1
|
Bao GM, Chen DD, Xia YF, Cai ZQ, Cui SQ, Wei X, Dou ZC, Yuan Y, Sandra A, Yuan HQ. Single-well colorimetric sensor array for discrimination and smartphone-assisted detection of catecholamines based on Fe-carbon dots nanozymes. Anal Chim Acta 2025; 1355:343997. [PMID: 40274328 DOI: 10.1016/j.aca.2025.343997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Catecholamines (CAs), such as noradrenaline (NE), adrenaline (AD), and dopamine (DA), are essential signaling mediators that regulate various physiological functions. Monitoring their levels is crucial for studying and diagnosing diseases, as abnormal concentrations are associated with numerous health conditions. However, distinguishing between these CAs is challenging due to their highly similar molecular structures. RESULTS In this study, Fe-doped carbon dot-based nanozymes (Fe-CDs) with strong peroxidase-like activity were synthesized using a simple one-pot method. Fe-CDs-based sensing systems exhibit excellent stability, reproducibility, sensitivity (with detection limits of 26.6 nM for NE, 46.0 nM for AD, and 33.3 nM for DA), and anti-interference properties. A triple-channel single-well colorimetric sensor array was developed by collecting the absorbance at 20, 40, and 60 min as sensing units, enabling the effective differentiation and identification of various CAs. SIGNIFICANCE The Fe-CDs-based system has proven capable of detecting CAs in real human urine and fetal bovine serum. Additionally, the Fe-CDs-based smartphone-assisted platform provides efficient, highly sensitive, and on-site CAs detection, making it highly promising for biomedical and diagnostic applications.
Collapse
Affiliation(s)
- Guang-Ming Bao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Dan-Dan Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yi-Fan Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Zhi-Qiang Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Shun-Qiang Cui
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Xia Wei
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Zhen-Chong Dou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yuan Yuan
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Akimana Sandra
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Hou-Qun Yuan
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
2
|
Tiwari RK, Rawat SG, Rai S, Kumar A. Stress regulatory hormones and cancer: the contribution of epinephrine and cancer therapeutic value of beta blockers. Endocrine 2025; 88:359-386. [PMID: 39869294 DOI: 10.1007/s12020-025-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones. Cancer has been a part of our history, stories, and lives for centuries and has challenged the ingenuity of health and medical science, and the resilience of the human spirit. From the early days of surgery and radiation therapy to cutting-edge developments in chemotherapeutic agents, immunotherapy, and targeted treatments, the medical field continues to make significant headway in the fight against cancer. However, even after all these advancements, cancer is still among the leading cause of death globally. This urges us to understand the central hallmarks of neoplastic cells to identify novel molecular targets for the development of promising therapeutic approaches. Growing research suggests that stress mediators, including epinephrine, play a critical role in the development and progression of cancer by inducing neoplastic features through activating adrenergic receptors, particularly β-adrenoreceptors. Further, our experimental data has also shown that epinephrine mediates the growth of T-cell lymphoma by inducing proliferation, glycolysis, and apoptosis evasion via altering the expression levels of key regulators of these vital cellular processes. The beauty of receptor-based therapy lies in its precision and higher therapeutic value. Interestingly, the enhanced expression of β-adrenergic receptors (ADRBs), namely ADRB2 (β2-adrenoreceptor) and ADRB3 (β3-adrenoreceptor) has been noted in many cancers, such as breast, colon, gastric, pancreatic, and prostate and has been reported to play a pivotal role in facilitating cancer growth mainly by promoting proliferation, evasion of apoptosis, angiogenesis, invasion and metastasis, and chemoresistance. The present review article is an attempt to summarize the available findings which indicate a distinct relationship between stress hormones and cancer, with a special emphasis on epinephrine, considered as a key stress regulatory molecule. This article also discusses the possibility of using beta-blockers for cancer therapy.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- MD Anderson Cancer Center, The University of Texas, Texas, USA
| | - Siddharth Rai
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
3
|
Yang R, Jin H, Zhao C, Wang W, Li WY. Oral Cancer and Sleep Disturbances: A Narrative Review on Exploring the Bidirectional Relationship. Cancers (Basel) 2025; 17:1262. [PMID: 40282437 PMCID: PMC12025584 DOI: 10.3390/cancers17081262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Oral cancer is a common malignant tumor, and its incidence has steadily increased in recent years. Sleep disturbances, including insomnia and obstructive sleep apnea, are prevalent among patients with oral cancer and significantly impact their quality of life. Emerging research suggests a bidirectional relationship between oral cancer and sleep disorders. This article reviews how oral cancer induces or exacerbates sleep disorders, particularly obstructive sleep apnea (OSA), through factors such as pain, psychological stress, and treatment-related side effects (e.g., upper airway damage caused by chemotherapy, radiotherapy, or surgical interventions). Furthermore, it analyzes how sleep disorders may promote oral cancer progression via chronic inflammation, intermittent hypoxia, oxidative stress, and disruption of circadian rhythms. By elucidating these interactions, this review provides a theoretical foundation for optimizing clinical treatment plans through a holistic understanding of their shared pathophysiological mechanisms.
