1
|
Wiedemann G, Bacher U, Joncourt R, Solly F, Widmer CC, Zeerleder S, Novak U, Pabst T, Porret NA. A Comprehensive ddPCR Strategy for Sensitive and Reliable Monitoring of CAR-T Cell Kinetics in Clinical Applications. Int J Mol Sci 2024; 25:8556. [PMID: 39201242 PMCID: PMC11354041 DOI: 10.3390/ijms25168556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
In this study, we present the design, implementation, and successful use of digital droplet PCR (ddPCR) for the monitoring of chimeric antigen receptor T-cell (CAR-T) expansion in patients with B-cell malignancies treated with different CAR-T products at our clinical center. Initially, we designed a specific and highly sensitive ddPCR assay targeting the junction between the 4-1BB and CD3ζ domains of tisa-cel, normalized with RPP30, and validated it using blood samples from the first tisa-cel-treated patient in Switzerland. We further compared this assay with a published qPCR (quantitative real-time PCR) design. Both assays showed reliable quantification of CAR-T copies down to 20 copies/µg DNA. The reproducibility and precision were confirmed through extensive testing and inter-laboratory comparisons. With the introduction of other CAR-T products, we also developed a corresponding ddPCR assay targeting axi-cel and brexu-cel, demonstrating high specificity and sensitivity with a limit of detection of 20 copies/µg DNA. These assays are suitable for CAR-T copy number quantification across multiple sample types, including peripheral blood, bone marrow, and lymph node biopsy material, showing robust performance and indicating the presence of CAR-T cells not only in the blood but also in target tissues. Longitudinal monitoring of CAR-T cell kinetics in 141 patients treated with tisa-cel, axi-cel, or brexu-cel revealed significant expansion and long-term persistence. Peak expansion correlated with clinical outcomes and adverse effects, as is now well known. Additionally, we quantified the CAR-T mRNA expression, showing a high correlation with DNA copy numbers and confirming active transgene expression. Our results highlight the quality of ddPCR for CAR-T monitoring, providing a sensitive, precise, and reproducible method suitable for clinical applications. This approach can be adapted for future CAR-T products and will support the monitoring and the management of CAR-T cell therapies.
Collapse
Affiliation(s)
- Gertrud Wiedemann
- Department of Hematology and Central Hematological Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (G.W.); (U.B.); (R.J.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Ulrike Bacher
- Department of Hematology and Central Hematological Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (G.W.); (U.B.); (R.J.)
| | - Raphael Joncourt
- Department of Hematology and Central Hematological Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (G.W.); (U.B.); (R.J.)
| | - Françoise Solly
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| | - Corinne C. Widmer
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland;
- Department of Hematology, University Hospital of Basel, 4031 Basel, Switzerland
- Laboratory Medicine, Diagnostic Hematology, 4031 Basel, Switzerland
| | - Sacha Zeerleder
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Urban Novak
- Department of Medical Oncology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland; (U.N.); (T.P.)
- Center for Hemato-Oncology, University Cancer Center, 3010 Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland; (U.N.); (T.P.)
- Center for Hemato-Oncology, University Cancer Center, 3010 Bern, Switzerland
| | - Naomi A. Porret
- Department of Hematology and Central Hematological Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (G.W.); (U.B.); (R.J.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| |
Collapse
|
2
|
Chen PH, Raghunandan R, Morrow JS, Katz SG. Finding Your CAR: The Road Ahead for Engineered T Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1409-1423. [PMID: 38697513 PMCID: PMC11284763 DOI: 10.1016/j.ajpath.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Adoptive cellular therapy using chimeric antigen receptors (CARs) has transformed immunotherapy by engineering T cells to target specific antigens on tumor cells. As the field continues to advance, pathology laboratories will play increasingly essential roles in the complicated multi-step process of CAR T-cell therapy. These include detection of targetable tumor antigens by flow cytometry or immunohistochemistry at the time of disease diagnosis and the isolation and infusion of CAR T cells. Additional roles include: i) detecting antigen loss or heterogeneity that renders resistance to CAR T cells as well as identifying alternative targetable antigens on tumor cells, ii) monitoring the phenotype, persistence, and tumor infiltration properties of CAR T cells and the tumor microenvironment for factors that predict CAR T-cell therapy success, and iii) evaluating side effects and biomarkers of CAR T-cell cytotoxicity such as cytokine release syndrome. This review highlights existing technologies that are applicable to monitoring CAR T-cell persistence, target antigen identification, and loss. Also discussed are emerging technologies that address new challenges such as how to put a brake on CAR T cells. Although pathology laboratories have already provided companion diagnostic tests important in immunotherapy (eg, programmed death-ligand 1, microsatellite instability, and human epidermal growth factor receptor 2 testing), it draws attention to the exciting new translational research opportunities in adoptive cellular therapy.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Rianna Raghunandan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Jon S Morrow
