. 3.1 ± 0.4%; p = 0.371) and 2-h post-exposure (3.0 ± 0.3% vs. 3.5 ± 0.4%; p = 0.319). At 24-h post-exposure, peripheral blood Tregs was significantly higher in desflurane group (5.8 ± 0.5% vs. 4.1 ± 0.3%; p = 0.008). Within group analysis showed patients receiving desflurane, but not sevoflurane, had 2.7% increase in peripheral blood Treg over 24-h period (p < 0.001). CONCLUSION This study provides the clinical trial-based evidence that desflurane induced peripheral blood Tregs increment after 24-h exposure, which could be beneficial in the context of kidney transplantation. Mechanisms of action and clinical advantages of desflurane anesthesia based on Treg immunomodulation should be investigated in the future. TRIAL REGISTRATION ClinicalTrials.gov, NCT02559297 . Registered 22 September 2015 - retrospectively registered.
Collapse
Affiliation(s)
- Arpa Chutipongtanate
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sasichol Prukviwat
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nutkridta Pongsakul
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Supanart Srisala
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nakarin Kamanee
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nuttapon Arpornsujaritkun
- Vascular and Transplantation Unit, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Goragoch Gesprasert
- Vascular and Transplantation Unit, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nopporn Apiwattanakul
- Division of Infectious Disease, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Wichai Ittichaikulthol
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Vasant Sumethkul
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Regulatory T-cell Number in Peripheral Blood at 1 Year Posttransplant as Predictor of Long-term Kidney Graft Survival. Transplant Direct 2019; 5:e426. [PMID: 30882031 PMCID: PMC6411222 DOI: 10.1097/txd.0000000000000871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Supplemental digital content is available in the text. Background Regulatory T (Treg) cells play a role in limiting kidney transplant rejection and can potentially promote long-term transplant tolerance. There are no large prospective studies demonstrating the utility of peripheral blood Treg cells as biomarkers for long-term graft outcome in kidney transplantation. The aim of our study was to analyze the influence of the absolute number of peripheral blood Treg cells after transplantation on long-term death-censored graft survival. Methods We monitored the absolute numbers of Treg cells by flow cytometry in nonfrozen samples of peripheral blood in 133 kidney transplant recipients, who were prospectively followed up to 2 years after transplantation. Death-censored graft survival was determined retrospectively in January 2017. Results The mean time of clinical follow-up was 7.4 ± 2.9 years and 24.1% patients suffered death-censored graft loss (DCGL). Patients with high Treg cells 1 year after transplantation and above the median value (14.57 cells/mm3), showed better death-censored graft survival (5-year survival, 92.5% vs 81.4%, Log-rank P = .030). One-year Treg cells showed a receiver operating characteristic - area under curve of 63.1% (95% confidence interval, 52.9–73.2%, P = 0.026) for predicting DCGL. After multivariate Cox regression analysis, an increased number of peripheral blood Treg cells was a protective factor for DCGL (hazard ratio, 0.961, 95% confidence interval, 0.924–0.998, P = 0.041), irrespectively of 1-year proteinuria and renal function. Conclusions Peripheral blood absolute numbers of Treg cells 1 year after kidney transplantation predict a better long-term graft outcome and may be used as prognostic biomarkers.
Collapse
|
7
|
Relationship of Transforming Growth Factor-βl and Arginase-1 Levels with Long-term Survival after Kidney Transplantation. Curr Med Sci 2018; 38:455-460. [PMID: 30074212 DOI: 10.1007/s11596-018-1900-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/27/2018] [Indexed: 10/28/2022]
Abstract
In this study, we compared the serum levels of transforming growth factor-pi (TGF-β1), interleukin-10 (IL-10), and arginase-1 in long-term survival kidney transplant recipients (LTSKTRs) with those in short-term survival kidney transplant recipients (STSKTRs). We then evaluated the relationship between these levels and graft function. Blood samples were collected from 50 adult LTSKTRs and 20 STSKTRs (graft survival approximately 1-3 years post-transplantation). All patients had stable kidney function. The samples were collected at our institution during the patients' follow-up examinations between March 2017 and September 2017. The plasma levels of TGF-β1, IL-10, and arginase-1 were analyzed using enzyme-linked immunosorbent assays (ELIS A). The levels of TGF-β1 and arginase-1 were significantly higher in the LTSKTRs than in the STSKTRs. The time elapsed since transplantation was positively correlated with the levels of TGF-β1 and arginase-1 in the LTSKTRs. The estimated glomerular filtration rate was positively correlated with the TGF-β1 level, and the serum creatinine level was negatively correlated with the TGF-β1 level. Higher serum levels of TGF-pi and arginase-1 were found in LTSKTRs than in STSKTRs, and we found that TGF-β1 was positively correlated with long-term graft survival and function. Additionally, TGF-β1 and arginase-1 levels were positively correlated with the time elapsed since transplantation. On the basis of these findings, TGF-β1 and arginase-1 may play important roles in determining long-term graft survival. Thus, we propose that TGF-pi and arginase-1 may potentially be used as predictive markers for evaluating long-term graft survival.