Collapse
Affiliation(s)
- Runhua Yang
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| | - Hongyu Jin
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| | - Chenyu Zhao
- Department of China Medical University-The Queen’s University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110052, China;
| | - Wei Wang
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| | - Wen-Yang Li
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| |
Collapse
|
4
|
Dong ZK, Wang YF, Li WP, Jin WL. Neurobiology of cancer: Adrenergic signaling and drug repurposing. Pharmacol Ther 2024; 264:108750. [PMID: 39527999 DOI: 10.1016/j.pharmthera.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Cancer neuroscience, as an emerging converging discipline, provides us with new perspectives on the interactions between the nervous system and cancer progression. As the sympathetic nervous system, in particular adrenergic signaling, plays an important role in the regulation of tumor activity at every hierarchical level of life, from the tumor cell to the tumor microenvironment, and to the tumor macroenvironment, it is highly desirable to dissect its effects. Considering the far-reaching implications of drug repurposing for antitumor drug development, such a large number of adrenergic receptor antagonists on the market has great potential as one of the means of antitumor therapy, either as primary or adjuvant therapy. Therefore, this review aims to summarize the impact of adrenergic signaling on cancer development and to assess the status and prospects of intervening in adrenergic signaling as a therapeutic tool against tumors.
Collapse
Affiliation(s)
- Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Wei-Ping Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Urology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
5
|
Yin H, Hang Q, Xue T, Yuan Y, Qin F, Xiong Z. A dual-recognition strategy based on pH-responsive molecularly imprinted membrane for highly selective capture of catecholamines: From construction to practical application. Anal Chim Acta 2024; 1327:343173. [PMID: 39266064 DOI: 10.1016/j.aca.2024.343173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Catecholamines (CAs) are involved in a wide range of physiological and pathological processes in the body and are progressively being used as important biomarkers for a variety of diseases. It is of great significance for accurate quantification of CAs to the diagnosis and treatment of diseases. However, the separation of CAs from complex biological matrices is still a great challenge due to the trace levels of CAs and the limited selectivity of existing pretreatment methods. RESULTS In this work, a dual-recognition imprinted membrane (BA-MIM) was developed to utilize the synergistic action of pH-responsive boron affinity and molecular imprinted cavities for highly selective capture and release of CAs. The prepared BA-MIM possessed remarkable adsorption capacity (maximum capacity, 43.3 mg g-1), desirable surface hydrophilicity (46.2°), superior selectivity (IF = 6.2, α = 14.3), as well as favorable reusability (number of cycles, 6 times). On this basis, an integrated analytical method based on BA-MIM extraction combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was innovatively developed to highly selective separation, enrichment, and detection of CAs in rat brain tissue. Under the optimum conditions, a low quantitation limits (0.05-0.10 ng mL-1), wide linear range (10-1000 ng mL-1), good linearity (r2 > 0.99), and satisfactory recoveries (88.5%-98.5 %) were obtained for CAs. The proven method was further applied to kidney-yang-deficiency-syndrome (KYDS) group rat model, revealed the intrinsic connection between kidney disease and catecholamine metabolism. SIGNIFICANCE This work provides an excellent reference paradigm for the effective construction of dual-recognition functional membrane material to the high-selective analysis of trace targets in complex matrices. Additionally, this integrated analytical strategy demonstrates its efficiency, sustainability, versatility, and convenience, showing remarkable prospect in a variety of applications for biological sample analysis.
