1
|
Dalda Y, Akbulut S, Sahin TT, Tuncer A, Ogut Z, Satilmis B, Dalda O, Gul M, Yilmaz S. The Effect of Pringle Maneuver Applied during Living Donor Hepatectomy on the Ischemia-Reperfusion Injury Observed in the Donors and Recipients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:649. [PMID: 38674295 PMCID: PMC11051728 DOI: 10.3390/medicina60040649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: The aim of this study is to evaluate the clinical and laboratory changes of ischemia and reperfusion injury in the remnant livers of donors with and without Pringle maneuver. Furthermore, we evaluated the recipients who have been transplanted with liver grafts from these donors. Methods and Materials: A total of 108 patients (54 living liver donors and 54 liver recipients) who underwent donor hepatectomy and recipients who living donor liver transplantation, were included in this randomized double-blind study between February 2021 and June 2021. The donors were divided into two groups: Pringle maneuver applied (n = 27) and Pringle maneuver not applied (n = 27). Similarly, recipients with implanted liver obtained from these donors were divided into two groups as the Pringle maneuver was performed (n = 27) and not performed (n = 27). Blood samples from donors and recipients were obtained on pre-operative, post-operative 0 h day (day of surgery), post-operative 1st day, post-operative 2nd day, post-operative 3rd day, post-operative 4th day, post-operative 5th day, and liver tissue was taken from the graft during the back table procedures. Liver function tests and complete blood count, coagulation tests, IL-1, IL-2, IL-6, TNF-α, and β-galactosidase measurements, and histopathological findings were examined. Results: There was no statistically significant difference in the parameters of biochemical analyses for ischemia-reperfusion injury at all periods in the donors with and without the Pringle maneuver. Similarly, there was no statistically significant difference between in the recipients in who received liver grafts harvested with and without the Pringle maneuver. There was no statistically significant difference between the two recipient groups in terms of perioperative bleeding and early bile duct complications (p = 0.685). In the histopathological examinations, hepatocyte damage was significantly higher in the Pringle maneuver group (p = 0.001). Conclusions: Although the histological scoring of hepatocyte damage was found to be higher in the Pringle maneuver group, the Pringle maneuver did not augment ischemia-reperfusion injury in donors and recipients that was evaluated by clinical and laboratory analyses.
Collapse
Affiliation(s)
- Yasin Dalda
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 44280 Malatya, Turkey; (Y.D.); (T.T.S.); (A.T.); (S.Y.)
| | - Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 44280 Malatya, Turkey; (Y.D.); (T.T.S.); (A.T.); (S.Y.)
| | - Tevfik Tolga Sahin
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 44280 Malatya, Turkey; (Y.D.); (T.T.S.); (A.T.); (S.Y.)
| | - Adem Tuncer
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 44280 Malatya, Turkey; (Y.D.); (T.T.S.); (A.T.); (S.Y.)
| | - Zeki Ogut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 44280 Malatya, Turkey; (Y.D.); (T.T.S.); (A.T.); (S.Y.)
| | - Basri Satilmis
- Department of Biochemistry, Inonu University Faculty of Pharmacy, 44280 Malatya, Turkey;
| | - Ozlem Dalda
- Department of Pathology, Inonu University Faculty of Medicne, 44280 Malatya, Turkey;
| | - Mehmet Gul
- Department of Histology and Embryology, Inonu University Faculty of Medicne, 44280 Malatya, Turkey;
| | - Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 44280 Malatya, Turkey; (Y.D.); (T.T.S.); (A.T.); (S.Y.)
| |
Collapse
|
2
|
Maspero M, Yilmaz S, Cazzaniga B, Raj R, Ali K, Mazzaferro V, Schlegel A. The role of ischaemia-reperfusion injury and liver regeneration in hepatic tumour recurrence. JHEP Rep 2023; 5:100846. [PMID: 37771368 PMCID: PMC10523008 DOI: 10.1016/j.jhepr.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 09/30/2023] Open
Abstract
The risk of cancer recurrence after liver surgery mainly depends on tumour biology, but preclinical and clinical evidence suggests that the degree of perioperative liver injury plays a role in creating a favourable microenvironment for tumour cell engraftment or proliferation of dormant micro-metastases. Understanding the contribution of perioperative liver injury to tumour recurrence is imperative, as these pathways are potentially actionable. In this review, we examine the key mechanisms of perioperative liver injury, which comprise mechanical handling and surgical stress, ischaemia-reperfusion injury, and parenchymal loss leading to liver regeneration. We explore how these processes can trigger downstream cascades leading to the activation of the immune system and the pro-inflammatory response, cellular proliferation, angiogenesis, anti-apoptotic signals, and release of circulating tumour cells. Finally, we discuss the novel therapies under investigation to decrease ischaemia-reperfusion injury and increase regeneration after liver surgery, including pharmaceutical agents, inflow modulation, and machine perfusion.
