1
|
Deng T, Chen D, Chen F, Xu C, Zhang Q, Li M, Wang Y, He Z, Li M, He Q. Synergizing autophagic cell death and oxaliplatin-induced immunogenic death by a self-delivery micelle for enhanced tumor immunotherapy. Acta Biomater 2024; 190:548-559. [PMID: 39426655 DOI: 10.1016/j.actbio.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Chemotherapy has become an emerging strategy to activate cytotoxic T cell responses by inducing immunogenic cell death (ICD), but the level of antitumor immunity induced by chemotherapeutic agents, such as oxaliplatin (OXA), is limited due to inadequate tumor antigen presentation and T cell activation. Inducing autophagic cell death (ACD) promotes the release of tumor antigen and the recruitment of dendritic cells, therefore strengthening antitumor immune responses. Here we simultaneously activate ICD and ACD with tumor targeting micelle to achieve enhanced antitumor chemo-immunotherapy. A self-delivery micelle is formulated by conjugating OXA prodrug with tocopherol succinate (TOS) as a hydrophobic segment and further encapsulates autophagy activator SMER28 to afford TOPR/SMER28, which specifically targets αvβ3 on tumor cells with c(RGDfK). Upon cellular internalization, OXA is released from the prodrug in response to the high concentration of reduced glutathione (GSH) in tumor cells, triggering ICD and releasing associated molecular patterns (DAMPs) signaling molecules to stimulate immunity. Meanwhile, SMER28 over-activates autophagy to induce autophagic cell death, which further leads to the maturation of dendritic cells and ultimately activates anti-tumor immune response. In the 4T1 tumor-bearing mice, the combination of OXA and SMER28 effectively inhibits tumor growth and activates antitumor immune responses. The tumor targeted micelle releases OXA and SMER28 in an on-demand profile and strengthens tumor chemo-immunotherapy by synergizing ICD and ACD, providing an alternative for antitumor immunotherapy. STATEMENT OF SIGNIFICANCE: Chemotherapy induces immunogenic cell death (ICD) to activate anti-tumor immunity. However, the efficacy is limited by low levels of antigen presentation and T cell activation. To strengthen the antitumor immune responses induced by ICD, we first combine autophagic cell death (ACD) with ICD by formulating a glutathione-responsive oxaliplatin prodrug micelle co-encapsulating the autophagy activator SMER28. The activated autophagic level by SMER28 enhances the release of antigen and the recruitment of APCs, and ultimately bolsters T cell-mediated antitumor immune responses. We provide a potential strategy to amplify antitumor immune effects by combining autophagy activation with chemotherapy.
Collapse
Affiliation(s)
- Tao Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Fang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chaoqun Xu
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610041, PR China
| | - Qiang Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Min Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhidi He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Pradeu T, Daignan-Fornier B, Ewald A, Germain PL, Okasha S, Plutynski A, Benzekry S, Bertolaso M, Bissell M, Brown JS, Chin-Yee B, Chin-Yee I, Clevers H, Cognet L, Darrason M, Farge E, Feunteun J, Galon J, Giroux E, Green S, Gross F, Jaulin F, Knight R, Laconi E, Larmonier N, Maley C, Mantovani A, Moreau V, Nassoy P, Rondeau E, Santamaria D, Sawai CM, Seluanov A, Sepich-Poore GD, Sisirak V, Solary E, Yvonnet S, Laplane L. Reuniting philosophy and science to advance cancer research. Biol Rev Camb Philos Soc 2023; 98:1668-1686. [PMID: 37157910 PMCID: PMC10869205 DOI: 10.1111/brv.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
- CNRS UMR8590, Institut d’Histoire et Philosophie des Sciences et des Technique, University Paris I Panthéon-Sorbonne, 13 rue du Four, Paris 75006, France
| | - Bertrand Daignan-Fornier
- CNRS UMR 5095 Institut de Biochimie et Génétique Cellulaires, University of Bordeaux, 1 rue Camille St Saens, Bordeaux 33077, France
| | - Andrew Ewald
- Departments of Cell Biology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre-Luc Germain
- Department of Health Sciences and Technology, Institute for Neurosciences, Eidgenössische Technische Hochschule (ETH) Zürich, Universitätstrasse 2, Zürich 8092, Switzerland
- Department of Molecular Life Sciences, Laboratory of Statistical Bioinformatics, Universität Zürich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Samir Okasha
- Department of Philosophy, University of Bristol, Cotham House, Bristol, BS6 6JL, UK
| | - Anya Plutynski
- Department of Philosophy, Washington University in St. Louis, and Associate with Division of Biology and Biomedical Sciences, St. Louis, MO 63105, USA
| | - Sébastien Benzekry