Collapse
Affiliation(s)
- Huawen Yin
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Qian Hang
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Tianyi Xue
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China.
| |
Collapse
|
6
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
7
|
He A, Pu Y, Jia C, Wu M, He H, Xia Y. The Influence of Exercise on Cancer Risk, the Tumor Microenvironment and the Treatment of Cancer. Sports Med 2024; 54:1371-1397. [PMID: 38687441 DOI: 10.1007/s40279-024-02031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
There are several modifiable factors that can be targeted to prevent and manage the occurrence and progression of cancer, and maintaining adequate exercise is a crucial one. Regular physical exercise has been shown to be a beneficial strategy in preventing cancer, potentially amplifying the effectiveness of established cancer therapies, alleviating certain cancer-related symptoms, and possibly mitigating side effects resulting from treatment. Nevertheless, the exact mechanisms by which exercise affects tumors, especially its impact on the tumor microenvironment (TME), remain uncertain. This review aims to present an overview of the beneficial effects of exercise in the context of cancer management, followed by a summary of the exercise parameters, especially exercise intensity, that need to be considered when prescribing exercise for cancer patients. Finally, we discuss the influence of exercise on the TME, including its effects on crucial immune cells (e.g., T cells, macrophages, neutrophils, natural killer cells, myeloid-derived suppressor cells, B cells), intratumor angiogenesis, and cancer metabolism. This comprehensive review provides up-to-date scientific evidence on the effects of exercise training on cancer and offers guidance to clinicians for the development of safe and feasible exercise training programs for cancer patients in clinical practice.
Collapse
Affiliation(s)
- Anqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yamin Pu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengsen Jia
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengling Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongchen He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Bradshaw PT. Body composition and cancer survival: a narrative review. Br J Cancer 2024; 130:176-183. [PMID: 37891197 PMCID: PMC10803330 DOI: 10.1038/s41416-023-02470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Interest in understanding the relationship between body composition and cancer survival has remained strong for decades, with a number of recent systematic reviews on the topic. However, the current state of evidence is based on heterogeneous exposure definitions based on anthropometry, yielding inconsistent findings with regard to this association. Recently the field has taken an exciting direction with the application of radiological assessments to measure specific aspects of body composition, yet reconciliation of findings from these modern assessment tools with those from the historic use of anthropometric data proves challenging. In this paper, I briefly review the biological basis for a link between body composition and cancer survival and summarize the epidemiological evidence with consideration to specific exposure measures. As enthusiasm is building around novel assessments, I conclude with a discussion of issues that researchers should be aware of when interpreting results from these new modalities.
Collapse
Affiliation(s)
- Patrick T Bradshaw
- School of Public Health, Division of Epidemiology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
Amato R, Lucchesi M, Marracci S, Filippi L, Dal Monte M. β-Adrenoceptors in Cancer: Old Players and New Perspectives. Handb Exp Pharmacol 2024; 285:665-688. [PMID: 37982890 DOI: 10.1007/164_2023_701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Distress, or negative stress, is known to considerably increase the incidence of several diseases, including cancer. There is indeed evidence from pre-clinical models that distress causes a catecholaminergic overdrive that, mainly through the activation of β-adrenoceptors (β-ARs), results in cancer cell growth and cancer progression. In addition, clinical studies have evidenced a role of negative stress in cancer progression. Moreover, plenty of data demonstrates that β-blockers have positive effects in reducing the pro-tumorigenic activity of catecholamines, correlating with better outcomes in some type of cancers as evidenced by several clinical trials. Among β-ARs, β2-AR seems to be the main β-AR subtype involved in tumor development and progression. However, there are data indicating that also β1-AR and β3-AR may be involved in certain tumors. In this chapter, we will review current knowledge on the role of the three β-AR isoforms in carcinogenesis as well as in cancer growth and progression, with particular emphasis on recent studies that are opening new avenues in the use of β-ARs as therapeutic targets in treating tumors.
