1
|
Shen C, Cheng H, Zong T, Zhu H. The role of normothermic machine perfusion (NMP) in the preservation of ex-vivo liver before transplantation: A review. Front Bioeng Biotechnol 2023; 11:1072937. [PMID: 36845187 PMCID: PMC9947506 DOI: 10.3389/fbioe.2023.1072937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
The discrepancy between the number of patients awaiting liver transplantation and the number of available donors has become a key issue in the transplant setting. There is a limited access to liver transplantation, as a result, it is increasingly dependent on the use of extended criteria donors (ECD) to increase the organ donor pool and address rising demand. However, there are still many unknown risks associated with the use of ECD, among which preservation before liver transplantation is important in determining whether patients would experience complications survive after liver transplantation. In contrast to traditional static cold preservation of donor livers, normothermic machine perfusion (NMP) may reduce preservation injury, improve graft viability, and potentially ex vivo assessment of graft viability before transplantation. Data seem to suggest that NMP can enhance the preservation of liver transplantation to some extent and improve the early outcome after transplantation. In this review, we provided an overview of NMP and its application in ex vivo liver preservation and pre-transplantation, and we summarized the data from current clinical trials of normothermic liver perfusion.
Collapse
Affiliation(s)
- Chuanyan Shen
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Hongwei Cheng
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Tingting Zong
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Hongli Zhu
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China,National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China,*Correspondence: Hongli Zhu,
| |
Collapse
|
2
|
Lodhi S, Stone JP, Entwistle TR, Fildes JE. The Use of Hemoglobin-Based Oxygen Carriers in Ex Vivo Machine Perfusion of Donor Organs for Transplantation. ASAIO J 2022; 68:461-470. [PMID: 35220355 DOI: 10.1097/mat.0000000000001597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There has been significant progress in the development of ex vivo machine perfusion for the nonischemic preservation of donor organs. However, several complications remain, including the logistics of using human blood for graft oxygenation and hemolysis occurring as a result of mechanical technology. Recently, hemoglobin-based oxygen carriers, originally developed for use as blood substitutes, have been studied as an alternative to red blood cell-based perfusates. Although research in this field is somewhat limited, the findings are promising. We offer a brief review of the use of hemoglobin-based oxygen carriers in ex vivo machine perfusion and discuss future directions that will likely have a major impact in progressing oxygen carrier use in clinical practice.
Collapse
Affiliation(s)
- Sirat Lodhi
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - John P Stone
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Timothy R Entwistle
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - James E Fildes
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Cao M, Wang G, He H, Yue R, Zhao Y, Pan L, Huang W, Guo Y, Yin T, Ma L, Zhang D, Huang X. Hemoglobin-Based Oxygen Carriers: Potential Applications in Solid Organ Preservation. Front Pharmacol 2021; 12:760215. [PMID: 34916938 PMCID: PMC8670084 DOI: 10.3389/fphar.2021.760215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Ameliorating graft injury induced by ischemia and hypoxia, expanding the donor pool, and improving graft quality and recipient prognosis are still goals pursued by the transplant community. The preservation of organs during this process from donor to recipient is critical to the prognosis of both the graft and the recipient. At present, static cold storage, which is most widely used in clinical practice, not only reduces cell metabolism and oxygen demand through low temperature but also prevents cell edema and resists apoptosis through the application of traditional preservation solutions, but these do not improve hypoxia and increase oxygenation of the donor organ. In recent years, improving the ischemia and hypoxia of grafts during preservation and repairing the quality of marginal donor organs have been of great concern. Hemoglobin-based oxygen carriers (HBOCs) are “made of” natural hemoglobins that were originally developed as blood substitutes but have been extended to a variety of hypoxic clinical situations due to their ability to release oxygen. Compared with traditional preservation protocols, the addition of HBOCs to traditional preservation protocols provides more oxygen to organs to meet their energy metabolic needs, prolong preservation time, reduce ischemia–reperfusion injury to grafts, improve graft quality, and even increase the number of transplantable donors. The focus of the present study was to review the potential applications of HBOCs in solid organ preservation and provide new approaches to understanding the mechanism of the promising strategies for organ preservation.
