1
|
Yin J, Li L, Wang C, Zhang Y. Increased Galectin-9 expression, a prognostic biomarker of aGVHD, regulates the immune response through the Galectin-9 induced MDSC pathway after allogeneic hematopoietic stem cell transplantation. Int Immunopharmacol 2020; 88:106929. [PMID: 32889240 DOI: 10.1016/j.intimp.2020.106929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Galectin-9 (Gal-9) is a β-galactoside-binding soluble lectin family member that exerts its primary biological functions via specific glycoconjugate interactions. Gal-9 expression is closely related to tumor occurrence, development, metastasis and prognosis. In transplant immunology, a high level of Gal-9 expression has been shown to markedly reduce the severity of acute graft rejection and effectively prolong survival time in organ and bone marrow transplantation (BMT) models. The main mechanism of Gal-9-mediated immunoregulation involves the Tim-3/Gal-9 axis in T cells. However, myeloid-derived suppressor cell (MDSC) accumulation in transgenic mice with persistently high Gal-9 expression was observed in a model of lung inflammation, indicating that a potential immunosuppressive mechanism distinct from the Gal-9/Tim-3 axis might exist. In the present study, increased Gal-9 expression and MDSC frequencies before acute graft-versus-host disease (aGVHD) onset were observed in patients who developed aGVHD. Patients with higher Gal-9 expression (≥14.8417 ng/ml) exhibited reduced overall survival and increased cumulative incidences of GVHD at +100 day. We considered the elevated Gal-9 expression before aGVHD onset a secondary inflammatory response. This increase might be part of a negative feedback pathway corresponding to aGVHD pathogenesis. Additionally, a high Gal-9 concentration induced MDSC proliferation in vivo and in vitro. Gal-9-induced MDSCs (G9-MDSCs) suppressed T cell proliferation and activation. An infusion of G9-MDSCs into a graft contributed to the successful control of severe aGVHD and long-term survival in an allogeneic (allo)-BMT mouse model. Thus, we speculated that increased Gal-9 expression after allo-hematopoietic stem cell transplantation is a potential prognostic biomarker of aGVHD. The Gal-9-associated immunosuppressive effects on aGVHD development might occurr through G9-MDSCs and were independent of the Gal-9/Tim-3 axis.
Collapse
Affiliation(s)
- Jin Yin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Lin Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Chunyan Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China.
| |
Collapse
|
2
|
Tazhitdinova R, Timoshenko AV. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells 2020; 9:cells9081792. [PMID: 32731422 PMCID: PMC7465113 DOI: 10.3390/cells9081792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.
Collapse
|
3
|
Mardomi A, Mohammadi N, Khosroshahi HT, Abediankenari S. An update on potentials and promises of T cell co-signaling molecules in transplantation. J Cell Physiol 2019; 235:4183-4197. [PMID: 31696513 DOI: 10.1002/jcp.29369] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
The promising outcomes of immune-checkpoint based immunotherapies in cancer have provided a proportional perspective ahead of exploiting similar approaches in allotransplantation. Belatacept (CTLA-4-Ig) is an example of costimulation blockers successfully exploited in renal transplantation. Due to the wide range of regulatory molecules characterized in the past decades, some of these molecules might be candidates as immunomodulators in the case of tolerance induction in transplantation. Although there are numerous attempts on the apprehension of the effects of co-signaling molecules on immune response, the necessity for a better understanding is evident. By increasing the knowledge on the biology of co-signaling pathways, some pitfalls are recognized and improved approaches are proposed. The blockage of CD80/CD28 axis is an instance of evolution toward more efficacy. It is now evident that anti-CD28 antibodies are more effective than CD80 blockers in animal models of transplantation. Other co-signaling axes such as PD-1/PD-L1, CD40/CD154, 2B4/CD48, and others discussed in the present review are examples of critical immunomodulatory molecules in allogeneic transplantation. We review here the outcomes of recent experiences with co-signaling molecules in preclinical studies of solid organ transplantation.
Collapse
Affiliation(s)
- Alireza Mardomi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nabiallah Mohammadi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Saeid Abediankenari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Duan YT, Sangani CB, Liu W, Soni KV, Yao Y. New Promises to Cure Cancer and Other Genetic Diseases/Disorders: Epi-drugs Through Epigenetics. Curr Top Med Chem 2019; 19:972-994. [DOI: 10.2174/1568026619666190603094439] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/05/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
All the heritable alterations in gene expression and chromatin structure due to chemical modifications that do not involve changes in the primary gene nucleotide sequence are referred to as epigenetics. DNA methylation, histone modifications, and non-coding RNAs are distinct types of epigenetic inheritance. Epigenetic patterns have been linked to the developmental stages, environmental exposure, and diet. Therapeutic strategies are now being developed to target human diseases such as cancer with mutations in epigenetic regulatory genes using specific inhibitors. Within the past two decades, seven epigenetic drugs have received regulatory approval and many others show their candidature in clinical trials. The current article represents a review of epigenetic heritance, diseases connected with epigenetic alterations and regulatory approved epigenetic drugs as future medicines.