Collapse
MESH Headings
- Humans
- Neoplasms/metabolism
- Neoplasms/drug therapy
- Neoplasms/pathology
- Animals
- Receptors, Adrenergic, beta-3/metabolism
- Adrenergic beta-Antagonists/therapeutic use
- Adrenergic beta-Antagonists/pharmacology
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Receptors, Adrenergic, beta-1/metabolism
- Signal Transduction
- Disease Progression
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Luca Filippi
- Department of Clinical and Experimental Medicine, Neonatology and Neonatal Intensive Care Unit, University of Pisa, Pisa, Italy
| | | |
Collapse
|
10
|
Mahnic N, Geremia A, Straub T, Zorzato S, Schönfelder M, von Lüttichau I, Steiger K, Saller MM, Blaauw B, Wackerhage H. One bout of endurance exercise does not change gene expression or proliferation in a C26 colon carcinoma in immunocompetent mice. J Cancer Res Clin Oncol 2023; 149:17361-17369. [PMID: 37840045 PMCID: PMC10657308 DOI: 10.1007/s00432-023-05447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Exercise typically reduces tumour growth, proliferation and improves outcomes. Many of these effects require exercise to change gene expression within a tumour, but whether exercise actually affects gene expression within a tumour has not been investigated yet. The aim of this study was, therefore, to find out whether one bout of endurance exercise alters gene expression and proliferation in a C26 carcinoma in immunocompetent mice. METHODS BALB/c were injected with C26 colon carcinoma cells. Once the tumours had formed, the mice either ran for 65 min with increasing intensity or rested before the tumour was dissected. The tumours were then analysed by RNA-Seq and stained for the proliferation marker KI67. RESULTS One bout of running for 65 min did not systematically change gene expression in C26 carcinomas of BALB/c mice when compared to BALB/c mice that were rested. However, when analysed for sex, the expression of 17, mostly skeletal muscle-related genes was higher in the samples of the female mice taken post-exercise. Further histological analysis showed that this signal likely comes from the presence of muscle fibres from the panniculus carnosus muscle inside the tumours. Also, we found no differences in the positivity for the proliferation marker KI67 in the control and exercise C26 carcinomas. CONCLUSION A bout of exercise did not systematically affect gene expression or proliferation in C26 carcinomas in immunocompetent BALB/c mice.
Collapse
Affiliation(s)
- Nik Mahnic
- Professorship of Exercise Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Alessia Geremia
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Tobias Straub
- Bioinformatics Core, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabrina Zorzato
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Martin Schönfelder
- Professorship of Exercise Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Irene von Lüttichau
- Kinderklinik München Schwabing, Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Maximilian Michael Saller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal UniversityCenter Munich (MUM), Ludwig-Maximilians-University (LMU) University Hospital, LMU Munich, Fraunhoferstraße 20, 82152, Planegg-Martinsried, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Henning Wackerhage
- Professorship of Exercise Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
11
|
Jabloñski M, Rodríguez MS, Rivero EM, Bruque CD, Vanzulli S, Bruzzone A, Pérez Piñero C, Lüthy IA. The Beta2-adrenergic agonist salbutamol synergizes with paclitaxel on cell proliferation and tumor growth in triple negative breast cancer models. Cancer Chemother Pharmacol 2023; 92:485-499. [PMID: 37725114 DOI: 10.1007/s00280-023-04586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Globally breast cancer accounts for 24.5% in incidence and 15.5% in cancer deaths in women. The triple-negative subtype lacks any specific therapy and is treated with chemotherapy, resulting in significant side-effects. We aimed to investigate if the