1
|
Fatima M, Boonruamkaew P, Yang M, Jaisi A. Biotechnological approaches for the production of neuroactive huperzine A. J Biotechnol 2025; 404:186-198. [PMID: 40311807 DOI: 10.1016/j.jbiotec.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/19/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Huperzine A (HupA), a natural Lycopodium alkaloid primarily derived from Huperzia serrata, has gained attention for its potent neuroprotective properties, particularly its ability to inhibit acetylcholinesterase and modulate key neurological pathways. This review highlights HupA's therapeutic potential in managing neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple sclerosis, Epilepsy, and Myasthenia gravis drawing on a comprehensive literature survey of in vitro, in vivo, and clinical investigation data. Given the limited yield from natural sources, this review also focuses on biotechnological strategies to enhance HupA production. These include chemical synthesis, microbial fermentation using endophytic fungi, plant tissue culture, and emerging synthetic biology approaches. Key biosynthetic intermediates and enzymes, such as lysine decarboxylase, copper amine oxidase, and cytochrome P450s, are discussed in the context of metabolic pathway elucidation and engineering. The review emphasizes the need to bridge current knowledge gaps in HupA biosynthesis to develop cost-effective, sustainable production methods. Advances in metabolic pathway elucidation and engineering hold immense potential for scalable biosynthetic production. Ultimately, the integration of HupA into neurotherapeutic regimens, coupled with innovations in its production, could revolutionize the management of neurodegenerative disorders and position it as a cornerstone of future multi-targeted treatment strategies.
Collapse
Affiliation(s)
- Mubeen Fatima
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; College of Graduate Studies, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.
| | | | - Mengquan Yang
- National Tobacco Cultivation, Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Amit Jaisi
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; Biomass and Oil Palm Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
2
|
A Synopsis of Multitarget Potential Therapeutic Effects of Huperzine A in Diverse Pathologies-Emphasis on Alzheimer's Disease Pathogenesis. Neurochem Res 2022; 47:1166-1182. [PMID: 35122609 DOI: 10.1007/s11064-022-03530-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
Numerous challenges are confronted when it comes to the recognition of therapeutic agents for treating complex neurodegenerative diseases like Alzheimer's disease (AD). The perplexing pathogenicity of AD embodies cholinergic dysfunction, amyloid beta (Aβ) aggregation, neurofibrillary tangle formation, neuroinflammation, mitochondrial disruption along with vicious production of reactive oxygen species (ROS) generating oxidative stress. In this frame of reference, drugs with multi target components could prove more advantageous to counter complex pathological mechanisms that are responsible for AD progression. For as much as, medicinal plant based pharmaco-therapies are emerging as potential candidates for AD treatment keeping the efficacy and safety parameters in terms of toxicity and side effects into consideration. Huperzine A (Hup A) is a purified alkaloid compound extracted from a club moss called Huperzia serrata. Several studies have reported both cholinergic and non-cholinergic effects of this compound on AD with significant neuroprotective properties. The present review convenes cumulative demonstrations of neuroprotection provided by Hup A in in vitro, in vivo, and human studies in various pathologies. The underlying molecular mechanisms of its actions have also been discussed. However, more profound evidence would certainly promote the therapeutic implementation of this drug thus furnishing decisive insights into AD therapeutics and various other pathologies along with preventive and curative management.