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
3
|
de la Iglesia-San Sebastián I, Carbonell D, Bastos-Oreiro M, Pérez-Corral A, Bailén R, Chicano M, Muñiz P, Monsalvo S, Escudero-Fernández A, Oarbeascoa G, Fernández-Caldas P, Gómez-Centurión I, Pion M, Gayoso J, Anguita J, Kwon M, Díez-Martín JL, Buño I, Martínez-Laperche C. Digital PCR Improves Sensitivity and Quantification in Monitoring CAR-T Cells in B Cell Lymphoma Patients. Transplant Cell Ther 2024; 30:306.e1-306.e12. [PMID: 38184148 DOI: 10.1016/j.jtct.2023.12.672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Chimeric antigen receptor T cells (CAR-T) has emerged as a promising therapy, over 60% of patients fail to sustain a long-term response. The underlying factors that leads to the effectiveness of this therapy are not completely understood, CAR-T cell persistence and monitoring seems to be pivotal for ensuring a successful response. Various monitoring methods such as multiparametric flow cytometry (MFC) or quantitative PCR (qPCR) have been applied. Our objective is to develop digital PCR (dPCR) assays for detection and quantification of CAR-T cells, comparing them with MFC and qPCR. Samples taken at different follow-up times from 45 patients treated with CAR-T therapy were analyzed to assess the correlation between the different methodologies. dPCR presented a high correlation with MFC and qPCR (r = 0.97 and r = 0.87, respectively), while offering a higher sensitivity (0.01%) compared to MFC (0.1%) and qPCR (1%). dPCR emerged as an alternative and highly sensitivity method for monitoring CAR-T cell dynamics. This technique is well-suited for implementation in clinical practice as a complementary technique to MFC.
Collapse
Affiliation(s)
- Ismael de la Iglesia-San Sebastián
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Diego Carbonell
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Mariana Bastos-Oreiro
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ana Pérez-Corral
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rebeca Bailén
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Maria Chicano
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Paula Muñiz
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Silvia Monsalvo
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Gillen Oarbeascoa
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Paula Fernández-Caldas
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ignacio Gómez-Centurión
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Marjorie Pion
- Advanced Immuno Regulation Group, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jorge Gayoso
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Javier Anguita
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Mi Kwon
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - José Luis Díez-Martín
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ismael Buño
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Cell Biology, Complutense University of Madrid, Madrid, Spain; Genomics Unit, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
4
|
Masilamani M, Jawa V, Dai Y, Das R, Park A, Lamba M, Wu F, Zheng X, Lu E, Gleason C, Mack T, Mora J, Surapaneni S. Bioanalytical Methods for Characterization of CAR-T Cellular Kinetics: Comparison of PCR Assays and Matrices. Clin Pharmacol Ther 2023; 114:664-672. [PMID: 37422675 DOI: 10.1002/cpt.2991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Recently, multiple chimeric antigen receptor T-cell (CAR-T)-based therapies have been approved for treating hematological malignancies, targeting CD19 and B-cell maturation antigen. Unlike protein or antibody therapies, CAR-T therapies are "living cell" therapies whose pharmacokinetics are characterized by expansion, distribution, contraction, and persistence. Therefore, this unique modality requires a different approach for quantitation compared with conventional ligand binding assays implemented for most biologics. Cellular (flow cytometry) or molecular assays (polymerase chain reaction (PCR)) can be deployed with each having unique advantages and disadvantages. In this article, we describe the molecular assays utilized: quantitative PCR (qPCR), which was the initial platform used to estimate transgene copy numbers and more recently droplet digital PCR (ddPCR) which quantitates the absolute copy numbers of CAR transgene. The comparability of the two methods in patient samples and of each method across different matrices (isolated CD3+ T-cells or whole blood) was also performed. The results show a good correlation between qPCR and ddPCR for the amplification of same gene in clinical samples from a CAR-T therapy trial. In addition, our studies show that the qPCR-based amplification of transgene levels was well-correlated, independent of DNA sources (either CD3+ T-cells or whole blood). Our results also highlight that ddPCR can be a better platform for monitoring samples at the early phase of CAR-T dosing prior to expansion and during long-term monitoring as they can detect samples with very low copy numbers with high sensitivity, in addition to easier implementation and sample logistics.