- Computational Pharmacology and Clinical Oncology (COMPO) Unit, Inria Sophia Antipolis-Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 27, bd Jean Moulin, Marseille 13005, France
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, Università Campus Bio-Medico di Roma, Via Àlvaro del Portillo, 21-00128, Rome, Italy
- Centre for Cancer Biomarkers, University of Bergen, Bergen 5007, Norway
| | - Mina Bissell
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Joel S. Brown
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Benjamin Chin-Yee
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 800 Commissioners Rd E, London, ON, Canada
- Rotman Institute of Philosophy, Western University, 1151 Richmond Street North, London, ON, Canada
| | - Ian Chin-Yee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, 800 Commissioners Rd E, London, ON, Canada
| | - Hans Clevers
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Laurent Cognet
- CNRS UMR 5298, Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Rue François Mitterrand, Talence 33400, France
| | - Marie Darrason
- Department of Pneumology and Thoracic Oncology, University Hospital of Lyon, 165 Chem. du Grand Revoyet, 69310 Pierre Bénite, Lyon, France
- Lyon Institute of Philosophical Research, Lyon 3 Jean Moulin University, 1 Av. des Frères Lumière, Lyon 69007, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development group, Institut Curie, CNRS, UMR168, Inserm, Centre Origines et conditions d’apparition de la vie (OCAV) Paris Sciences Lettres Research University, Sorbonne University, Institut Curie, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Jean Feunteun
- INSERM U981, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
| | - Jérôme Galon
- INSERM UMRS1138, Integrative Cancer Immunology, Cordelier Research Center, Sorbonne Université, Université Paris Cité, 15 rue de l’École de Médecine, Paris 75006, France
| | - Elodie Giroux
- Lyon Institute of Philosophical Research, Lyon 3 Jean Moulin University, 1 Av. des Frères Lumière, Lyon 69007, France
| | - Sara Green
- Section for History and Philosophy of Science, Department of Science Education, University of Copenhagen, Rådmandsgade 64, Copenhagen 2200, Denmark
| | - Fridolin Gross
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Fanny Jaulin
- INSERM U1279, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, 3223 Voigt Dr, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ezio Laconi
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Via Università 40, Cagliari 09124, Italy
| | - Nicolas Larmonier
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Carlo Maley
- Arizona Cancer Evolution Center, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, 4 Via Rita Levi Montalcini, 20090 Pieve Emanuele, Milan, Italy
- Department of Immunology and Inflammation, Istituto Clinico Humanitas Humanitas Cancer Center (IRCCS) Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Violaine Moreau
- INSERM UMR1312, Bordeaux Institute of Oncology (BRIC), University of Bordeaux, 146 Rue Léo Saignat, Bordeaux 33076, France
| | - Pierre Nassoy
- CNRS UMR 5298, Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Rue François Mitterrand, Talence 33400, France
| | - Elena Rondeau
- INSERM U1111, ENS Lyon and Centre International de Recherche en Infectionlogie (CIRI), 46 Allée d’Italie, Lyon 69007, France
| | - David Santamaria
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca 37007, Spain
| | - Catherine M. Sawai
- INSERM UMR1312, Bordeaux Institute of Oncology (BRIC), University of Bordeaux, 146 Rue Léo Saignat, Bordeaux 33076, France
| | - Andrei Seluanov
- Department of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | | | - Vanja Sisirak
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Département d’hématologie, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Université Paris-Saclay, Faculté de Médecine, 63 Rue Gabriel Péri, Le Kremlin-Bicêtre 94270, France
| | - Sarah Yvonnet
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Lucie Laplane
- CNRS UMR8590, Institut d’Histoire et Philosophie des Sciences et des Technique, University Paris I Panthéon-Sorbonne, 13 rue du Four, Paris 75006, France
- INSERM U1287, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Center for Biology and Society, College of Liberal Arts and Sciences, Arizona State University, 1100 S McAllister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
3
|
Marongiu F, Cheri S, Laconi E. Clones of aging: When better fitness can be dangerous. Eur J Cell Biol 2023; 102:151340. [PMID: 37423036 DOI: 10.1016/j.ejcb.2023.151340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023] Open
Abstract