Collapse
|
8
|
Kang N, Toyofuku WM, Yang X, Scott MD. Inhibition of allogeneic cytotoxic T cell (CD8 +) proliferation via polymer-induced Treg (CD4 +) cells. Acta Biomater 2017; 57:146-155. [PMID: 28442414 DOI: 10.1016/j.actbio.2017.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 01/16/2023]
Abstract
T cell-mediated immune rejection remains a barrier to successful transplantation. Polymer-based bioengineering of cells may provide an effective means of preventing allorecognition and the proliferation of cytotoxic (CD8+) T lymphocytes (CTL). Using MHC-disparate murine splenocytes modified with succinimidyl valerate activated methoxypoly(ethylene glycol) [SVA-mPEG] polymers, the effects of leukocyte immunocamouflage on CD8+ and CD4+ alloproliferation and T regulatory (Treg) cell induction were assessed in a mixed lymphocyte reaction (MLR) model. Polymer-grafting effectively camouflaged multiple leukocyte markers (MHC class I and II, TCR and CD3) essential for effective allorecognition. Consequent to the polymer-induced immunocamouflage of the cell membrane, both CD8+ and CD4+ T cell alloproliferation were significantly inhibited in a polymer dose-dependent manner. The loss of alloproliferation correlated with the induction of Treg cells (CD4+CD25+Foxp3+). The Tregs, surprisingly, arose primarily via differentiation of naive, non-proliferating, CD4+ cells. Of biologic importance, the polymer-induced Treg were functional and exhibited potent immunosuppressive activity on allogeneic CTL proliferation. These results suggest that immunocamouflage-mediated attenuation of alloantigen-TCR recognition can prevent the tissue destructive allogeneic CD8+ T cell response, both directly and indirectly, through the generation/differentiation of functional Tregs. Immunocamouflage induced tolerance could be clinically valuable in attenuating T cell-mediated transplant rejection and in the treatment of autoimmune diseases. STATEMENT OF SIGNIFICANCE While our previous studies have demonstrated that polymer-grafting to MHC disparate leukocytes inhibits CD4+ cell proliferation, the effects of PEGylation on the alloproliferation of CD8+ cytotoxic T cells (CTL) was not examined. As shown here, PEGylation of allogeneic leukocytes prevents the generation of the CTL response responsible for acute rejection. The loss of CTL proliferation is consequent to the polymer-based attenuation of allorecognition and the induction of T regulatory cells (Tregs). Interestingly, the Tregs are primarily generated via the differentiation of non-proliferating naive T cells. Importantly, the Tregs are functional and effectively induce a tolerogenic environment when transferred to an alloresponsive environment. The use of polymer-modified leukocytes provides a unique approach to effectively maximize the biologic production of functional Tregs both in vitro and in vivo. By using this approach it may be possible to attenuate unwanted alloresponses (e.g., graft rejection) or to treat autoimmune diseases.