Collapse
Affiliation(s)
- Madhan Masilamani
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Vibha Jawa
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Yanshan Dai
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Romita Das
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Alice Park
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Manisha Lamba
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Fan Wu
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Xirong Zheng
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Edwin Lu
- Global Biometrics and Data Sciences, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Carol Gleason
- Global Biometrics and Data Sciences, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Tim Mack
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Johanna Mora
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Sekhar Surapaneni
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| |
Collapse
|
5
|
Stuckey R, Luzardo Henríquez H, de la Nuez Melian H, Rivero Vera JC, Bilbao-Sieyro C, Gómez-Casares MT. Integration of molecular testing for the personalized management of patients with diffuse large B-cell lymphoma and follicular lymphoma. World J Clin Oncol 2023; 14:160-170. [PMID: 37124135 PMCID: PMC10134203 DOI: 10.5306/wjco.v14.i4.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) are the most common forms of aggressive and indolent lymphoma, respectively. The majority of patients are cured by standard R-CHOP immunochemotherapy, but 30%–40% of DLBCL and 20% of FL patients relapse or are refractory (R/R). DLBCL and FL are phenotypically and genetically hereterogenous B-cell neoplasms. To date, the diagnosis of DLBCL and FL has been based on morphology, immunophenotyping and cytogenetics. However, next-generation sequencing (NGS) is widening our understanding of the genetic basis of the B-cell lymphomas. In this review we will discuss how integrating the NGS-based characterization of somatic gene mutations with diagnostic or prognostic value in DLBCL and FL could help refine B-cell lymphoma classification as part of a multidisciplinary pathology work-up. We will also discuss how molecular testing can identify candidates for clinical trials with targeted therapies and help predict therapeutic outcome to currently available treatments, including chimeric antigen receptor T-cell, as well as explore the application of circulating cell-free DNA, a non-invasive method for patient monitoring. We conclude that molecular analyses can drive improvements in patient outcomes due to an increased understanding of the different pathogenic pathways affected by each DLBCL subtype and indolent FL vs R/R FL.
Collapse
Affiliation(s)
- Ruth Stuckey
- Department of Hematology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas 35019, Spain
| | - Hugo Luzardo Henríquez
- Department of Hematology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas 35019, Spain
| | | | - José Carlos Rivero Vera
- Department of Anatomical Pathology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas 35019, Spain
| | - Cristina Bilbao-Sieyro
- Department of Hematology, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria 35019, Las Palmas de Gran Canaria, Spain
- Department of Morphology, Universitario de Las Palmas de Gran Canaria, Las Palmas 35001, Spain
| | - María Teresa Gómez-Casares
- Department of Hematology, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria 35019, Las Palmas de Gran Canaria, Spain
- Medical Science, Universitario de Las Palmas de Gran Canaria, Las Palmas 35001, Spain
| |
Collapse
|
6
|
Hays A, Durham J, Gullick B, Rudemiller N, Schneider T. Bioanalytical Assay Strategies and Considerations for Measuring Cellular Kinetics. Int J Mol Sci 2022; 24:ijms24010695. [PMID: 36614138 PMCID: PMC9820866 DOI: 10.3390/ijms24010695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
A vast evolution of drug modalities has occurred over the last several decades. Novel modalities such as cell and gene therapies have proven to be efficacious for numerous clinical indications-primarily in rare disease and immune oncology. Because of this success, drug developers are heavily investing in these novel modalities. Given the complexity of these therapeutics, a variety of bioanalytical techniques are employed to fully characterize the pharmacokinetics of these therapies in clinical studies. Industry trends indicate that quantitative PCR (qPCR) and multiparameter flow cytometry are both valuable in determining the pharmacokinetics, i.e. cellular kinetics, of cell therapies. This manuscript will evaluate the pros and cons of both techniques and highlight regulatory guidance on assays for measuring cellular kinetics. Moreover, common considerations when developing these assays will be addressed.
Collapse
|
7
|
Alhomoud M, Martinet J, Sugita M, Gomez-Arteaga A, Guzman ML. Methods to monitor in vivo expansion and efficacy of CAR-T cells in preclinical models. Methods Cell Biol 2022; 167:185-201. [DOI: 10.1016/bs.mcb.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Genebrier S, Tarte K. [Perspectives for the evolution and use of CAR-T cells]. Bull Cancer 2021; 108:S18-S27. [PMID: 34920801 DOI: 10.1016/j.bulcan.2021.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 11/20/2022]
Abstract
CAR-T cells have recently made a stunning entry on the arena of immunotherapy of B-cell lymphomas. This new treatment approach represents the culmination of 30 years of efforts to understand the role of T cells in the antitumor response. However, this technology is still in its infancy and suffers from a number of limitations. Many areas for improvement, based in particular on the possibilities of additional genetic manipulations of CAR-T cells, aim at reducing their toxicity, increasing their persistence in vivo, preventing the risk of tumor escape, recruiting other immune effectors, or extending their application to other cancers. Further studies of the dynamic interaction between the patient and these live drugs will allow elucidating the mechanisms determining the antitumor response in this context and thus developing more efficiently the future CAR-T cells.