The biological and clinical significance of aberrant clonal expansions in aged tissues is being intensely discussed. Evidence is accruing that these clones often result from the normal dynamics of cell turnover in our tissues. The aged tissue microenvironment is prone to favour the emergence of specific clones with higher fitness partly because of an overall decline in cell intrinsic regenerative potential of surrounding counterparts. Thus, expanding clones in aged tissues need not to be mechanistically associated with the development of cancer, albeit this is a possibility. We suggest that growth pattern is a critical phenotypic attribute that impacts on the fate of such clonal proliferations. The acquisition of a better proliferative fitness, coupled with a defect in tissue pattern formation, could represent a dangerous mix setting the stage for their evolution towards neoplasia.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Samuele Cheri
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
4
|
Tu SM, Aydin AM, Maraboyina S, Chen Z, Singh S, Gokden N, Langford T. Stem Cell Origin of Cancer: Implications of Oncogenesis Recapitulating Embryogenesis in Cancer Care. Cancers (Basel) 2023; 15:cancers15092516. [PMID: 37173982 PMCID: PMC10177345 DOI: 10.3390/cancers15092516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
From this perspective, we wonder about the clinical implications of oncology recapturing ontogeny in the contexts of neoantigens, tumor biomarkers, and cancer targets. We ponder about the biological ramifications of finding remnants of mini-organs and residuals of tiny embryos in some tumors. We reminisce about classical experiments showing that the embryonic microenvironment possesses antitumorigenic properties. Ironically, a stem-ness niche-in the wrong place at the wrong time-is also an onco-niche. We marvel at the paradox of TGF-beta both as a tumor suppressor and a tumor promoter. We query about the dualism of EMT as a stem-ness trait engaged in both normal development and abnormal disease states, including various cancers. It is uncanny that during fetal development, proto-oncogenes wax, while tumor-suppressor genes wane. Similarly, during cancer development, proto-oncogenes awaken, while tumor-suppressor genes slumber. Importantly, targeting stem-like pathways has therapeutic implications because stem-ness may be the true driver, if not engine, of the malignant process. Furthermore, anti-stem-like activity elicits anti-cancer effects for a variety of cancers because stem-ness features may be a universal property of cancer. When a fetus survives and thrives despite immune surveillance and all the restraints of nature and the constraints of its niche, it is a perfect baby. Similarly, when a neoplasm survives and thrives in an otherwise healthy and immune-competent host, is it a perfect tumor? Therefore, a pertinent narrative of cancer depends on a proper perspective of cancer. If malignant cells are derived from stem cells, and both cells are intrinsically RB1 negative and TP53 null, do the absence of RB1 and loss of TP53 really matter in this whole narrative and an entirely different perspective of cancer?
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ahmet Murat Aydin
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sanjay Maraboyina
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhongning Chen
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sunny Singh
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Timothy Langford
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Donghia R, Guerra V, Pesole PL, Liso M. Contribution of macro- and micronutrients intake to gastrointestinal cancer mortality in the ONCONUT cohort: Classical vs. modern approaches. Front Nutr 2023; 10:1066749. [PMID: 36755992 PMCID: PMC9899894 DOI: 10.3389/fnut.2023.1066749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to evaluate the contribution of macro- and micronutrients intake to mortality in patients with gastrointestinal cancer, comparing the classical statistical approaches with a new generation algorithm. In 1992, the ONCONUT project was started with the aim of evaluating the relationship between diet and cancer development in a Southern Italian elderly population. Patients who died of specific death causes (ICD-10 from 150.0 to 159.9) were included in the study (n = 3,505) and survival analysis was applied. This cohort was used to test the performance of different techniques, namely Cox proportional-hazards model, random survival forest (RSF), Survival Support Vector Machine (SSVM), and C-index, applied to quantify the performance. Lastly, the new prediction mode, denominated Shapley Additive Explanation (SHAP), was adopted. RSF had the best performance (0.7653711 and 0.7725246, for macro- and micronutrients, respectively), while SSVM had the worst C-index (0.5667753 and 0.545222). SHAP was helpful to understand the role of single patient features on mortality. Using SHAP together with RSF and classical CPH was most helpful, and shows promise for future clinical applications.