Collapse
|
3
|
Bilici S, Yazici GN, Altuner D, Aggul AG, Suleyman H. Effect of Sunitinib on Liver Oxidative and Proinflammatory Damage Induced by Ischemia-Reperfusion in Rats. Transplant Proc 2021; 53:2140-2146. [PMID: 34417031 DOI: 10.1016/j.transproceed.2021.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia-reperfusion (IR) injury is defined as a complex pathologic process that begins with the oxygen deprivation of tissue, continues with the production of reactive oxygen radicals (ROS), and expands with an inflammatory response. This study investigates the protective effects of sunitinib, an anticancer drug with demonstrated antioxidant and anti-inflammatory activity, against liver IR damage. Our study aims to investigate the biochemical and histopathologic effects of sunitinib on IR-induced liver damage in rats. METHODS Albino Wistar male rats were divided into 3 groups: liver IR control (IR), 25 mg/kg sunitinib + liver IR (S+IR), and sham operation (SHAM). RESULTS In the liver tissue of the IR group, oxidant and proinflammatory cytokine levels such as malondialdehyde, nuclear factor κ B, tumor necrosis factor-α, and interleukin-1β increased compared with the SHAM and S+IR groups. In addition, antioxidant levels such as total glutathione, glutathione reductase, and glutathione peroxidase were found to be significantly lower in the IR group than in the SHAM and S+IR groups. Although severe histopathologic damage was observed in the IR group, it was evaluated as mild in the S+IR group. The results obtained suggest that sunitinib may be helpful in the treatment of liver IR injury.
Collapse
Affiliation(s)
- Sami Bilici
- Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Gulce Naz Yazici
- Department of Histology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ahmet Gokhan Aggul
- Department of Biochemistry, Faculty of Pharmacy, Ibrahim Cecen University, Agri, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey.
| |
Collapse
|
4
|
Nourbakhsh F, Read MI, Barreto GE, Sahebkar A. Boosting the autophagy-lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimer's disease. IUBMB Life 2020; 72:2360-2281. [PMID: 32894821 DOI: 10.1002/iub.2369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 01/14/2023]
Abstract
The lysosome is a membrane-enclosed organelle in eukaryotic cells, which has basic pattern recognition for nutrient-dependent signal transduction. In Alzheimer's disease, the already declining autophagy-lysosomal function is exacerbated by an increased need for clearance of damaged proteins and organelles in aged cells. Recent evidence suggests that numerous diseases are linked to impaired autophagy upstream of lysosomes. In this way, a comprehensive survey on the pathophysiology of the disease seems necessary. Hence, in the first section of this review, we will discuss the ultimate findings in lysosomal signaling functions and how they affect cellular metabolism and trafficking under neurodegenerative conditions, specifically Alzheimer's disease. In the second section, we focus on how natural products and their derivatives are involved in the regulation of inflammation and lysosomal dysfunction pathways, including how these should be considered a crucial target for Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn I Read
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
5
|
Bral M, Pawlick R, Marfil-Garza B, Dadheech N, Hefler J, Thiesen A, Shapiro AMJ. Pan-caspase inhibitor F573 mitigates liver ischemia reperfusion injury in a murine model. PLoS One 2019; 14:e0224567. [PMID: 31770375 PMCID: PMC6879152 DOI: 10.1371/journal.pone.0224567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/16/2019] [Indexed: 12/03/2022] Open
Abstract
Background Liver ischemia reperfusion injury (IRI) remains a challenge in liver transplantation. A number of compounds have previously demonstrated efficacy in mitigating IRI. Herein, we applied three specific additive strategies to a mouse IRI screening model to determine their relative potencies in reducing such injury, with a view to future testing in a large animal and clinical ex situ normothermic perfusion setting: 1) F573, a pan-caspase inhibitor, 2) anti-inflammatory anakinra and etanrecept and 3) BMX-001, a mimetic of superoxide dismutase. Methods A non-lethal liver ischemia model in mice was used. Additives in the treatment groups were given at fixed time points before induction of injury, compared to a vehicle group that received no therapeutic treatment. Mice were recovered for 6 hours following the ischemic insult, at which point blood and tissue samples were obtained. Plasma was processed for transaminase levels. Whole liver tissue samples were processed for histology, markers of apoptosis, oxidative stress, and cytokine levels. Results In an in vivo murine IRI model, the F573 treatment group demonstrated statistically lower alanine aminotransferase (ALT) levels (p = 0.01), less evidence of apoptosis (p = 0.03), and lower cytokine levels compared to vehicle. The etanercept with anakinra treatment group demonstrated significantly lower cytokine levels. The BMX-001 group demonstrated significantly decreased apoptosis (p = 0.01) evident on TUNEL staining. Conclusions The administration of pan-caspase inhibitor F573 in a murine in vivo model likely mitigates liver IRI based on decreased markers of cellular injury, decreased evidence of apoptosis, and improved cytokine profiles. Anakinra with etanercept, and BMX-001 did not demonstrate convincing efficacy at reducing IRI in this model, and likely need further optimization. The positive findings set rational groundwork for future translational studies of applying F573 during normothermic ex situ liver perfusion, with the aim of improving the quality of marginal grafts.