dose of chemotherapeutic drugs could be diminished by co-administering it with the β2-agonist salbutamol. METHODS Cell proliferation was measured by thymidine incorporation; gene expression, by real-time PCR and protein phosphorylation by WB. Apoptosis was assessed by acridine orange / ethidium bromide and TUNEL tests. Public patient databases were consulted. Cells were inoculated to nude mice and their growth assessed. RESULTS The β2-agonist salbutamol synergizes in MDA-MB-231 cells in vitro with paclitaxel and doxorubicin on cell proliferation through ADRB2 receptors, while the β-blocker propranolol does not. The expression of this receptor was assessed in patient databases and other cell lines. Triple negative samples had the lowest expression. Salbutamol and paclitaxel decreased MDA-MB-231 cell proliferation while their combination further inhibited it. The pathways involved were analyzed. When these cells were inoculated to nude mice, paclitaxel and salbutamol inhibited tumor growth. The combined effect was significantly greater. Paclitaxel increased the expression of MDR1 while salbutamol partially reversed this increase. CONCLUSION While the effect of salbutamol was mainly on cell proliferation, suboptimal concentrations of paclitaxel provoked a very important enhancement of apoptosis. The latter enhanced transporter proteins as MDR1, whose expression were diminished by salbutamol. The expression of ADRB2 should be assessed in the biopsy or tumor to eventually select patients that could benefit from salbutamol repurposing.
Collapse
Affiliation(s)
- Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ezequiel Mariano Rivero
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
- Centre for Genomic Regulation, Barcelona, Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC - El Calafate, El Calafate, Argentina
| | | | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET), Bahía Blanca, Argentina
| | - Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Isabel Alicia Lüthy
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
12
|
Wojtala D, Kozieł S, Witwicki M, Niorettini A, Guz-Regner K, Bugla-Płoskońska G, Caramori S, Komarnicka UK. Antibactericidal Ir(III) and Ru(II) Complexes with Phosphine-Alkaloid Conjugate and Their Interactions with Biomolecules: A Case of N-Methylphenethylamine. Chemistry 2023; 29:e202301603. [PMID: 37584222 DOI: 10.1002/chem.202301603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
The phosphine ligand (Ph2 PCH2 N(CH3 )(CH2 )2 Ph, PNMPEA) obtained by the reaction of the (hydroxymethyl)diphenylphosphine with naturally occurring alkaloid N-methylphenethylamine, was used to synthesize the half-sandwich iridium(III) (Ir(η5 -Cp*)Cl2 Ph2 PCH2 N(CH3 )(CH2 )2 Ph, IrPNMPEA) and ruthenium(II) (Ru(η6 -p-cymene)Cl2 Ph2 PCH2 N(CH3 )(CH2 )2 Ph, RuPNMPEA) complexes. They were characterized using a vast array of methods, including 1D and 2D NMR, ESI(+)MS spectrometry, elemental analysis, cyclic voltammetry (CV), electron spectroscopy in the UV-Vis range (absorption, fluorescence) and density functional theory (DFT). The initial antimicrobial activity in vitro toward Gram-positive and Gram-negative bacterial strains was examined, indicating that both complexes are selective towards Gram-positive bacteria, e. g., Staphylococcus aureus, where the IrPNMPEA has been more bactericidal compared to RuPNMPEA. Additionally, the interactions of these compounds with various biomolecules, such as DNA (ctDNA, plasmid DNA, 9-ethylguanine (9-EtG), and 9-methyladenine (9-MeA)), nicotinamide adenine dinucleotide (NADH), glutathione (GSH), and ascorbic acid (Asc) were described. The results showed that both Ir(III) and Ru(II) complexes accelerate the oxidation process of NADH, GSH and Asc that appeared to occur by an electron transfer mechanism. Interestingly, only IrPNMPEA leads to the formation of various biomolecule adducts, which can explain its higher activity. Furthermore, RuPNMPEA and IrPNMPEA have been interacting with the DNA through weak noncovalent interactions.