Collapse
|
6
|
Evo-devo perspectives on cancer. Essays Biochem 2022; 66:797-815. [PMID: 36250956 DOI: 10.1042/ebc20220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
The integration of evolutionary and developmental approaches into the field of evolutionary developmental biology has opened new areas of inquiry- from understanding the evolution of development and its underlying genetic and molecular mechanisms to addressing the role of development in evolution. For the last several decades, the terms 'evolution' and 'development' have been increasingly linked to cancer, in many different frameworks and contexts. This mini-review, as part of a special issue on Evolutionary Developmental Biology, discusses the main areas in cancer research that have been addressed through the lenses of both evolutionary and developmental biology, though not always fully or explicitly integrated in an evo-devo framework. First, it briefly introduces the current views on carcinogenesis that invoke evolutionary and/or developmental perspectives. Then, it discusses the main mechanisms proposed to have specifically evolved to suppress cancer during the evolution of multicellularity. Lastly, it considers whether the evolution of multicellularity and development was shaped by the threat of cancer (a cancer-evo-devo perspective), and/or whether the evolution of developmental programs and life history traits can shape cancer resistance/risk in various lineages (an evo-devo-cancer perspective). A proper evolutionary developmental framework for cancer, both as a disease and in terms of its natural history (in the context of the evolution of multicellularity and development as well as life history traits), could bridge the currently disparate evolutionary and developmental perspectives and uncover aspects that will provide new insights for cancer prevention and treatment.
Collapse
|
7
|
Molecular Pathways Involved in the Anti-Cancer Activity of Flavonols: A Focus on Myricetin and Kaempferol. Int J Mol Sci 2022; 23:ijms23084411. [PMID: 35457229 PMCID: PMC9026553 DOI: 10.3390/ijms23084411] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have always represented valuable allies in the battle against several illnesses, particularly cancer. In this field, flavonoids are known to modulate a wide panel of mechanisms involved in tumorigenesis, thus rendering them worthy candidates for both cancer prevention and treatment. In particular, it was reported that flavonoids regulate apoptosis, as well as hamper migration and proliferation, crucial events for the progression of cancer. In this review, we collect recent evidence concerning the anti-cancer properties of the flavonols myricetin and kaempferol, discussing their mechanisms of action to give a thorough overview of their noteworthy capabilities, which are comparable to those of their most famous analogue, namely quercetin. On the whole, these flavonols possess great potential, and hence further study is highly advised to allow a proper definition of their pharmaco-toxicological profile and assess their potential use in protocols of chemoprevention and adjuvant therapies.
Collapse
|
8
|
Aging and Cancer: The Waning of Community Bonds. Cells 2021; 10:cells10092269. [PMID: 34571918 PMCID: PMC8468626 DOI: 10.3390/cells10092269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer often arises in the context of an altered tissue landscape. We argue that a major contribution of aging towards increasing the risk of neoplastic disease is conveyed through effects on the microenvironment. It is now firmly established that aged tissues are prone to develop clones of altered cells, most of which are compatible with a normal histological appearance. Such increased clonogenic potential results in part from a generalized decrease in proliferative fitness, favoring the emergence of more competitive variant clones. However, specific cellular genotypes can emerge with reduced cooperative and integrative capacity, leading to disruption of tissue architecture and paving the way towards progression to overt neoplastic phenotypes.