Collapse
Affiliation(s)
- Mariusz Bral
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Rena Pawlick
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | | | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Aducio Thiesen
- Department of Pathology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
6
|
Linares I, Farrokhi K, Echeverri J, Kaths JM, Kollmann D, Hamar M, Urbanellis P, Ganesh S, Adeyi OA, Yip P, Selzner M, Selzner N. PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model. PLoS One 2018; 13:e0195212. [PMID: 29617419 PMCID: PMC5884549 DOI: 10.1371/journal.pone.0195212] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/19/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND PPAR-gamma (γ) is highly expressed in macrophages and its activation affects their polarization. The effect of PPAR-γ activation on Kupffer cells (KCs) and liver ischemia-reperfusion injury (IRI) has not yet been evaluated. We investigated the effect of PPAR-γ activation on KC-polarization and IRI. MATERIALS AND METHODS Seventy percent (70%) liver ischemia was induced for 60mins. PPAR-γ-agonist or vehicle was administrated before reperfusion. PPAR-γ-antagonist was used to block PPAR-γ activation. Liver injury, necrosis, and apoptosis were assessed post-reperfusion. Flow-cytometry determined KC-phenotypes (pro-inflammatory Nitric Oxide +, anti-inflammatory CD206+ and anti-inflammatory IL-10+). RESULTS Liver injury assessed by serum AST was significantly decreased in PPAR-γ-agonist versus control group at all time points post reperfusion (1hr: 3092±105 vs 4469±551; p = 0.042; 6hr: 7041±1160 vs 12193±1143; p = 0.015; 12hr: 5746±328 vs 8608±1259; p = 0.049). Furthermore, liver apoptosis measured by TUNEL-staining was significantly reduced in PPAR-γ-agonist versus control group post reperfusion (1hr:2.46±0.49 vs 6.90±0.85%;p = 0.001; 6hr:26.40±2.93 vs 50.13±8.29%; p = 0.048). H&E staining demonstrated less necrosis in PPAR-γ-agonist versus control group (24hr:26.66±4.78 vs 45.62±4.57%; p = 0.032). The percentage of pro-inflammatory NO+ KCs was significantly lower at all post reperfusion time points in the PPAR-γ-agonist versus control group (1hr:28.49±4.99 vs 53.54±9.15%; p = 0.040; 6hr:5.51±0.54 vs 31.12±9.58%; p = 0.009; 24hr:4.15±1.50 vs 17.10±4.77%; p = 0.043). In contrast, percentage of anti-inflammatory CD206+ KCs was significantly higher in PPAR-γ-agonist versus control group prior to IRI (8.62±0.96 vs 4.88 ±0.50%; p = 0.04). Administration of PPAR-γ-antagonist reversed the beneficial effects on AST, apoptosis, and pro-inflammatory NO+ KCs. CONCLUSION PPAR-γ activation reduces IRI and decreases the pro-inflammatory NO+ Kupffer cells. PPAR-γ activation can become an important tool to improve outcomes in liver surgery through decreasing the pro-inflammatory phenotype of KCs and IRI.