Collapse
Affiliation(s)
- Steve Genebrier
- Université Rennes 1, UMR U1236, inserm, EFS Bretagne, rue Pierre Jean Gineste, 35000 Rennes, France; CHU de Rennes ; Pôle Biologie, 2, rue Henri Le Guilloux, 35033 Rennes cedex 9, France
| | - Karin Tarte
- Université Rennes 1, UMR U1236, inserm, EFS Bretagne, rue Pierre Jean Gineste, 35000 Rennes, France; CHU de Rennes ; Pôle Biologie, 2, rue Henri Le Guilloux, 35033 Rennes cedex 9, France.
| |
Collapse
|
9
|
Cushman-Vokoun AM, Voelkerding KV, Fung MK, Nowak JA, Thorson JA, Duncan HL, Kalicanin T, Anderson MW, Yohe S. A Primer on Chimeric Antigen Receptor T-cell Therapy: What Does It Mean for Pathologists? Arch Pathol Lab Med 2021; 145:704-716. [PMID: 33237994 DOI: 10.5858/arpa.2019-0632-cp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Chimeric antigen receptor T-cell (CAR-T) technology has shown great promise in both clinical and preclinical models in mediating potent and specific antitumor activity. With the advent of US Food and Drug Administration-approved CAR-T therapies for B-cell lymphoblastic leukemia and B-cell non-Hodgkin lymphomas, CAR-T therapy is poised to become part of mainstream clinical practice. OBJECTIVE.— To educate pathologists on CAR-T and chimeric antigen receptor-derived cellular therapy, provide a better understanding of their role in this process, explain important regulatory aspects of CAR-T therapy, and advocate for pathologist involvement in the delivery and monitoring of chimeric antigen receptor-based treatments. Much of the focus of this article addresses US Food and Drug Administration-approved therapies; however, more general issues and future perspectives are considered for therapies in development. DESIGN.— A CAR-T workgroup, facilitated by the College of American Pathologists Personalized Health Care Committee and consisting of pathologists of various backgrounds, was convened to develop a summary guidance paper for the College of American Pathologists Council on Scientific Affairs. RESULTS.— The workgroup identified gaps in pathologists' knowledge of CAR-T therapy, including uncertainty in the role of the clinical laboratory in supporting CAR-T therapy. The workgroup considered these issues and summarized the findings to assist pathologists to become stakeholders in CAR-T therapy administration. CONCLUSIONS.— This manuscript serves to both educate pathologists on CAR-T therapy and serve as a point of initial discussions in areas of CAR-T science, clinical therapy, and regulatory issues as CAR-T therapies continue to be introduced into clinical practice.
Collapse
Affiliation(s)
- Allison M Cushman-Vokoun
- From the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Cushman-Vokoun)
| | - Karl V Voelkerding
- The Department of Pathology, University of Utah School of Medicine and ARUP Laboratories, Salt Lake City (Voelkerding)
| | - Mark K Fung
- Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington (Fung)
| | - Jan A Nowak
- The Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Nowak)
| | - John A Thorson
- The Department of Pathology, University of California San Diego, La Jolla (Thorson)
| | - Helena L Duncan
- Policy and Advocacy, College of American Pathologists, Washington, DC (Duncan)
| | - Tanja Kalicanin
- Proficiency Testing, College of American Pathologists, Northfield, Illinois (Kalicanin)
| | | | - Sophia Yohe
- The Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis (Yohe)
| |
Collapse
|
10
|
Rubio MT, Varlet P, Allain V, Ballot C, Cuffel A, Deschamps M, Ferrand C, Foguenne J, Forcade E, Huynh A, Guihot A, Latouche JB, Lemarie C, Martinroche G, Morin F, Nguyen S, Schmit K, Servais S, Simonetta F, Yakoub-Agha I, Caillat Zucman S. [Immunomonitoring of patients treated with CAR-T cells for hematological malignancy: Guidelines from the CARTi group and the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)]. Bull Cancer 2021; 108:S53-S64. [PMID: 34253335 DOI: 10.1016/j.bulcan.2021.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022]
Abstract
CAR-T cells represent a new anti-tumor immunotherapy which has shown its clinical efficacy in B-cell malignancies. The results of clinical trials carried out in this context have shown that certain immunological characteristics of patients before (at the time of apheresis) and after the administration of the treatment, or of the CAR-T cells themselves, are correlated with the response to the treatment or to its toxicity. However, to date, there are no recommendations on the immunological monitoring of patients treated in real life. The objectives of this workshop were to determine, based on data from the literature and the experience of the centers, the immunological analyses to be carried out in patients treated with CAR-T cells. The recommendations relate to the characterization of the patient's immune cells at the time of apheresis, the characterization of the injected CAR-T cells, as well as the monitoring of the CAR-T cells and other parameters of immune reconstitution in the patient after administration of the treatment. Harmonization of practices will allow clinical-biological correlation studies to be carried out in patients treated in real life with the aim of identifying factors predictive of response and toxicity. Such data could have a major medico-economic impact by making it possible to identify the patients who will optimally benefit from these expensive treatments.