Collapse
|
9
|
Festa Ortega JF, Heidor R, Auriemo AP, Marques Affonso J, Pereira D' Amico T, Herz C, de Conti A, Ract J, Gioieli LA, Purgatto E, Lamy E, P Pogribny I, Salvador Moreno F. Butyrate-containing structured lipids act on HDAC4, HDAC6, DNA damage and telomerase activity during promotion of experimental hepatocarcinogenesis. Carcinogenesis 2021; 42:1026-1036. [PMID: 33999989 DOI: 10.1093/carcin/bgab039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) presents with a high treatment resistance and poor prognosis. Early diagnosis and preventive approaches such as chemoprevention are essential for the HCC control. Therefore, we evaluated the chemopreventive effects of butyrate-containing structured lipids (STLs) administered during the promotion stage of hepatocarcinogenesis in rats submitted to the 'resistant hepatocyte' (RH) model. Administration of butyrate-containing STLs inhibited the incidence and mean number of visible hepatic nodules per rat and reduced the number and area of glutathione S-transferase placental form-positive (GST-P+) preneoplastic focal lesions in the livers. This was accompanied by the induction of apoptosis and an increased level of hepatic butyric acid. Treatment with butyrate-containing STLs resulted in increased histone H3 lysine 9 (H3K9) acetylation, reduction of total histone deacetylase (HDAC) activity, and lower levels of HDAC4 and HDAC6 proteins. The chemopreventive effect of butyrate-containing STLs was also associated with the increased nuclear compartmentalization of p53 protein and reduced expression of the Bcl-2 protein. In addition, rats treated with butyrate-containing STLs showed decreased DNA damage and telomerase activity in the livers. These results demonstrate that the suppressive activity of butyrate-containing STLs is associated with inhibition of elevated during hepatocarcinogenesis chromatin-modifying proteins HDAC4 and HDAC6, subcellular redistribution of the p53 protein, and decreased DNA damage and telomerase activity.
Collapse
Affiliation(s)
- Juliana Festa Festa Ortega
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renato Heidor
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Auriemo
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Marques Affonso
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Pereira D' Amico
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Corinna Herz
- Molecular Preventive Medicine, University of Freiburg, Breisacherstraße 115b, 79106 Freiburg im Breisgau, Germany
| | - Aline de Conti
- Division of Biochemical Toxicology, FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Juliana Ract
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiz Antônio Gioieli
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Purgatto
- Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Food Chemistry and Biochemistry, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Evelyn Lamy
- Molecular Preventive Medicine, University of Freiburg, Breisacherstraße 115b, 79106 Freiburg im Breisgau, Germany
| | - Igor P Pogribny
- Division of Biochemical Toxicology, FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Fernando Salvador Moreno
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Cerda-Troncoso C, Varas-Godoy M, Burgos PV. Pro-Tumoral Functions of Autophagy Receptors in the Modulation of Cancer Progression. Front Oncol 2021; 10:619727. [PMID: 33634029 PMCID: PMC7902017 DOI: 10.3389/fonc.2020.619727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer progression involves a variety of pro-tumorigenic biological processes including cell proliferation, migration, invasion, and survival. A cellular pathway implicated in these pro-tumorigenic processes is autophagy, a catabolic route used for recycling of cytoplasmic components to generate macromolecular building blocks and energy, under stress conditions, to remove damaged cellular constituents to adapt to changing nutrient conditions and to maintain cellular homeostasis. During autophagy, cells form a double-membrane sequestering a compartment termed the phagophore, which matures into an autophagosome. Following fusion with the lysosome, the cargo is degraded inside the autolysosomes and the resulting macromolecules released back into the cytosol for reuse. Cancer cells use this recycling system during cancer progression, however the key autophagy players involved in this disease is unclear. Accumulative evidences show that autophagy receptors, crucial players for selective autophagy, are overexpressed during cancer progression, yet the mechanisms whereby pro-tumorigenic biological processes are modulated by these receptors remains unknown. In this review, we summarized the most important findings related with the pro-tumorigenic role of autophagy receptors p62/SQSTM1, NBR1, NDP52, and OPTN in cancer progression. In addition, we showed the most relevant cargos degraded by these receptors that have been shown to function as critical regulators of pro-tumorigenic processes. Finally, we discussed the role of autophagy receptors in the context of the cellular pathways implicated in this disease, such as growth factors signaling, oxidative stress response and apoptosis. In summary, we highlight that autophagy receptors should be considered important players of cancer progression, which could offer a niche for the development of novel diagnosis and cancer treatment strategies.
