1
|
Radicetti-Silva J, Oliveira M, Baldavira CM, Braga CL, Santos RT, Felix NS, Silva AL, Capelozzi VL, Cruz FF, Rocco PRM, Silva PL. Distinct effects of intravenous bone marrow-derived mesenchymal stem cell therapy on ischemic and non-ischemic lungs after ischemia-reperfusion injury. Cytotherapy 2024; 26:1505-1513. [PMID: 39115513 DOI: 10.1016/j.jcyt.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The preclinical efficacy of mesenchymal stem cell (MSC) therapy after intravenous infusion has been promising, but clinical studies have yielded only modest results. Although most preclinical studies have focused solely on the ischemic lung, it is crucial to evaluate both lungs after ischemia-reperfusion injury, considering the various mechanisms involved. This study aimed to bridge this gap by assessing the acute effects of bone marrow MSC(BM) infusion before ischemic insult and evaluating both ischemic and non-ischemic lungs after reperfusion. METHODS Eighteen male Wistar rats (403 ± 23 g) were anesthetized and mechanically ventilated using a protective strategy. After baseline data collection, the animals were randomized to 3 groups (n = 6/group): (1) SHAM; (2) ischemia-reperfusion (IR), and (3) intravenous MSC(BM) infusion followed by IR. Ischemia was induced by complete clamping of the left hilum, followed by 1 h of reperfusion after clamp removal. At the end of the experiment, the right and left lungs (non-ischemic and ischemic, respectively) were collected for immunohistochemistry and molecular biology analysis. RESULTS MSC(BM)s reduced endothelial cell damage and apoptosis markers and improved markers associated with endothelial cell integrity in both lungs. In addition, gene expression of catalase and nuclear factor erythroid 2-related factor 2 increased after MSC(BM) therapy. In the ischemic lung, MSC(BM) therapy mitigated endothelial cell damage and apoptosis and increased gene expression associated with endothelial cell integrity. Conversely, in the non-ischemic lung, apoptosis gene expression increased in the IR group but not after MSC(BM) therapy. CONCLUSION This study demonstrates distinct effects of MSC(BM) therapy on ischemic and non-ischemic lungs after ischemia-reperfusion injury. The findings underscore the importance of evaluating both lung types in ischemia-reperfusion studies, offering insights into the therapeutic potential of MSC(BM) therapy in the context of lung injury.
Collapse
Affiliation(s)
- Julia Radicetti-Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milena Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Cassia Lisboa Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Trabach Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathane Santanna Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Lopes Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Wang L, Ding Y, Bai Y, Shi J, Li J, Wang X. The activation of SIRT3 by dexmedetomidine mitigates limb ischemia-reperfusion-induced lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:319. [PMID: 35434046 PMCID: PMC9011293 DOI: 10.21037/atm-22-711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022]
Abstract
Background The lung is one of the most sensitive organs, and is vulnerable to injury caused by limb ischemia-reperfusion (LIR). Dexmedetomidine, an anesthetic adjunct, has been shown to have therapeutic effects on lung injury secondary to LIR. This study aimed to investigate the role of dexmedetomidine in ameliorating LIR-induced lung injury in a mouse model of bilateral hind LIR. Methods In this study, 75 mice were randomly divided into 5 groups to prepare the LIR model. After the model was established, arterial blood was extracted for blood gas analysis. The pathological changes of lung tissue, lung wet/dry weight ratio, arterial blood gas analysis, detection of myeloperoxidase (MPO) activity, the content of reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in oxidative stress indexes, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content and cytochrome c content were measured, and the relative protein expression levels of sirtuin-3 (SIRT3) and apoptosis factor Bcl-2 related X protein (Bax), B-cell Lymphoma 2 (Bcl-2), cleaved caspase 3, and nuclear factor erythroid 2-related factor 2 (Nrf2) and cytoplasmic heme oxygenase-1 (HO-1). Results Pretreatment with dexmedetomidine dramatically ameliorated LIR-induced lung injury, the wet/dry weight ratio, the arterial blood gas parameters, and enhanced SIRT3 expression. Moreover, dexmedetomidine significantly inhibits ROS and MDA level and restores antioxidant enzyme activities (SOD, GSH-Px). Of note, dexmedetomidine suppressed LIR-induced lung tissue apoptosis by modulating apoptosis-associated protein such as Bax, Bcl-2, and cleaved caspase 3. Moreover, dexmedetomidine inhibited the LIR-induced decreases in MMP, ATP levels, and the release of cytochrome c of LIR to maintain mitochondrial function. Latest study has shown that activating Nrf2 could promote SIRT3 expression to alleviate IR injury. Intriguingly, dexmedetomidine could facilitate nuclear Nrf2 and cytoplasmic HO-1 expression. Conclusions Our findings suggest that dexmedetomidine protects against LIR-induced lung injury by inhibiting the oxidative response, mitochondrial dysfunction and apoptosis. The mechanism appears to be at least partly mediated through the upregulation of SIRT3 expression.