Collapse
Affiliation(s)
- Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Maciej Witwicki
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Alessandro Niorettini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Katarzyna Guz-Regner
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63-77, 51-148, Wroclaw, Poland
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63-77, 51-148, Wroclaw, Poland
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| |
Collapse
|
13
|
Slominski RM, Raman C, Chen JY, Slominski AT. How cancer hijacks the body's homeostasis through the neuroendocrine system. Trends Neurosci 2023; 46:263-275. [PMID: 36803800 PMCID: PMC10038913 DOI: 10.1016/j.tins.2023.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 02/19/2023]
Abstract
During oncogenesis, cancer not only escapes the body's regulatory mechanisms, but also gains the ability to affect local and systemic homeostasis. Specifically, tumors produce cytokines, immune mediators, classical neurotransmitters, hypothalamic and pituitary hormones, biogenic amines, melatonin, and glucocorticoids, as demonstrated in human and animal models of cancer. The tumor, through the release of these neurohormonal and immune mediators, can control the main neuroendocrine centers such as the hypothalamus, pituitary, adrenals, and thyroid to modulate body homeostasis through central regulatory axes. We hypothesize that the tumor-derived catecholamines, serotonin, melatonin, neuropeptides, and other neurotransmitters can affect body and brain functions. Bidirectional communication between local autonomic and sensory nerves and the tumor, with putative effects on the brain, is also envisioned. Overall, we propose that cancers can take control of the central neuroendocrine and immune systems to reset the body homeostasis in a mode favoring its expansion at the expense of the host.
Collapse
Affiliation(s)
- Radomir M Slominski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jake Y Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
14
|
Jayachandran P, Battaglin F, Strelez C, Lenz A, Algaze S, Soni S, Lo JH, Yang Y, Millstein J, Zhang W, Shih JC, Lu J, Mumenthaler SM, Spicer D, Neman J, Roussos Torres ET, Lenz HJ. Breast cancer and neurotransmitters: emerging insights on mechanisms and therapeutic directions. Oncogene 2023; 42:627-637. [PMID: 36650218 PMCID: PMC9957733 DOI: 10.1038/s41388-022-02584-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Exploring the relationship between various neurotransmitters and breast cancer cell growth has revealed their likely centrality to improving breast cancer treatment. Neurotransmitters play a key role in breast cancer biology through their effects on the cell cycle, epithelial mesenchymal transition, angiogenesis, inflammation, the tumor microenvironment and other pathways. Neurotransmitters and their receptors are vital to the initiation, progression and drug resistance of cancer and progress in our biological understanding may point the way to lower-cost and lower-risk antitumor therapeutic strategies. This review discusses multiple neurotransmitters in the context of breast cancer. It also discusses risk factors, repurposing of pharmaceuticals impacting neurotransmitter pathways, and the opportunity for better integrated models that encompass exercise, the intestinal microbiome, and other non-pharmacologic considerations. Neurotransmitters' role in breast cancer should no longer be ignored; it may appear to complicate the molecular picture but the ubiquity of neurotransmitters and their wide-ranging impacts provide an organizing framework upon which further understanding and progress against breast cancer can be based.
Collapse
Affiliation(s)
- Priya Jayachandran
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Francesca Battaglin
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, US
| | - Annika Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Sandra Algaze
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Shivani Soni
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Jae Ho Lo
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Yan Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Wu Zhang
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Jean C Shih
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, US
| | - Janice Lu
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Shannon M Mumenthaler
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, US
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, US
| | - Darcy Spicer
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Josh Neman
- Department of Neurosurgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Evanthia T Roussos Torres
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Heinz-Josef Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US.