Collapse
Affiliation(s)
- Marie Thérèse Rubio
- CHRU Nancy, Hopital Brabois, Biopole de l'Université de Lorraine, CNRS UMR 7563 IMoPa, Service d'hématologie, 54500 Vandoeuvre-les-Nancy, France.
| | - Pauline Varlet
- Université de Lille, CHU de Lille, Laboratoire d'Immunologie, LIRIC, INSERM U995, 59000 Lille, France
| | - Vincent Allain
- Université de Paris, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, France
| | - Caroline Ballot
- Établissement Français du Sang Hauts-de-France, Unité de Thérapie Cellulaire EFS site de Lille, Normandie, France
| | - Alexis Cuffel
- Université de Paris, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, France
| | - Marina Deschamps
- Ets Bourgogne Franche-Comté, INSERM UMR1098, 25020 Besançon, France
| | | | - Jacques Foguenne
- CHU de Liège, domaine universitaire du Sart-Tilman B35, Laboratoire d'Hématologie Biologique, Unilab Lg, 4000 Liège, Belgique
| | - Edouard Forcade
- CHU Bordeaux, service d'hématologie clinique et thérapie cellulaire, 33000 Bordeaux, France
| | - Anne Huynh
- IUCT Oncopole, service d'hématologie, Toulouse, France
| | - Amélie Guihot
- Hôpital Pitié-Salpêtrière, AP-HP, département d'immunologie, 75013, Paris, France
| | - Jean-Baptiste Latouche
- CHU de Rouen, UMR Université/Inserm U1234, Laboratoire d'Immunologie et Biothérapies, France
| | - Claude Lemarie
- Institut Paoli-Calmettes, and Inserm CBT 1409, Centre d'Investigations Cliniques en Biothérapie, Marseille, France
| | - Guillaume Martinroche
- Centre Hospitalier Universitaire de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, place Amélie Raba Léon, 33076 Bordeaux, France
| | - Florence Morin
- Université de Paris, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, France
| | - Stéphanie Nguyen
- Hôpital Pitié-Salpêtrière, AP-HP, service d'hématologie 75013, Paris, France
| | - Kathleen Schmit
- CHU de Liège, domaine universitaire du Sart-Tilman B35, Laboratoire d'Hématologie Biologique, Unilab Lg, 4000 Liège, Belgique
| | - Sophie Servais
- Université de Liège, CHU de Liège, service d'hématologie, 4000 Liège, Belgique
| | - Federico Simonetta
- University of Geneva, Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine and Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, Geneva, Suisse
| | | | - Sophie Caillat Zucman
- Université de Paris, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, France
| |
Collapse
|
11
|
Lou Y, Chen C, Long X, Gu J, Xiao M, Wang D, Zhou X, Li T, Hong Z, Li C, Zhou J, Chen L. Detection and Quantification of Chimeric Antigen Receptor Transgene Copy Number by Droplet Digital PCR versus Real-Time PCR. J Mol Diagn 2021; 22:699-707. [PMID: 32409121 DOI: 10.1016/j.jmoldx.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell immunotherapy is a new strategy for the treatment of refractory B-cell malignancies; therefore, the rapid and accurate quantification of CAR transgene copy number is essential. Real-time PCR was used for quantifying the copy number of chimeric antigen receptor transgene. Droplet digital PCR (ddPCR) is an absolute quantification method that does not require a standard curve. In this study, key performance parameters of the ddPCR and real-time PCR methods were assessed, including linearity, detection range, the lower limit of detection, repeatability, reproducibility, and accuracy, using a series of gradient diluted standards and clinical peripheral blood samples from CAR T-cell patients. The two platforms showed a good correlation for the standards (Pearson R2 = 0.9966; P < 0.0001) and clinical samples (Pearson R2 = 0.8952; P < 0.0001), and both showed good linearity (R2 = 0.9996 for ddPCR; R2 = 0.9984 for real-time PCR) over the detection range. Compared with real-time PCR, ddPCR showed lower intra-assay and interassay CVs for the series of diluted standards, which indicated ddPCR has better repeatability and reproducibility. The limit of detection of ddPCR was lower compared with that of real-time PCR. The combined results suggest that ddPCR is a more promising tool for the detection and quantification of the chimeric antigen receptor transgene copy number.