Collapse
Affiliation(s)
- Lei Wang
- Teaching and Research Section of Anesthesiology, Hebei Medical University, Shijiazhuang, China.,Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Anesthesiology, Baoding First Central Hospital, Baoding, China
| | - Yanling Ding
- Department of Anesthesiology, Baoding First Central Hospital, Baoding, China
| | - Yanhui Bai
- Department of Anesthesiology, Baoding First Central Hospital, Baoding, China
| | - Jian Shi
- Department of Cardiovascular Surgery, Baoding First Central Hospital, Baoding, China
| | - Jia Li
- Department of Clinical Laboratory, The No. 2 Hospital of Baoding, Baoding, China
| | - Xiuli Wang
- Teaching and Research Section of Anesthesiology, Hebei Medical University, Shijiazhuang, China.,Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Rosa AC, Corsi D, Cavi N, Bruni N, Dosio F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021; 26:1844. [PMID: 33805942 PMCID: PMC8037464 DOI: 10.3390/molecules26071844] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Superoxide dismutases (SODs) are metalloenzymes that play a major role in antioxidant defense against oxidative stress in the body. SOD supplementation may therefore trigger the endogenous antioxidant machinery for the neutralization of free-radical excess and be used in a variety of pathological settings. This paper aimed to provide an extensive review of the possible uses of SODs in a range of pathological settings, as well as describe the current pitfalls and the delivery strategies that are in development to solve bioavailability issues. We carried out a PubMed query, using the keywords "SOD", "SOD mimetics", "SOD supplementation", which included papers published in the English language, between 2012 and 2020, on the potential therapeutic applications of SODs, including detoxification strategies. As highlighted in this paper, it can be argued that the generic antioxidant effects of SODs are beneficial under all tested conditions, from ocular and cardiovascular diseases to neurodegenerative disorders and metabolic diseases, including diabetes and its complications and obesity. However, it must be underlined that clinical evidence for its efficacy is limited and consequently, this efficacy is currently far from being demonstrated.
Collapse
Affiliation(s)
- Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Daniele Corsi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Niccolò Cavi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Natascia Bruni
- Istituto Farmaceutico Candioli, Strada Comunale di None, 1, 10092 Beinasco, Italy;
| | - Franco Dosio
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| |
Collapse
|
4
|
Fei L, Jingyuan X, Fangte L, Huijun D, Liu Y, Ren J, Jinyuan L, Linghui P. Preconditioning with rHMGB1 ameliorates lung ischemia-reperfusion injury by inhibiting alveolar macrophage pyroptosis via the Keap1/Nrf2/HO-1 signaling pathway. J Transl Med 2020; 18:301. [PMID: 32758258 PMCID: PMC7405465 DOI: 10.1186/s12967-020-02467-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/28/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Lung ischemia-reperfusion injury (LIRI) is a complex pathophysiological process that can lead to poor patient outcomes. Inflammasome-dependent macrophage pyroptosis contributes to organ damage caused by ischemia/reperfusion injury. Oxidative stress and antioxidant enzymes also play an important role in LIRI. In this study, we conducted experiments to investigate whether and how preconditioning with rHMGB1 could ameliorate LIRI in a mouse model. METHODS Adult male BALB/c mice were anesthetized, the left hilus pulmonis was clamped, and reperfusion was performed. rHMGB1 was administered via intraperitoneal injection before anesthesia, and brusatol was given intraperitoneally every other day before surgery. We measured pathohistological lung tissue damage, wet/dry mass ratios of pulmonary tissue, and levels of inflammatory mediators to assess the extent of lung injury. Alveolar macrophage pyroptosis was evaluated by measuring release of lactate dehydrogenase, caspase-1 expression was assessed using flow cytometry, and gasdermin-D expression was analyzed using immunofluorescent staining. Levels of oxidative stress markers and antioxidant enzymes were also analyzed. RESULTS Preconditioning with rHMGB1 significantly ameliorated lung injury induced by ischemia-reperfusion, based on measurements of morphology, wet/dry mass ratios, as well as expression of IL-1β, IL-6, NF-κB, and HMGB1 in lung tissues. It also alleviated alveolar macrophage pyroptosis, reduced oxidative stress and restored the activity of antioxidant enzymes. These beneficial effects were mediated at least in part by the Keap1/Nrf2/HO-1 pathway, since they were reversed by the pathway inhibitor brusatol. CONCLUSIONS Preconditioning with rHMGB1 may protect against LIRI by suppressing alveolar macrophage pyroptosis. This appears to involve reduction of oxidative stress and promotion of antioxidant enzyme activity via the Keap1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Lin Fei
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiao Jingyuan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liang Fangte
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dai Huijun
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ye Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Ren
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lin Jinyuan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Pan Linghui
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.