Collapse
Affiliation(s)
- Ivan Linares
- Multi Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
- Consejo Nacional de Ciencia y Tecnología, México City, México
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kaveh Farrokhi
- Multi Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Juan Echeverri
- Multi Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| | - Johan Moritz Kaths
- Multi Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dagmar Kollmann
- Multi Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| | - Matyas Hamar
- Multi Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| | - Peter Urbanellis
- Multi Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sujani Ganesh
- Multi Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| | - Oyedele A. Adeyi
- Department of Pathology, Toronto General Hospital, Toronto, ON, Canada
| | - Paul Yip
- Laboratory of Medicine and Pathobiology, Toronto General Hospital, Toronto, ON, Canada
| | - Markus Selzner
- Multi Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| | - Nazia Selzner
- Multi Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
7
|
Park JK, Kim Y, Kim H, Jeon J, Kim TW, Park JH, Hwnag YI, Lee WJ, Kang JS. The anti-fibrotic effect of GV1001 combined with gemcitabine on treatment of pancreatic ductal adenocarcinoma. Oncotarget 2018; 7:75081-75093. [PMID: 27655706 PMCID: PMC5342724 DOI: 10.18632/oncotarget.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
GV1001 is a telomerase-based cancer vaccine made of a 16-mer telomerase reverse transcriptase (TERT) peptide, and human TERT, the rate-limiting subunit of the telomerase complex, is an attractive target for cancer vaccination. The aim of this study was to evaluate the effect of telomerase peptide vaccination, GV1001 combined with gemcitabine in treatment of pancreatic ductal adenocarcinoma (PDAC). Human PDAC cell lines were used in vitro experiment and also, PDAC xenograft mice model was established using PANC1, AsPC1 and CD133+ AsPC1 (PDAC stem cell). Treatment groups were divided as follows; control, gemcitabine, GV1001, gemcitabine and GV1001 combination. The inflammatory cytokines were measured from the blood, and xenograft tumor specimens were evaluated. GV1001 treatment alone did not affect the proliferation or the apoptosis of PDAC cells. Gemcitabine alone and gemcitabine with GV1001 groups had significantly reduced in tumor size and showed abundant apoptosis compared to other treatment groups. Surprisingly, xenograft PDAC tumor specimens of gemcitabine alone group had been replaced by severe fibrosis whereas gemcitabine with GV1001 group had significantly less fibrosis. Blood levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β increased in gemcitabine alone group, however, it was decreased in gemcitabine with GV1001 group. GV1001 combined with gemcitabine treatment showed significant loss of fibrosis in tumor tissue as well as tumor cell death. Therefore, further investigation of GV1001 effect combined with gemcitabine treatment may give us useful insights to overcome the hurdle in anti-cancer drug delivery over massive fibrosis around PDACs.
Collapse
Affiliation(s)
- Joo Kyung Park
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yejin Kim
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyemin Kim
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Jane Jeon
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Wan Kim
- Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ji-Hong Park
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Young-Il Hwnag
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Wang Jae Lee
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
8
|
Sun J, Tian L, Cui R, Li X. Huperzine A inhibits immediate addictive behavior but not behavioral sensitization following repeated morphine administration in rats. Exp Ther Med 2017; 13:1584-1591. [PMID: 28413513 DOI: 10.3892/etm.2017.4097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/18/2016] [Indexed: 11/06/2022] Open
Abstract
Acetylcholinesterase inhibitors are regarded as promising therapeutic agents to treat addiction. The current study aimed to examine the effects of huperzine A, a cholinesterase inhibitor, on behavioral sensitization induced by repeated morphine administration and relapse induced by contextual conditioning. The present study also assessed whether the state-dependency hypothesis may explain the results. Adult rats were divided into four groups (n=8) and intraperitoneally injected with 0.2, 0.3 or 0.4 mg/kg huperzine A or saline (1 ml/kg, control), for 5 days. The effect of repeated huperzine A administration alone on locomotor activity was assessed. For the experiments that analyzed the development of morphine-induced sensitization, 40 rats were divided into five groups (n=8): Saline+Saline, Saline+Morphine, 0.2, 0.3 and 0.4 mg/kg huperzine A+Morphine. Following a withdrawal period of 7 days, all animals were administered saline or morphine, as appropriate. To test the state-dependency hypothesis, the rats in the Saline+Morphine group were injected with saline and morphine, while the other three groups were administered different doses of huperzine A and morphine. To examine the effect of huperzine A on the expression of morphine-induced sensitization, the rats in huperzine A+Morphine groups were injected with appropriate concentrations of huperzine A, and morphine. The current results indicated that the administration of huperzine A alone did not affect locomotor activity, while higher doses of huperzine A inhibited the addictive behavior induced by morphine at the development phase. Additionally, huperzine A administration during the expression phase of morphine sensitization did not inhibit the relapse induced by administration of saline. Furthermore, 0.4 mg/kg huperzine A inhibited the expression of morphine-induced behavioral sensitization. Therefore, the results of the current study do not support the state-dependency hypothesis.