Collapse
Affiliation(s)
- Yaoyao Lou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Caixia Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaolu Long
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jia Gu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoxi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tongjuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chunrui Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
12
|
Haderbache R, Warda W, Hervouet E, da Rocha MN, Trad R, Allain V, Nicod C, Thieblemeont C, Boissel N, Varlet P, Agha IY, Bouquet L, Guiot M, Venet F, Sujobert P, Roussel X, Rouzaire PO, Caillot D, Casasnovas O, Bories JC, Bachy E, Caillat-Zucman S, Deschamps M, Ferrand C. Droplet digital PCR allows vector copy number assessment and monitoring of experimental CAR T cells in murine xenograft models or approved CD19 CAR T cell-treated patients. J Transl Med 2021; 19:265. [PMID: 34154602 PMCID: PMC8215786 DOI: 10.1186/s12967-021-02925-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Genetically engineered chimeric antigen receptor (CAR) T lymphocytes are promising therapeutic tools for cancer. Four CAR T cell drugs, including tisagenlecleucel (tisa-cel) and axicabtagene-ciloleucel (axi-cel), all targeting CD19, are currently approved for treating B cell malignancies. Flow cytometry (FC) remains the standard for monitoring CAR T cells using a recombinant biotinylated target protein. Nevertheless, there is a need for additional tools, and the challenge is to develop an easy, relevant, highly sensitive, reproducible, and inexpensive detection method. Molecular tools can meet this need to specifically monitor long-term persistent CAR T cells. METHODS Based on 2 experimental CAR T cell constructs, IL-1RAP and CS1, we designed 2 quantitative digital droplet (ddPCR) PCR assays. By targeting the 4.1BB/CD3z (28BBz) or 28/CD3z (28z) junction area, we demonstrated that PCR assays can be applied to approved CD19 CAR T drugs. Both 28z and 28BBz ddPCR assays allow determination of the average vector copy number (VCN) per cell. We confirmed that the VCN is dependent on the multiplicity of infection and verified that the VCN of our experimental or GMP-like IL-1RAP CAR T cells met the requirement (< 5 VCN/cell) for delivery to the clinical department, similar to approved axi-cel or tisa-cel drugs. RESULTS 28BBz and 28z ddPCR assays applied to 2 tumoral (acute myeloid leukemia (AML) or multiple myeloma (MM) xenograft humanized NSG mouse models allowed us to quantify the early expansion (up to day 30) of CAR T cells after injection. Interestingly, following initial expansion, when circulating CAR T cells were challenged with the tumor, we noted a second expansion phase. Investigation of the bone marrow, spleen and lung showed that CAR T cells disseminated more within these tissues in mice previously injected with leukemic cell lines. Finally, circulating CAR T cell ddPCR monitoring of R/R acute lymphoid leukemia or diffuse large B cell lymphoma (n = 10 for tisa-cel and n = 7 for axi-cel) patients treated with both approved CAR T cells allowed detection of early expansion, which was highly correlated with FC, as well as long-term persistence (up to 450 days), while FC failed to detect these events. CONCLUSION Overall, we designed and validated 2 ddPCR assays allowing routine or preclinical monitoring of early- and long-term circulating approved or experimental CAR T cells, including our own IL-1RAP CAR T cells, which will be evaluated in an upcoming phase I clinical trial.
Collapse
Affiliation(s)
- Rafik Haderbache
- INSERM UMR1098, Right, EFSBFC, UFC, Laboratoire de Thérapeutique Immuno-Moléculaire Et Cellulaire Des Cancers, 8 rue du Dr Jean François Xavier Girod, 25020, Besançon, France
| | - Walid Warda
- INSERM UMR1098, Right, EFSBFC, UFC, Laboratoire de Thérapeutique Immuno-Moléculaire Et Cellulaire Des Cancers, 8 rue du Dr Jean François Xavier Girod, 25020, Besançon, France
| | - Eric Hervouet
- INSERM UMR1098, Right, EFSBFC, UFC, Laboratoire de Thérapeutique Immuno-Moléculaire Et Cellulaire Des Cancers, 8 rue du Dr Jean François Xavier Girod, 25020, Besançon, France
| | - Mathieu Neto da Rocha
- INSERM UMR1098, Right, EFSBFC, UFC, Laboratoire de Thérapeutique Immuno-Moléculaire Et Cellulaire Des Cancers, 8 rue du Dr Jean François Xavier Girod, 25020, Besançon, France
| | - Rim Trad
- INSERM UMR1098, Right, EFSBFC, UFC, Laboratoire de Thérapeutique Immuno-Moléculaire Et Cellulaire Des Cancers, 8 rue du Dr Jean François Xavier Girod, 25020, Besançon, France
| | - Vincent Allain
- Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Service d'Immunologie, Paris, France
| | - Clementine Nicod
- INSERM UMR1098, Right, EFSBFC, UFC, Laboratoire de Thérapeutique Immuno-Moléculaire Et Cellulaire Des Cancers, 8 rue du Dr Jean François Xavier Girod, 25020, Besançon, France
| | - Catherine Thieblemeont
- Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Service Hématologie, Paris, France
| | - Nicolas Boissel
- Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Service Hématologie, Paris, France
| | | | | | - Lucie Bouquet
- INSERM UMR1098, Right, EFSBFC, UFC, Laboratoire de Thérapeutique Immuno-Moléculaire Et Cellulaire Des Cancers, 8 rue du Dr Jean François Xavier Girod, 25020, Besançon, France
| | - Melanie Guiot