| |
Collapse
|
5
|
Wang F, Huang S, Xia H, Yao S. Specialized pro-resolving mediators: It's anti-oxidant stress role in multiple disease models. Mol Immunol 2020; 126:40-45. [PMID: 32750537 DOI: 10.1016/j.molimm.2020.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Oxidative stress-related injury is a negative state caused by the imbalance between oxidation and antioxidant effects in the internal environment of the body. Oxidative stress has been confirmed to be an important factor in aging and a variety of diseases and the inhibition of inappropriate oxidative stress responses are important for maintaining normal physiological functions. Recently, considerable attention has been focused on specialized pro-resolving mediators(SPMs). SPMs are endogenous mediators derived from polyunsaturated fatty acids, which have multiple protective effects such as anti-inflammation, pro-resolution, and promoting tissue damage repair, etc. Moreover, the role of SPMs on oxidative stress has been extensively researched and provides a possible treatment method. In the current study, we review the positive role of SPMs in oxidative stress-related disease and outline the possible involved mechanism, thus providing the theoretical support for a better understanding of the roles of SPMs in oxidative stress and the theoretical basis for finding targets for the oxidative stress-related diseases.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Baicalin ameliorates lipopolysaccharide-induced acute lung injury in mice by suppressing oxidative stress and inflammation via the activation of the Nrf2-mediated HO-1 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1421-1433. [DOI: 10.1007/s00210-019-01680-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
|
7
|
Extracorporeal Perfusion in Vascularized Composite Allotransplantation: Current Concepts and Future Prospects. Ann Plast Surg 2019; 80:669-678. [PMID: 29746324 DOI: 10.1097/sap.0000000000001477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe injuries of the face and limbs remain a major challenge in today's reconstructive surgery. Vascularized composite allotransplantation (VCA) has emerged as a promising approach to restore these defects. Yet, there are major obstacles preventing VCA from broad clinical application. Two key restrictions are (1) the graft's limited possible ischemia time, keeping the potential donor radius extremely small, and (2) the graft's immunogenicity, making extensive lifelong monitoring and immunosuppressive treatment mandatory. Machine perfusion systems have demonstrated clinical success addressing these issues in solid organ transplantation by extending possible ischemia times and decreasing immunogenicity. Despite many recent promising preclinical trials, machine perfusion has not yet been utilized in clinical VCA. This review presents latest perfusion strategies in clinical solid organ transplantation and experimental VCA in light of the specific requirements by the vascularized composite allograft's unique tissue composition. It discusses optimal settings for temperature, oxygenation, and flow types, as well as perfusion solutions and the most promising additives. Moreover, it highlights the implications for the utility of VCA as therapeutic measure in plastic surgery, if machine perfusion can be successfully introduced in a clinical setting.
Collapse
|
8
|
Abreu MDM, Almeida FMD, Santos KBD, Assis EACPD, Hamada RKF, Jatene FB, Pêgo-Fernandes PM, Pazetti R. Does methylene blue attenuate inflammation in nonischemic lungs after lung transplantation? J Bras Pneumol 2018; 44:378-382. [PMID: 30517338 PMCID: PMC6467587 DOI: 10.1590/s1806-37562017000000172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 12/07/2017] [Indexed: 11/22/2022] Open
Abstract
Objective: To evaluate whether methylene blue (MB) could minimize the effects of ischemia-reperfusion injury in the nonischemic lung on a lung transplantation rodent model. Methods: Forty female Sprague-Dawley rats were divided into 20 donors and 20 recipients. The 20 recipient rats were divided into two groups (n = 10) according to the treatment (0.9% saline vs. 1% MB solutions). All animals underwent unilateral lung transplantation. Recipients received 2 mL of saline or MB intraperitoneally prior to transplantation. After 2 h of reperfusion, the animals were euthanized and histopathological and immunohistochemical analyses were performed in the nonischemic lung. Results: There was a significant decrease in inflammation-neutrophil count and intercellular adhesion molecule-1 (ICAM-1) expression in lung parenchyma were higher in the saline group in comparison with the MB group-and in apoptosis-caspase-3 expression was higher in the saline group and Bcl-2 expression was higher in MB group. Conclusions: MB is an effective drug for the protection of nonischemic lungs against inflammation and apoptosis following unilateral lung transplantation in rats.