Collapse
Affiliation(s)
- Min Cao
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoqing Wang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongli He
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiming Yue
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhao
- Anesthesiology, Southwest Medicine University, Luzhou, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiwei Huang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Guo
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yin
- Surgical Department, Chengdu Second People's Hospital, Chengdu, China
| | - Lina Ma
- Health Inspection and Quarantine, Chengdu Medical College, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Gao J, He K, Xia Q, Zhang J. Research progress on hepatic machine perfusion. Int J Med Sci 2021; 18:1953-1959. [PMID: 33850464 PMCID: PMC8040389 DOI: 10.7150/ijms.56139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Nowadays, liver transplantation is the most effective treatment for end-stage liver disease. However, the increasing imbalance between growing demand for liver transplantation and the shortage of donor pool restricts the development of liver transplantation. How to expand the donor pool is a significant problem to be solved clinically. Many doctors have devoted themselves to marginal grafting, which introduces livers with barely passable quality but a high risk of transplant failure into the donor pool. However, existing common methods of preserving marginal grafts lead to both high risk of postoperative complications and high mortality. The application of machine perfusion allows surgeons to make marginal livers meet the standard criteria for transplant, which shows promising prospect in preserving and repairing donor livers and improving ischemia reperfusion injury. This review summarizes the progress of recent researches on hepatic machine perfusion.
Collapse
Affiliation(s)
- Junda Gao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Oxygen Transport during Ex Situ Machine Perfusion of Donor Livers Using Red Blood Cells or Artificial Oxygen Carriers. Int J Mol Sci 2020; 22:ijms22010235. [PMID: 33379394 PMCID: PMC7795786 DOI: 10.3390/ijms22010235] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Oxygenated ex situ machine perfusion of donor livers is an alternative for static cold preservation that can be performed at temperatures from 0 °C to 37 °C. Organ metabolism depends on oxygen to produce adenosine triphosphate and temperatures below 37 °C reduce the metabolic rate and oxygen requirements. The transport and delivery of oxygen in machine perfusion are key determinants in preserving organ viability and cellular function. Oxygen delivery is more challenging than carbon dioxide removal, and oxygenation of the perfusion fluid is temperature dependent. The maximal oxygen content of water-based solutions is inversely related to the temperature, while cellular oxygen demand correlates positively with temperature. Machine perfusion above 20 °C will therefore require an oxygen carrier to enable sufficient oxygen delivery to the liver. Human red blood cells are the most physiological oxygen carriers. Alternative artificial oxygen transporters are hemoglobin-based oxygen carriers, perfluorocarbons, and an extracellular oxygen carrier derived from a marine invertebrate. We describe the principles of oxygen transport, delivery, and consumption in machine perfusion for donor livers using different oxygen carrier-based perfusion solutions and we discuss the properties, advantages, and disadvantages of these carriers and their use.
Collapse
|
6
|
Shonaka T, Matsuno N, Obara H, Yoshikawa R, Nishikawa Y, Ishihara Y, Bochimoto H, Gochi M, Otani M, Kanazawa H, Azuma H, Sakai H, Furukawa H. Impact of human-derived hemoglobin based oxygen vesicles as a machine perfusion solution for liver donation after cardiac death in a pig model. PLoS One 2019; 14:e0226183. [PMID: 31825976 PMCID: PMC6905570 DOI: 10.1371/journal.pone.0226183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
The recent clinical application of perfusion technology for the machine preservation of donation after cardiac death (DCD) grafts has some advantages. Oxygenation has been proposed for the preservation of DCD liver grafts. The aim of this study is to clarify whether the use of HbV-containing preservation solution during the subnormothermic machine perfusion (SNMP) of the liver graft improves the graft function of DCD porcine livers in an ex vivo reperfusion model. Pig livers were excised after 60 minutes of warm ischemic time and were preserved under one of three preservation conditions for 4 hours. The preservation conditions were as follows: 4°C cold storage (CS group; N = 5), Hypothermic machine preservation (HMP) with UW gluconate solution (HMP group; N = 5), SNMP (21°C) with UW gluconate solution (SNMP group; N = 5), SNMP (21°C) with HbVs (Hb; 1.8 mg/dl) perfusate (SNMP+HbV group; N = 5). Autologous blood perfusion was performed for 2 hours in an isolated liver reperfusion model (IRM). The oxygen consumption of the SNMP and SNMP+HbV group was higher than the HMP groups (p < 0.05). During the reperfusion, the AST level in the SNMP+HbV group was lower than that in the CS, HMP and SNMP groups. The changes in pH after reperfusion was significantly lower in SNMP+HbV group than CS and HMP groups. The ultrastructural findings indicated that the mitochondria of the SNMP+HbV group was well maintained in comparison to the CS, HMP and SNMP groups. The SNMP+HbVs preservation solution protected against metabolic acidosis and preserved the liver function after reperfusion injury in the DCD liver.