- INSERM UMR1098, Right, EFSBFC, UFC, Laboratoire de Thérapeutique Immuno-Moléculaire Et Cellulaire Des Cancers, 8 rue du Dr Jean François Xavier Girod, 25020, Besançon, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology Laboratory, Edouard Herriot Hospital, Lyon, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'Hématologie Biologique, Lyon, France
| | - Xavier Roussel
- INSERM UMR1098, Right, EFSBFC, UFC, Laboratoire de Thérapeutique Immuno-Moléculaire Et Cellulaire Des Cancers, 8 rue du Dr Jean François Xavier Girod, 25020, Besançon, France
| | - Paul-Oliver Rouzaire
- UFR de Pharmacie, EA CHELTER 7453, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Denis Caillot
- Hematology Clinical Department, Mitterrand Hospital, Dijon, France
| | | | | | - Emmanuel Bachy
- Hospices Civils de Lyon, Hospital Lyon Sud, Service d'Hématologie Clinique, Lyon, France
| | - Sophie Caillat-Zucman
- Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Service d'Immunologie, Paris, France
| | - Marina Deschamps
- INSERM UMR1098, Right, EFSBFC, UFC, Laboratoire de Thérapeutique Immuno-Moléculaire Et Cellulaire Des Cancers, 8 rue du Dr Jean François Xavier Girod, 25020, Besançon, France
| | - Christophe Ferrand
- INSERM UMR1098, Right, EFSBFC, UFC, Laboratoire de Thérapeutique Immuno-Moléculaire Et Cellulaire Des Cancers, 8 rue du Dr Jean François Xavier Girod, 25020, Besançon, France.
| |
Collapse
|
13
|
Selim AG, Minson A, Blombery P, Dickinson M, Harrison SJ, Anderson MA. CAR-T cell therapy: practical guide to routine laboratory monitoring. Pathology 2021; 53:408-415. [PMID: 33685719 DOI: 10.1016/j.pathol.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/24/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a genetically-modified cellular immunotherapy that has a current established role in the treatment of relapsed/refractory B-cell acute lymphoblastic leukaemia and diffuse large B-cell lymphoma, with emerging utility in a spectrum of other haematological and solid organ malignancies. It is associated with a number of characteristic toxicities, most notably cytokine release syndrome and neurotoxicity, for which laboratory testing can aid in the prediction of severity and in monitoring. Other toxicities, such as cytopenias/marrow hypoplasia, hypogammagloblinaemia and delayed immune reconstitution are recognised and require monitoring due to the implications for infection risk and prophylaxis. The detection or quantitation of circulating CAR-T can be clinically useful, and is achieved through both direct methods, if available, or indirect/surrogate methods. It is important that the laboratory is informed of the CAR-T therapy and target antigen whenever tissue is collected, both for response assessment and investigation of possible relapse, so that the expression of the relevant antigen can be assessed, in order to distinguish antigen-positive and -negative relapses. Finally, the measurement of circulating tumour DNA has an evolving role in the surveillance of malignancy, with evidence of its utility in the post-CAR-T setting, including predicting patients who will inevitably experience frank relapse, potentially allowing for pre-emptive therapy.
Collapse
Affiliation(s)
- Adrian G Selim
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Centre of Excellence in Cellular Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Adrian Minson
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Piers Blombery
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia
| | - Michael Dickinson
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Simon J Harrison
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Centre of Excellence in Cellular Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia
| | - Mary Ann Anderson
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Centre of Excellence in Cellular Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Division of Blood Cells and Blood Cancer, The Walter and Eliza Hall Institute, Parkville, Vic, Australia.
| |
Collapse
|
14
|
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy is a promising frontier of immunoengineering and cancer immunotherapy. Methods that detect, quantify, track, and visualize the CAR, have catalyzed the rapid advancement of CAR-T cell therapy from preclinical models to clinical adoption. For instance, CAR-staining/labeling agents have enabled flow cytometry analysis, imaging applications, cell sorting, and high-dimensional clinical profiling. Molecular assays, such as quantitative polymerase chain reaction, integration site analysis, and RNA-sequencing, have characterized CAR transduction, expression, and in vivo CAR-T cell expansion kinetics. In vitro visualization methods, including confocal and total internal reflection fluorescence microscopy, have captured the molecular details underlying CAR immunological synapse formation, signaling, and cytotoxicity. In vivo tracking methods, including two-photon microscopy, bioluminescence imaging, and positron emission tomography scanning, have monitored CAR-T cell biodistribution across blood, tissue, and tumor. Here, we review the plethora of CAR detection methods, which can operate at the genomic, transcriptomic, proteomic, and organismal levels. For each method, we discuss: (1) what it measures; (2) how it works; (3) its scientific and clinical importance; (4) relevant examples of its use; (5) specific protocols for CAR detection; and (6) its strengths and weaknesses. Finally, we consider current scientific and clinical needs in order to provide future perspectives for improved CAR detection.