Collapse
Affiliation(s)
- Marianna Maspero
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- General Surgery and Liver Transplantation Unit, IRCCS Istituto Tumori, Milan, Italy
| | - Sumeyye Yilmaz
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Beatrice Cazzaniga
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Roma Raj
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Khaled Ali
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vincenzo Mazzaferro
- General Surgery and Liver Transplantation Unit, IRCCS Istituto Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Andrea Schlegel
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Li DY, Xie SL, Wang GY, Dang XW. CD47 blockade alleviates acute rejection of allogeneic mouse liver transplantation by reducing ischemia/reperfusion injury. Biomed Pharmacother 2019; 123:109793. [PMID: 31884341 DOI: 10.1016/j.biopha.2019.109793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Despite advances in immunosuppressive therapies, acute rejection response is still a serious concern especially in the early phase after liver transplantation. This study aimed to evaluate whether blocking the TSP1-CD47 signaling pathway could attenuate the acute rejection after liver transplantation. An allogeneic mouse orthotopic liver transplantation model (Balb/c→C3H) with prolonged cold ischemic phase was used to induce severe IRI and lethal acute rejection. CD47mAb or isotype matched-control IgG2a was administered to donor liver during graft perfusion. Recipients were sacrificed at 1d, 3d, 5d and 7d after reperfusion. Blood samples were collected to evaluate serum alanine aminotransferase, total bilirubin, HMGB-1,TNF-α, IL-2 and INF-γ level. Flow cytometric analysis was used to detect the strength of innate and adaptive immune response. Liver tissue was obtained for HE, TUNEL staining and F4/80 immumohistochemical staining. Moreover, we conducted a mixed lymphocyte reaction treated with IgG2a or CD47mAb. Mice in CD47mAb-treated group demonstrated improved survival and significantly lower increase in Suzuki score, apoptosis index, acute rejection index, serum alanine aminotransferase, total bilirubin, HMGB-1, TNF-α, IL-2, INF-γ level and the degree of Kupffer cells' activation especially in the early phase of acute rejection. In addition, Pearson's correlation analysis confirmed significant correlation between Suzuki score/ALT and acute rejection index. The in vitro inhibition assay showed that CD47 blockade couldn't directly inhibit recipient lymphocyte proliferation. Based on the evidence that TSP1-CD47 signaling blockade with CD47mAb could alleviate acute rejection by reducing the extent of IRI after liver transplantation indirectly, this study provided a basis for new interventions and management methods to support better transplant outcomes.
Collapse
Affiliation(s)
- Ding-Yang Li
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Shu-Li Xie
- Department of Hepatobiliary& Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun 130021, Jilin Province, China
| | - Guang-Yi Wang
- Department of Hepatobiliary& Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun 130021, Jilin Province, China
| | - Xiao-Wei Dang
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China.
| |
Collapse
|
4
|
Mu HN, Li Q, Fan JY, Pan CS, Liu YY, Yan L, Sun K, Hu BH, Huang DD, Zhao XR, Chang X, Wang CS, He SY, He K, Yang BX, Han JY. Caffeic acid attenuates rat liver injury after transplantation involving PDIA3-dependent regulation of NADPH oxidase. Free Radic Biol Med 2018; 129:202-214. [PMID: 30218773 DOI: 10.1016/j.freeradbiomed.2018.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
The transplanted liver inevitably suffers from ischemia reperfusion (I/R) injury, which represents a key issue in clinical transplantation determining early outcome and long-term graft survival. A solution is needed to deal with this insult. This study was undertaken to explore the effect of Caffeic acid (CA), a naturally occurring antioxidant, on I/R injury of grafted liver and the mechanisms involved. Male Sprague-Dawley rats underwent orthotopic liver transplantation (LT) in the absence or presence of CA administration. In vitro, HL7702 cells were subjected to hypoxia/reoxygenation. LT led to apparent hepatic I/R injury, manifested by deteriorated liver function, microcirculatory disturbance and increased apoptosis, along with increased PDIA3 expression and nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase activity, and membrane translocation of NADPH oxidase subunits. Treatment with CA attenuated the above alterations. siRNA/shRNA-mediated knockdown of PDIA3 in HL7702 cells and rats played the same role as CA not only in inhibiting ROS production and NADPH oxidase activity, but also in alleviating hepatocytes injury. CA protects transplanted livers from injury, which is likely attributed to its protection of oxidative damage by interfering in PDIA3-dependent activation of NADPH oxidase.
Collapse
Affiliation(s)
- Hong-Na Mu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Dan-Dan Huang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Xin-Rong Zhao
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Chuan-She Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Shu-Ya He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Ke He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Bao-Xue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| |
Collapse
|