Collapse
Affiliation(s)
- Jinling Sun
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Lin Tian
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Ruisi Cui
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, P.R. China
| |
Collapse
|
9
|
Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev Neurother 2016; 16:671-80. [PMID: 27086593 DOI: 10.1080/14737175.2016.1175303] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Huperzine A (HupA) is an acetylcholinesterase (AChE) inhibitor extracted from Huperzia Serrata, a firmoss, which has been used for various diseases in traditional Chinese medicine for fever and inflammation. More recently, it has been used in Alzheimer's disease and other forms of dementia with a presumed mechanism of action via central nicotinic and muscarinic receptors. HupA is marketed as a dietary supplement in the U.S. This article reviews newly proposed neuroprotective and anticonvulsant HupA properties based on animal studies. HupA exerts its effects mainly via α7nAChRs and α4β2nAChRs, thereby producing a potent anti-inflammatory response by decreasing IL-1β, TNF-α protein expression, and suppressing transcriptional activation of NF-κB signaling. Thus, it provides protection from excitotoxicity and neuronal death as well as increase in GABAergic transmission associated with anticonvulsant activity.
Collapse
Affiliation(s)
- U Damar
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| | - R Gersner
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| | - J T Johnstone
- b Research and Development - Neurology , Biscayne Pharmaceuticals, Inc ., Miami , FL , USA
| | - S Schachter
- c Departments of Neurology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital , Harvard Medical School , Boston , MA , USA
| | - A Rotenberg
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
10
|
Wang R, Feng X, Zhu K, Zhao X, Suo H. Preventive activity of banana peel polyphenols on CCl 4-induced experimental hepatic injury in Kunming mice. Exp Ther Med 2016; 11:1947-1954. [PMID: 27168833 DOI: 10.3892/etm.2016.3155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 07/13/2015] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to evaluate the preventive effects of banana peel polyphenols (BPPs) against hepatic injury. Mice were divide into normal, control, 100 mg/kg and 200 mg/kg banana peel polyphenol and silymarin groups. All the mice except normal mice were induced with hepatic damage using CCl4. The serum and tissue levels of mice were determined by a kit and the tissues were further examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. BPPs reduced the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase in a CCl4-induced mouse model of hepatic injury. Furthermore, BPPs reduced the levels of malondialdehyde and triglyceride, while increasing glutathione levels in the serum and liver tissues of mice. In addition, the effects of 200 mg/kg treatment were more evident, and these effects were comparable to those of the drug silymarin. Serum levels of the cytokines, interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α and interferon-γ, were reduced in the mice treated with BPPs compared with injury control group mice, and these levels were comparable to those of the normal and silymarin-treated groups. Histopathological examination indicated that BPPs were able to reduce the extent of CCl4-induced liver tissue injury and protect the liver cells. Furthermore, the mRNA and protein expression levels of the inflammation-associated factors cyclooxygenase-2, nitric oxide synthase, TNF-α and IL-1β were reduced in mice treated with BPPs compared with the control group mice. Mice that received 200 mg/kg BPP exhibited reduced expression levels of these factors compared with mice that received 100 mg/kg BPP. In conclusion, the results of the present study suggested that BPPs exert a good preventive effect against hepatic injury.
Collapse
Affiliation(s)
- Rui Wang
- Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China; Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Xia Feng
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Kai Zhu
- Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China; Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China; Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
11
|
Combined treatment of 3-hydroxypyridine-4-one derivatives and green tea extract to induce hepcidin expression in iron-overloaded β-thalassemic mice. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|