Collapse
Affiliation(s)
- Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Lee SH, Soh H, Chung JH, Cho EH, Lee SJ, Ju JM, Sheen JH, Kim H, Oh SJ, Lee SJ, Chung J, Choi K, Kim SY, Ryu JS. Feasibility of real-time in vivo 89Zr-DFO-labeled CAR T-cell trafficking using PET imaging. PLoS One 2020; 15:e0223814. [PMID: 31910217 PMCID: PMC6946129 DOI: 10.1371/journal.pone.0223814] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Introduction Chimeric antigen receptor (CAR) T-cells have been recently developed and are producing impressive outcomes in patients with hematologic malignancies. However, there is no standardized method for cell trafficking and in vivo CAR T-cell monitoring. We assessed the feasibility of real-time in vivo89Zr-p-Isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS, DFO) labeled CAR T-cell trafficking using positron emission tomography (PET). Results The 89Zr-DFO radiolabeling efficiency of Jurkat/CAR and human peripheral blood mononuclear cells (hPBMC)/CAR T-cells was 70%–79%, and cell radiolabeling activity was 98.1–103.6 kBq/106 cells. Cell viability after radiolabeling was >95%. Cell proliferation was not significantly different during the early period after radiolabeling, compared with unlabeled cells; however, the proliferative capacity decreased over time (day 7 after labeling). IL-2 or IFN-γ secretion was not significantly different between unlabeled and labeled CAR T-cells. PET/magnetic resonance imaging in the xenograft model showed that most of the 89Zr-DFO-labeled Jurkat/CAR T-cells were distributed in the lung (24.4% ± 3.4%ID) and liver (22.9% ± 5.6%ID) by one hour after injection. The cells gradually migrated from the lung to the liver and spleen by day 1, and remained stable in these sites until day 7 (on day 7: lung 3.9% ± 0.3%ID, liver 36.4% ± 2.7%ID, spleen 1.4% ± 0.3%ID). No significant accumulation of labeled cells was identified in tumors. A similar pattern was observed in ex vivo biodistributions on day 7 (lung 3.0% ± 1.0%ID, liver 19.8% ± 2.2%ID, spleen 2.3% ± 1.7%ID). 89Zr-DFO-labeled hPBMC/CAR T-cells showed a similar distribution, compared with Jurkat/CAR T-cells, on serial PET images. CAR T cell distribution was cross-confirmed by flow cytometry, Alu polymerase chain reaction, and immunohistochemistry. Conclusion Real-time in vivo cell trafficking is feasible using PET imaging of 89Zr-DFO-labeled CAR T-cells. This can be used to investigate cellular kinetics, initial in vivo biodistribution, and safety profiles in future CAR T-cell development.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Deferoxamine/analogs & derivatives
- Deferoxamine/pharmacology
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/pathology
- Humans
- Immunoconjugates/pharmacology
- Isothiocyanates/pharmacology
- Isotope Labeling
- Jurkat Cells
- Leukocytes, Mononuclear/chemistry
- Leukocytes, Mononuclear/drug effects
- Positron-Emission Tomography
- Radioisotopes/chemistry
- Radioisotopes/pharmacology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/isolation & purification
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Chimeric Antigen/chemistry
- Receptors, Chimeric Antigen/isolation & purification
- Receptors, Chimeric Antigen/therapeutic use
- T-Lymphocytes/chemistry
- T-Lymphocytes/immunology
- Tissue Distribution
- Zirconium/pharmacology
Collapse
Affiliation(s)
- Suk Hyun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Division of Nuclear Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hyunsu Soh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jin Hwa Chung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Eun Hye Cho
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Min Ju
- Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea
| | - Joong Hyuk Sheen
- Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea
| | - Hyori Kim
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Jin Lee
- Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea
| | - Junho Chung
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyungho Choi
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seog-Young Kim
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
- * E-mail: (SK); (JR)
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- * E-mail: (SK); (JR)
| |
Collapse
|
16
|
Abstract
Chimeric antigen receptor T cell (CAR-T) therapies have now entered mainstream clinical practice with two approved autologous CAR-T products targeting CD19 and numerous other products in early and late phase clinical trials. This has led to a demand for highly sensitive, specific, and easily reproducible methods to monitor CAR-T cells in patients. Here we describe a flow cytometry based protocol for detection of allogeneic CAR-T cells and for monitoring their phenotype and numbers in blood and bone marrow of patients following CAR-T treatment.
Collapse
Affiliation(s)
- Agnieszka Jozwik
- King's College London, London, UK
- King's Hospital London, London, UK
| | - Alan Dunlop
- King's College London, London, UK
- Viapath, London, UK
| | - Katy Sanchez
- King's College London, London, UK
- Viapath, London, UK
| | - Reuben Benjamin
- King's College London, London, UK.
- King's Hospital London, London, UK.
| |
Collapse
|