| |
Collapse
|
15
|
Increased sympathetic modulation in breast cancer survivors determined by measurement of heart rate variability. Sci Rep 2022; 12:14666. [PMID: 36038696 PMCID: PMC9424233 DOI: 10.1038/s41598-022-18865-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Experimental and clinical studies have shown that the sympathetic nervous system (SNS) stimulates cancer progression and reduces the efficacy of oncological treatment. These effects may be reduced by pharmacological and psychotherapeutical approaches attenuating SNS tone. Therefore, it is necessary to identify those cancer survivors whose sympathetic modulation is excessively increased. For determination of SNS modulation, non-invasive method of heart rate variability (HRV) is widely used. In our study, HRV was determined from 5-min heartbeat recordings in healthy volunteers and in women with benign or malignant breast neoplasias, both in newly diagnosed patients and in women after initial treatment. We showed impaired cardio-vagal regulation in breast cancer patients (linear methods) and also found the increased sympathetic modulation indicated by the non-linear (the symbolic dynamics 0V%) parameter. This non-linear HRV analysis seems to be more sensitive than the linear one, indicating significant differences also in survivors after initial therapy in comparison to healthy controls. The lower sample entropy revealed reduced complexity in heart rate control in both breast cancer survivors groups. These findings suggest that HRV detection represents an inexpensive, easy, and reliable method for identification of those patients with breast cancer whose sympathetic modulation is significantly increased and in which the interventions, aimed at normalizing the balance in the autonomic nervous system (e.g. psychotherapy, biofeedback, treatment by β-blockers) may be the most effective.
Collapse
|
16
|
Li Y, Wu G, Zhang Y, Yang W, Wang X, Duan L, Niu L, Chen J, Zhou W, Liu J, Fan D, Hong L. Effects of marital status on survival of retroperitoneal liposarcomas stratified by age and sex: A population-based study. Cancer Med 2022; 12:1779-1790. [PMID: 35758717 PMCID: PMC9883417 DOI: 10.1002/cam4.4962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Previous studies have shown that marital status is associated with survival in patients with a variety of cancer types, including lung cancer, prostate cancer, and bladder cancer. However, to date, the impact of marital status on the survival of patients with retroperitoneal liposarcomas (RPLs) has not been established. METHODS A total of 1211 eligible patients diagnosed with RPLs were identified in the Surveillance, Epidemiology, and End Results (SEER) database. The relationships between marital status and survival in patients with RPLs were assessed. Patients were stratified by age to determine whether an association exists between marital status and age. We also probed the association between marital status and survival in males and females. RESULTS Our findings suggest that divorced, separated, or widowed patients have more advanced cancer stages, and more of these patients do not undergo surgery. Meanwhile, divorced, separated, or widowed patients have worse survival outcomes than married patients (overall survival (OS): HR = 1.66 (95% CI, 1.12, 2.46)); cancer-specific survival (CSS): HR = 1.90 (95% CI, 1.13, 3.19)). OS does not differ between single patients and married patients (HR = 1.21 [95% CI, 0.81, 1.81]) or CSS (HR = 1.36 [95% CI, 0.80, 2.29]). In addition, these results demonstrate that being divorced, separated, or widowed can play a significant detrimental role in mortality in older and female patients. CONCLUSION Married patients have earlier disease stages at diagnosis and better survival outcomes than divorced, separated, or widowed patients with RPLs. In addition, this effect is especially pronounced in older people and females.
Collapse
Affiliation(s)
- Yiding Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Guiling Wu
- School of Aerospace MedicineFourth Military Medical UniversityXi'anChina
| | - Yujie Zhang
- Department of Histology and Embryology, School of Basic MedicineXi'an Medical UniversityXi'anChina
| | - Wanli Yang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Liaoran Niu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Junfeng Chen
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Wei Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Liu Hong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
17
|
Lourenço C, Conceição F, Jerónimo C, Lamghari M, Sousa DM. Stress in Metastatic Breast Cancer: To the Bone and Beyond. Cancers (Basel) 2022; 14:1881. [PMID: 35454788 PMCID: PMC9028241 DOI: 10.3390/cancers14081881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BRCA) remains as one the most prevalent cancers diagnosed in industrialised countries. Although the overall survival rate is high, the dissemination of BRCA cells to distant organs correlates with a significantly poor prognosis. This is due to the fact that there are no efficient therapeutic strategies designed to overcome the progression of the metastasis. Over the past decade, critical associations between stress and the prevalence of BRCA metastases were uncovered. Chronic stress and the concomitant sympathetic hyperactivation have been shown to accelerate the progression of the disease and the metastases incidence, specifically to the bone. In this review, we provide a summary of the sympathetic profile on BRCA. Additionally, the current knowledge regarding the sympathetic hyperactivity, and the underlying adrenergic signalling pathways, involved on the development of BRCA metastasis to distant organs (i.e., bone, lung, liver and brain) will be revealed. Since bone is a preferential target site for BRCA metastases, greater emphasis will be given to the contribution of α2- and β-adrenergic signalling in BRCA bone tropism and the occurrence of osteolytic lesions.