Collapse
Affiliation(s)
- Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, 362024, India
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Kunjal V. Soni
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, 362024, India
| | - Yongfang Yao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Seropian IM, González GE, Maller SM, Berrocal DH, Abbate A, Rabinovich GA. Galectin-1 as an Emerging Mediator of Cardiovascular Inflammation: Mechanisms and Therapeutic Opportunities. Mediators Inflamm 2018; 2018:8696543. [PMID: 30524200 PMCID: PMC6247465 DOI: 10.1155/2018/8696543] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/30/2018] [Indexed: 01/07/2023] Open
Abstract
Galectin-1 (Gal-1), an evolutionarily conserved β-galactoside-binding lectin, controls immune cell homeostasis and tempers acute and chronic inflammation by blunting proinflammatory cytokine synthesis, engaging T-cell apoptotic programs, promoting expansion of T regulatory (Treg) cells, and deactivating antigen-presenting cells. In addition, this lectin promotes angiogenesis by co-opting the vascular endothelial growth factor receptor (VEGFR) 2 signaling pathway. Since a coordinated network of immunomodulatory and proangiogenic mediators controls cardiac homeostasis, this lectin has been proposed to play a key hierarchical role in cardiac pathophysiology via glycan-dependent regulation of inflammatory responses. Here, we discuss the emerging roles of Gal-1 in cardiovascular diseases including acute myocardial infarction, heart failure, Chagas cardiomyopathy, pulmonary hypertension, and ischemic stroke, highlighting underlying anti-inflammatory mechanisms and therapeutic opportunities. Whereas Gal-1 administration emerges as a potential novel treatment option in acute myocardial infarction and ischemic stroke, Gal-1 blockade may contribute to attenuate pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ignacio M. Seropian
- Servicio de Hemodinamia y Cardiología Intervencionista, Instituto de Medicina Cardiovascular, Hospital Italiano de Buenos Aires, Buenos Aires C1199, Argentina
| | - Germán E. González
- Instituto de Biología y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiopatología Cardiovascular, Departamento de Patología, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
| | - Sebastián M. Maller
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Daniel H. Berrocal
- Servicio de Hemodinamia y Cardiología Intervencionista, Instituto de Medicina Cardiovascular, Hospital Italiano de Buenos Aires, Buenos Aires C1199, Argentina
| | - Antonio Abbate
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
| |
Collapse
|
6
|
Bai ZT, Bai B, Zhu J, Di CX, Li X, Zhou WC. Epigenetic actions of environmental factors and promising drugs for cancer therapy. Oncol Lett 2017; 15:2049-2056. [PMID: 29434904 DOI: 10.3892/ol.2017.7597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/09/2017] [Indexed: 01/15/2023] Open
Abstract
Carcinogenesis is known to be primarily associated with gene mutations. Recently, increasing evidence has suggested that epigenetic events also serve crucial roles in tumor etiology. Environmental factors, including nutrition, toxicants and ethanol, are involved in carcinogenesis through inducing epigenetic modifications, such as DNA methylation, histone deacetylase and miRNA regulation. Studying epigenetic mechanisms has facilitated the development of early diagnostic strategies and potential therapeutic avenues. Modulation at the epigenetic level, including reversing epigenetic modifications using targeted drugs, has demonstrated promise in cancer therapy. Therefore, identifying novel epigenetic biomarkers and therapeutic targets has potential for the future of cancer therapy. The present review discusses the environmental factors involved in epigenetic modifications and potential drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Zhong-Tian Bai
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bing Bai
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jun Zhu
- Pathology Department of Donggang Branch Courts, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Cui-Xia Di
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Xun Li
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Ce Zhou
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
7
|
Gong WL, Sha C, Du G, Shan ZG, Qi ZQ, Zhou SF, Yang N, Zhao YX. Preoperative application of combination of portal venous injection of donor spleen cells and intraperitoneal injection of rapamycin prolongs the survival of cardiac allografts in mice. ASIAN PAC J TROP MED 2017. [PMID: 28647182 DOI: 10.1016/j.apjtm.2017.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the effects of preoperative portal venous injection of donor spleen cells (PVIDSC) and intraperitoneal injection of rapamycin in the acute rejection of cardiac allograft in mice and the underlying mechanisms. METHODS Homogenous female B6 mice and BALB/c mice were used as recipients and donors of heart transplantation. These mice were randomly divided into different groups and received PVIDSC alone, rapamycin alone, or PVIDSC and rapamycin combined therapy. In addition, the underlying mechanism was studied by measuring a number of cytokines. RESULTS Preoperative combination of PVIDSC and intraperitoneal injection of rapamycin significantly prolonged the survival of heterotopic cardiac allograft in mice, but had no effects on the survival time of cardiac allografts in mice pre-sensitized by skin grafting. Preoperative combination of PVIDSC and intraperitoneal injection of rapamycin increased the expression of IL-10 and Foxp3 and reduced the expression of INF-. Short-term preoperative administration of rapamycin promotes the expression of CD4+CD25+Foxp3+ regulator T cells. However, preoperative using alone of rapamycin, or combination of PVIDSC and rapamycin had no effects on the inhibition of proliferation of memory T cells. CONCLUSIONS Preoperative application of combination of PVIDSC and rapamycin significantly prolonged the survival time of cardiac allografts in mice but not in mice pre-sensitized by skin grafting. This may be explained by the fact that combination of PVIDSC and rapamycin inhibited the cellular immune response and induced the expression of IL-10 from Tr1 cells and CD4+CD25+FoxP3+ regulatory T cells.