Collapse
Affiliation(s)
- Tatsuya Shonaka
- Department of Surgery, Asahikawa Medical University, Asahikawa-shi, Hokkaido, Japan
| | - Naoto Matsuno
- Department of Surgery, Asahikawa Medical University, Asahikawa-shi, Hokkaido, Japan
| | - Hiromichi Obara
- Department of Mechanical Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Ryo Yoshikawa
- Department of Mechanical Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa-shi, Hokkaido, Japan
| | - Yo Ishihara
- Department of Surgery, Asahikawa Medical University, Asahikawa-shi, Hokkaido, Japan
| | - Hiroki Bochimoto
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Mikako Gochi
- Department of Surgery, Asahikawa Medical University, Asahikawa-shi, Hokkaido, Japan
| | - Masahide Otani
- Department of Surgery, Asahikawa Medical University, Asahikawa-shi, Hokkaido, Japan
| | - Hiroyuki Kanazawa
- Department of Surgery, Asahikawa Medical University, Asahikawa-shi, Hokkaido, Japan
| | - Hiroshi Azuma
- Department of Pediatrics, Asahikawa Medical University, Asahikawa-shi, Hokkaido, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara-shi, Nara, Japan
| | - Hiroyuki Furukawa
- Department of Surgery, Asahikawa Medical University, Asahikawa-shi, Hokkaido, Japan
| |
Collapse
|
7
|
Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando) 2019; 34:100514. [PMID: 31645271 DOI: 10.1016/j.trre.2019.100514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/20/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
|
8
|
Thuillier R, Delpy E, Matillon X, Kaminski J, Kasil A, Soussi D, Danion J, Sauvageon Y, Rod X, Donatini G, Barrou B, Badet L, Zal F, Hauet T. Preventing acute kidney injury during transplantation: the application of novel oxygen carriers. Expert Opin Investig Drugs 2019; 28:643-657. [PMID: 31165652 DOI: 10.1080/13543784.2019.1628217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Delayed graft function (DGF) has a significant impact on kidney transplantation outcome. One of the underlying pivotal mechanisms is organ preservation and associated hypothermia and biochemical alteration. AREAS COVERED This paper focuses on organ preservation and its clinical consequences and describes 1. A comprehensive presentation of the pathophysiological mechanism involved in delayed graft function development; 2. The impact on endothelial cells and microvasculature integrity and the consequences on transplanted organ outcome; 3. The reassessment of dynamic organ preservation motivated by the growing use of extended criteria donors and the interest in the potential of normothermia; 4. The role of oxygenation during dynamic preservation; and 5. Novel oxygen carriers and their proof of concept in transplantation, among which M101 (HEMO2life®) is currently the most extensively investigated. EXPERT OPINION Metabolic disturbances and imbalance of oxygen supply during preservation highlight the importance of providing oxygen. Normothermia, permitted by recent advances in machine perfusion technology, appears to be the leading edge of preservation technology. Several oxygen transporters are compatible with normothermia; however, only M101 also demonstrates compatibility with standard hypothermic preservation.
Collapse
Affiliation(s)
- Raphael Thuillier
- a Inserm U1082 , Inserm, Poitiers , France.,b Fédération Hospitalo-Universitaire SUPORT , CHU Poitiers, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Eric Delpy
- e HEMARINA S.A., Aéropole centre, Biotechnopôle , Morlaix , France
| | - Xavier Matillon
- a Inserm U1082 , Inserm, Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,g Service d'urologie et de chirurgie de la transplantation , Hospices Civiles de Lyon , Lyon , France.,h Faculté de Médecine Lyon Est , Université Claude Bernard Lyon 1 , Villeurbanne , France
| | - Jacques Kaminski
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Abdelsalam Kasil
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - David Soussi
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Jerome Danion
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,i Service de Chirurgie viscérale et endocrinienne , CHU Poitiers , Poitiers , France
| | - Yse Sauvageon
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Xavier Rod
- a Inserm U1082 , Inserm, Poitiers , France
| | - Gianluca Donatini
- a Inserm U1082 , Inserm, Poitiers , France.,i Service de Chirurgie viscérale et endocrinienne , CHU Poitiers , Poitiers , France
| | - Benoit Barrou
- a Inserm U1082 , Inserm, Poitiers , France.,j Service de Transplantation Rénale, Département d'Urologie et de Transplantation , Groupe Hospitalier Pitié Salpétrière , Paris , France
| | - Lionel Badet
- a Inserm U1082 , Inserm, Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,g Service d'urologie et de chirurgie de la transplantation , Hospices Civiles de Lyon , Lyon , France.,h Faculté de Médecine Lyon Est , Université Claude Bernard Lyon 1 , Villeurbanne , France
| | - Franck Zal
- e HEMARINA S.A., Aéropole centre, Biotechnopôle , Morlaix , France
| | - Thierry Hauet
- a Inserm U1082 , Inserm, Poitiers , France.,b Fédération Hospitalo-Universitaire SUPORT , CHU Poitiers, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,k Consortium for Organ Preservation in Europe, Nuffield Department of Surgical Sciences , Oxford Transplant Centre, Churchill Hospital , Oxford , United Kingdom
| |
Collapse
|