Collapse
Affiliation(s)
- Catarina Lourenço
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-UP—School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology—ICBAS-UP, 4050-313 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-UP—School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
18
|
Kesting S, Weeber P, Schönfelder M, Pfluger A, Wackerhage H, von Luettichau I. A Bout of High-Intensity Interval Training (HIIT) in Children and Adolescents during Acute Cancer Treatment-A Pilot Feasibility Study. Cancers (Basel) 2022; 14:1468. [PMID: 35326619 PMCID: PMC8945900 DOI: 10.3390/cancers14061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Low- and moderate-intensity exercise is safe and feasible during childhood cancer treatment. The feasibility of a bout of high-intensity interval training (HIIT) in this population has not been analyzed to date. Pediatric cancer patients aged between 6 and 18 years were selected based on clinical conditions to perform ten sets of 15 s HIIT (>90% of estimated maximal heart rate (HRmax)) and 1 min active recovery on a bicycle ergometer within the first three chemotherapy courses. We assessed safety and feasibility criteria and the following parameters: perceived exertion rate, heart rate, and lactate and adrenaline concentrations. Out of 212 eligible patients, 11 patients aged 13.9 ± 3.6 years (n = 7 ♂) with lymphoma, leukemia, rhabdomyosarcoma, nephroblastoma, and synovial sarcoma completed the bout of HIIT without serious adverse events. During exercise, patients reached a BORG value maxima of 16 ± 1.2, and their heart rates rose from 78 ± 17 beats per minute (bpm) at rest to 178 ± 12 bpm after exercise (90 ± 6% estimated HRmax). The power-to-weight ratio was 2 ± 0.5 W/kg (watt per kilogram). Blood lactate concentrations increased from 1.09 ± 0.50 mmol/L (millimole per liter) at rest to 5.05 ± 1.88 mmol/L post-exercise. Our preliminary data suggest that HIIT is applicable only in a small number of childhood cancer patients. Individually adapted exercise protocols for patients with multiple impairments are needed.
Collapse
Affiliation(s)
- Sabine Kesting
- Kinderklinik München Schwabing, Department of Pediatrics and Children’s Cancer Research Center, TUM School of Medicine, Technical University of Munich, 80804 Munich, Germany; (P.W.); (I.v.L.)
- Chair of Preventive Pediatrics, Department of Sport and Health Sciences, Technical University of Munich, 80992 Munich, Germany
- Pediatric Oncology Network Bavaria, KIONET Bavaria, 91054 Erlangen, Germany;
| | - Peter Weeber
- Kinderklinik München Schwabing, Department of Pediatrics and Children’s Cancer Research Center, TUM School of Medicine, Technical University of Munich, 80804 Munich, Germany; (P.W.); (I.v.L.)
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, 80809 Munich, Germany; (M.S.); (A.P.)
| | - Martin Schönfelder
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, 80809 Munich, Germany; (M.S.); (A.P.)
| | - Anja Pfluger
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, 80809 Munich, Germany; (M.S.); (A.P.)
| | - Henning Wackerhage
- Pediatric Oncology Network Bavaria, KIONET Bavaria, 91054 Erlangen, Germany;
| | - Irene von Luettichau
- Kinderklinik München Schwabing, Department of Pediatrics and Children’s Cancer Research Center, TUM School of Medicine, Technical University of Munich, 80804 Munich, Germany; (P.W.); (I.v.L.)
- Pediatric Oncology Network Bavaria, KIONET Bavaria, 91054 Erlangen, Germany;
| |
Collapse
|