Collapse
Affiliation(s)
- Marcus da Matta Abreu
- . Departamento de Cardiopneumologia, Disciplina de Cirurgia Torácica, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Francine Maria de Almeida
- . Departamento de Cardiopneumologia, Disciplina de Cirurgia Torácica, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Kelli Borges Dos Santos
- . Núcleo de Pesquisa em Transplante, Faculdade de Enfermagem, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
| | | | | | - Fabio Biscegli Jatene
- . Departamento de Cardiopneumologia, Disciplina de Cirurgia Torácica, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Paulo Manuel Pêgo-Fernandes
- . Departamento de Cardiopneumologia, Disciplina de Cirurgia Torácica, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Rogerio Pazetti
- . Departamento de Cardiopneumologia, Disciplina de Cirurgia Torácica, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| |
Collapse
|
9
|
Maresin 1 Ameliorates Lung Ischemia/Reperfusion Injury by Suppressing Oxidative Stress via Activation of the Nrf-2-Mediated HO-1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9634803. [PMID: 28751936 PMCID: PMC5511669 DOI: 10.1155/2017/9634803] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
Lung ischemia/reperfusion (I/R) injury occurs in various clinical conditions and heavily damaged lung function. Oxidative stress reaction and antioxidant enzymes play a pivotal role in the etiopathogenesis of lung I/R injury. In the current study, we investigated the impact of Maresin 1 on lung I/R injury and explored the possible mechanism involved in this process. MaR 1 ameliorated I/R-induced lung injury score, wet/dry weight ratio, myeloperoxidase, tumor necrosis factor, bronchoalveolar lavage fluid (BALF) leukocyte count, BALF neutrophil ratio, and pulmonary permeability index levels in lung tissue. MaR 1 significantly reduced ROS, methane dicarboxylic aldehyde, and 15-F2t-isoprostane generation and restored antioxidative enzyme (superoxide dismutase, glutathione peroxidase, and catalase) activities. Administration of MaR 1 improved the expression of nuclear Nrf-2 and cytosolic HO-1 in I/R-treated lung tissue. Furthermore, we also found that the protective effects of MaR 1 on lung tissue injury and oxidative stress were reversed by HO-1 activity inhibitor, Znpp-IX. Nrf-2 transcription factor inhibitor, brusatol, significantly decreased MaR 1-induced nuclear Nrf-2 and cytosolic HO-1 expression. In conclusion, these results indicate that MaR 1 protects against lung I/R injury through suppressing oxidative stress. The mechanism is partially explained by activation of the Nrf-2-mediated HO-1 signaling pathway.
Collapse
|
10
|
Beal EW, Dumond C, Kim JL, Mumtaz K, Hayes D, Washburn K, Whitson BA, Black SM. Method of Direct Segmental Intra-hepatic Delivery Using a Rat Liver Hilar Clamp Model. J Vis Exp 2017. [PMID: 28447976 PMCID: PMC5564457 DOI: 10.3791/54729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Major hepatic surgery with inflow occlusion, and liver transplantation, necessitate a period of warm ischemia, and a period of reperfusion leading to ischemia/reperfusion (I/R) injury with myriad negative consequences. Potential I/R injury in marginal organs destined for liver transplantation contributes to the current donor shortage secondary to a decreased organ utilization rate. A significant need exists to explore hepatic I/R injury in order to mediate its impact on graft function in transplantation. Rat liver hilar clamp models are used to investigate the impact of different molecules on hepatic I/R injury. Depending on the model, these molecules have been delivered using inhalation, epidural infusion, intraperitoneal injection, intravenous administration or injection into the peripheral superior mesenteric vein. A rat liver hilar clamp model has been developed for use in studying the impact of pharmacologic molecules in ameliorating I/R injury. The described model for rat liver hilar clamp includes direct cannulation of the portal supply to the ischemic hepatic segment via a side branch of the portal vein, allowing for direct segmental hepatic delivery. Our approach is to induce ischemia in the left lateral and median lobes for 60 min, during which time the substance under study is infused. In this case, pegylated-superoxide dismutase (PEG-SOD), a free radical scavenger, is infused directly into the ischemic segment. This series of experiments demonstrates that infusion of PEG-SOD is protective against hepatic I/R injury. Advantages of this approach include direct injection of the molecule into the ischemic segment with consequent decrease in volume of distribution and reduction in systemic side effects.
Collapse
Affiliation(s)
- Eliza W Beal
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, The Ohio State University Wexner Medical Center
| | - Curtis Dumond
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, The Ohio State University Wexner Medical Center
| | - Jung-Lye Kim
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, The Ohio State University Wexner Medical Center
| | - Khalid Mumtaz
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, The Ohio State University Wexner Medical Center
| | - Don Hayes
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, The Ohio State University Wexner Medical Center
| | - Ken Washburn
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, The Ohio State University Wexner Medical Center
| | - Bryan A Whitson
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, The Ohio State University Wexner Medical Center
| | - Sylvester M Black
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, The Ohio State University Wexner Medical Center;
| |
Collapse
|