Collapse
Affiliation(s)
- Wen-Lin Gong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Chuang Sha
- Department of Cardiac Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Gang Du
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhong-Gui Shan
- Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Zhong-Quan Qi
- Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Su-Fang Zhou
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China; Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guang Xi Medical University, Nanning 530021, China
| | - Yong-Xiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China; Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guang Xi Medical University, Nanning 530021, China
| |
Collapse
|
8
|
Abstract
Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.
Collapse
Affiliation(s)
- Sebastian John
- Department of Neurobiology and Genetics, Division of Disease Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695014, India
| | | |
Collapse
|
9
|
Kean LS, Turka LA, Blazar BR. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 2017; 276:192-212. [PMID: 28258702 PMCID: PMC5338458 DOI: 10.1111/imr.12523] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, the power of harnessing T-cell co-signaling pathways has become increasingly understood to have significant clinical importance. In cancer immunotherapy, the field has concentrated on two related modalities: First, targeting cancer antigens through highly activated chimeric antigen T cells (CAR-Ts) and second, re-animating endogenous quiescent T cells through checkpoint blockade. In each of these strategies, the therapeutic goal is to re-ignite T-cell immunity, in order to eradicate tumors. In transplantation, there is also great interest in targeting T-cell co-signaling, but with the opposite goal: in this field, we seek the Yin to cancer immunotherapy's Yang, and focus on manipulating T-cell co-signaling to induce tolerance rather than activation. In this review, we discuss the major T-cell signaling pathways that are being investigated for tolerance induction, detailing preclinical studies and the path to the clinic for many of these molecules. These include blockade of co-stimulation pathways and agonism of coinhibitory pathways, in order to achieve the delicate state of balance that is transplant tolerance: a state which guarantees lifelong transplant acceptance without ongoing immunosuppression, and with preservation of protective immune responses. In the context of the clinical translation of immune tolerance strategies, we discuss the significant challenge that is embodied by the fact that targeted pathway modulators may have opposing effects on tolerance based on their impact on effector vs regulatory T-cell biology. Achieving this delicate balance holds the key to the major challenge of transplantation: lifelong control of alloreactivity while maintaining an otherwise intact immune system.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
- The Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Immune Tolerance Network, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. The Current State of NAD + -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Med Res Rev 2017; 38:147-200. [PMID: 28094444 DOI: 10.1002/med.21436] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022]
Abstract
Sirtuins are NAD+ -dependent protein deacylases that cleave off acetyl, as well as other acyl groups, from the ε-amino group of lysines in histones and other substrate proteins. Seven sirtuin isotypes (Sirt1-7) have been identified in mammalian cells. As sirtuins are involved in the regulation of various physiological processes such as cell survival, cell cycle progression, apoptosis, DNA repair, cell metabolism, and caloric restriction, a dysregulation of their enzymatic activity has been associated with the pathogenesis of neoplastic, metabolic, infectious, and neurodegenerative diseases. Thus, sirtuins are promising targets for pharmaceutical intervention. Growing interest in a modulation of sirtuin activity has prompted the discovery of several small molecules, able to inhibit or activate certain sirtuin isotypes. Herein, we give an update to our previous review on the topic in this journal (Schemies, 2010), focusing on recent developments in sirtuin biology, sirtuin modulators, and their potential as novel therapeutic agents.
Collapse
Affiliation(s)
- Matthias Schiedel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Tobias Rumpf
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|