Collapse
Affiliation(s)
- Ning Kang
- Canadian Blood Services, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Wendy M Toyofuku
- Canadian Blood Services, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Xining Yang
- University of British Columbia Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Mark D Scott
- Canadian Blood Services, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, Life Sciences Centre, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
9
|
Aly MG, Trojan K, Weimer R, Morath C, Opelz G, Tohamy MA, Daniel V. Low-dose oral cholecalciferol is associated with higher numbers of Helios(+) and total Tregs than oral calcitriol in renal allograft recipients: an observational study. BMC Pharmacol Toxicol 2016; 17:24. [PMID: 27296673 PMCID: PMC4906900 DOI: 10.1186/s40360-016-0066-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023] Open
Abstract
Background Regulatory T cells (Tregs) are a cornerstone of graft acceptance. High numbers of Tregs are associated with better long-term graft survival. Recently, Vitamin D was suggested as an immunomodulator, in addition to its classical role in calcium metabolism. Vitamin D modulates Tregs and might, thereby, promote graft acceptance and long-term graft survival. Methods One hundred twenty-three renal allograft recipients attending either Heidelberg nephrology or Giessen internal medicine clinic were enrolled in this cross- sectional study. Sixteen healthy controls were studied in addition. Sixty-nine patients were receiving no vitamin D, 38 calcitriol, and 16 cholecalciferol supplementations. We evaluated whether there was a difference in the absolute numbers of Helios+, Helios−, CTLA-4+, IFNg+, and total Tregs among the patient groups. Results Cholecalciferol supplementation was associated with higher absolute numbers of Helios+, CTLA-4+, and total Tregs than calcitriol (p < 0.001, p = 0.004, p = 0.001 respectively). Helios+ Tregs were also higher in cholecalciferol than no vitamin D supplementation patients (p = 0.001), whereas CTLA-4+ and total Tregs were similar in both groups (p = NS). Helios+, Helios−, CTLA-4+, IFNg+, and total Tregs were similar in the cholecalciferol and healthy control groups (p = NS). Conclusion Our findings indicate that cholecalciferol, even when administered at low dosages, has a stabilizing effect on Tregs (particularly the Helios + subset), in contrast to calcitriol which showed neither a stabilizing nor a proliferation-inducing effect on the same cell population.
Collapse
Affiliation(s)
- Mostafa G Aly
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany. .,Nephrology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt.
| | - Karina Trojan
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Rolf Weimer
- Department of Internal Medicine, University of Giessen, Klinikstrasse 33, D-35385, Giessen, Germany
| | - Christian Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Opelz
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Mohammed A Tohamy
- Nephrology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt
| | - Volker Daniel
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
|
11
|
Longshan L, Dongwei L, Qian F, Jun L, Suxiong D, Yitao Z, Yunyi X, Huiting H, Lizhong C, Jiguang F, Changxi W. Dynamic Analysis of B-Cell Subsets in De Novo Living Related Kidney Transplantation With Induction Therapy of Basiliximab. Transplant Proc 2014; 46:363-7. [DOI: 10.1016/j.transproceed.2013.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/01/2013] [Accepted: 12/11/2013] [Indexed: 12/18/2022]
|
12
|
Brazio PS, Munivenkatappa RB, Bojovic B, Ha JS, Brown EN, Hess AS, Bartlett ST, Rodriguez ED, Barth RN. Regulatory T Cells Are Not Predictive of Outcomes in a Nonhuman Primate Model of Vascularized Composite Allotransplantation. Transplantation 2013; 96:267-73. [DOI: 10.1097/tp.0b013e318298dcff] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
San Segundo D, Fernández-Fresnedo G, Rodrigo E, Ruiz JC, González M, Gómez-Alamillo C, Arias M, López-Hoyos M. High regulatory T-cell levels at 1 year posttransplantation predict long-term graft survival among kidney transplant recipients. Transplant Proc 2013; 44:2538-41. [PMID: 23146447 DOI: 10.1016/j.transproceed.2012.09.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Regulatory T cells (Tregs) have gained an important role in mechanisms of tolerance and protection against the transplant rejection. However, only limited retrospective data have shown a relationship between peripheral blood Tregs and better long-term graft survival. The purpose of the present study was to investigate prospectively circulating Treg levels and their association with long-term graft survival. METHODS Ninety kidney transplant recipients underwent measurement of Treg levels in peripheral blood before as well as at 6 months and 1 year posttransplantation. Receiver operating characteristic curves were applied to test the sensitivity and specificity of Treg levels to predict prognosis. RESULTS Treg levels before transplantation correlated with those at 6 months and 12 months posttransplantation (P < .001 and P = .002, respectively). Patients who maintained high Treg levels (above 70th percentile) at both 6 and 12 months displayed better long-term graft survival at 4 and 5 years follow-up (P = .04 and P = .043 respectively). There was no effect on patient survival. CONCLUSION Detection of high levels of peripheral blood Tregs was associated with better graft survival possibly using as a potential marker of prognosis.
Collapse
Affiliation(s)
- D San Segundo
- Immunology Service, Hospital Universitario Marqués de Valdecilla-IFIMAV, Santander, Spain
| | | | | | | | | | | | | | | |
Collapse
|