Collapse
Affiliation(s)
- Cristóbal Cerda-Troncoso
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V. Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Marongiu F, Laconi E. Cell competition in liver carcinogenesis. World J Hepatol 2020; 12:475-484. [PMID: 32952874 PMCID: PMC7475782 DOI: 10.4254/wjh.v12.i8.475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/22/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cell competition is now a well-established quality control strategy to optimize cell and tissue fitness in multicellular organisms. While pursuing this goal, it is also effective in selecting against altered/defective cells with putative (pre)-neoplastic potential, thereby edging the risk of cancer development. The flip side of the coin is that the molecular machinery driving cell competition can also be co-opted by neoplastic cell populations to expand unchecked, outside the boundaries of tissue homeostatic control. This review will focus on information that begins to emerge regarding the role of cell competition in liver physiology and pathology. Liver repopulation by normal transplanted hepatocytes is an interesting field of investigation in this regard. The biological coordinates of this process share many features suggesting that cell competition is a driving force for the clearance of endogenous damaged hepatocytes by normal donor-derived cells, as previously proposed. Intriguing analogies between liver repopulation and carcinogenesis will be briefly discussed and the potential dual role of cell competition, as a barrier or a spur to neoplastic development, will be considered. Cell competition is in essence a cooperative strategy organized at tissue level. One facet of such cooperative attitude is expressed in the elimination of altered cells which may represent a threat to the organismal community. On the other hand, the society of cells can be disrupted by the emergence of selfish clones, exploiting the molecular bar codes of cell competition, thereby paving their way to uncontrolled growth.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari 09124, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari 09124, Italy
| |
Collapse
|
12
|
Cata JP, Owusu-Agyemang P, Kapoor R, Lonnqvist PA. Impact of Anesthetics, Analgesics, and Perioperative Blood Transfusion in Pediatric Cancer Patients: A Comprehensive Review of the Literature. Anesth Analg 2019; 129:1653-1665. [PMID: 31743187 DOI: 10.1213/ane.0000000000004314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is the leading cause of death by disease in developed countries. Children and adolescents with cancer need surgical interventions (ie, biopsy or major surgery) to diagnose, treat, or palliate their malignancies. Surgery is a period of high vulnerability because it stimulates the release of inflammatory mediators, catecholamines, and angiogenesis activators, which coincides with a period of immunosuppression. Thus, during and after surgery, dormant tumors or micrometastasis (ie, minimal residual disease) can grow and become clinically relevant metastasis. Anesthetics (ie, volatile agents, dexmedetomidine, and ketamine) and analgesics (ie, opioids) may also contribute to the growth of minimal residual disease or disease progression. For instance, volatile anesthetics have been implicated in immunosuppression and direct stimulation of cancer cell survival and proliferation. Contrarily, propofol has shown in vitro anticancer effects. In addition, perioperative blood transfusions are not uncommon in children undergoing cancer surgery. In adults, an association between perioperative blood transfusions and cancer progression has been described for some malignancies. Transfusion-related immunomodulation is one of the mechanisms by which blood transfusions can promote cancer progression. Other mechanisms include inflammation and the infusion of growth factors. In the present review, we discuss different aspects of tumorigenesis, metastasis, angiogenesis, the immune system, and the current studies about the impact of anesthetics, analgesics, and perioperative blood transfusions on pediatric cancer progression.
Collapse
Affiliation(s)
- Juan P Cata
- From the Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
- Anesthesiology and Surgical Oncology Research Group, Houston, Texas
| | - Pascal Owusu-Agyemang
- From the Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
- Anesthesiology and Surgical Oncology Research Group, Houston, Texas
| | - Ravish Kapoor
- From the Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
- Anesthesiology and Surgical Oncology Research Group, Houston, Texas
| | - Per-Arne Lonnqvist
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|