1
|
Das A, Twamley B, Kelly OR, Panda C, Richardson P, McDonald AR. High-Valent Cobalt-Difluoride in Oxidative Fluorination of Saturated Hydrocarbons. Angew Chem Int Ed Engl 2025; 64:e202421157. [PMID: 39688219 DOI: 10.1002/anie.202421157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
The heme paradigm where Fe=O acts as the C-H oxidant and Fe-OH rebounds with the formed carbon-centered radical guides the design of the prototypical synthetic hydroxylation catalyst. We are exploring methods to evolve beyond the metal-oxo oxidant and hydroxide rebound, to incorporate a wider array of functional group. We have demonstrated the application of CoII(OTf)2 (10 mol% catalyst; OTf=trimfluoromethanesulfonate) in combination with polydentate N-donor ligands (e. g. BPMEN=N,N'-dimethyl-N,N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine) and Selectfluor in the oxidative fluorination of saturated hydrocarbons in high yields. The addition of CsF to the reaction mixture induced near-quantitative yields of fluorinated saturated hydrocarbons (>90 % yield of fluorinated product). For 1-hydroxy, 1-acetyl, 1-carboxy-, and 1-acetamido-adamantane, we demonstrated selective fluorination at the 3-position. We propose two mechanisms for the CoII-catalyzed reaction: either (i) an N-radical, derived from Selectfluor, acted as the C-H oxidant followed by radical rebound with CoIII-F; or (ii) a CoIV-(F)2 species was the C-H oxidant followed by radical rebound with CoIII-F. Our combined spectroscopic, kinetic, and chemical trapping evidence suggested that an N-radical was not the active oxidant. We concluded that a CoIV-(F)2 species was the likely active oxidant and CoIII-F was the likely F-atom donor to a carbon centered radical producing a C-F bond.
Collapse
Affiliation(s)
- Agnideep Das
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Oscar R Kelly
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Chakadola Panda
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
- Department of Chemistry, Science Faculty, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Paul Richardson
- Medicine Design, Pfizer La Jolla, 10770 Science Center Drive, La Jolla, California, 92121, USA
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
2
|
Wright JS, Sharninghausen LS, Lapsys A, Sanford MS, Scott PJH. C-H Labeling with [ 18F]Fluoride: An Emerging Methodology in Radiochemistry. ACS CENTRAL SCIENCE 2024; 10:1674-1688. [PMID: 39364044 PMCID: PMC11447958 DOI: 10.1021/acscentsci.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024]
Abstract
Fluorine-18 is the most routinely employed radioisotope for positron emission tomography, a dynamic nuclear imaging modality. The radiolabeling of C-H bonds is an attractive method for installing fluorine-18 into organic molecules since it can preclude the cumbersome prefunctionalization of requisite precursors. Although electrophilic "F+" reagents (e.g., [18F]F2) are effective for C-H radiolabeling, state-of-the-art methodologies predominantly leverage high molar activity nucleophilic [18F]fluoride sources (e.g., [18F]KF) with substantial (pre)clinical advantages. Reflecting this, multiple nucleophilic C-H radiolabeling techniques of high utility have been disclosed over the past decade. However, the adoption of (pre)clinical C-H radiolabeling has been slow, and PET imaging agents are still routinely prepared via methods that, despite a high level of practicality, are limited in scope (e.g., SNAr, SN2 radiofluorinations). By addressing the drawbacks inherent to these strategies, C-H radiofluorination and radiofluoroalkylation carry the potential to complement and supersede state-of-the-art labeling methods, facilitating the expedited production of PET agents used in disease staging and drug development. In this Outlook, we showcase recent C-H labeling developments with fluorine-18 and discuss the merits, potential, and barriers to adoption in (pre)clinical settings. In addition, we highlight trends, challenges, and directions in this emerging field of study.
Collapse
Affiliation(s)
- Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liam S Sharninghausen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alex Lapsys
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Wang Y, Wang Y, Wang S, Yu Z, Wang S, Chen W. Electrochemical Trifluoromethylthiolation/Cyclization of N-Arylacrylamides with AgSCF 3: Access to SCF 3-Containing Oxindoles. J Org Chem 2024; 89:11950-11958. [PMID: 39158299 DOI: 10.1021/acs.joc.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
An environmentally friendly electrochemical strategy for the synthesis of SCF3-containing oxindoles was developed. This electrochemical transformation was accomplished through a cascade trifluoromethylthiolation/cyclization of N-acrylamides with AgSCF3, obviating the requirement for external oxidants. A variety of functional groups were well tolerated in this transformation.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ye Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Sheng Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhou Yu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Siqi Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Wenbo Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
4
|
Atkins AP, Dean AC, Lennox AJJ. Benzylic C(sp 3)-H fluorination. Beilstein J Org Chem 2024; 20:1527-1547. [PMID: 39015617 PMCID: PMC11250007 DOI: 10.3762/bjoc.20.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
The selective fluorination of C(sp3)-H bonds is an attractive target, particularly for pharmaceutical and agrochemical applications. Consequently, over recent years much attention has been focused on C(sp3)-H fluorination, and several methods that are selective for benzylic C-H bonds have been reported. These protocols operate via several distinct mechanistic pathways and involve a variety of fluorine sources with distinct reactivity profiles. This review aims to give context to these transformations and strategies, highlighting the different tactics to achieve fluorination of benzylic C-H bonds.
Collapse
Affiliation(s)
| | - Alice C Dean
- University of Bristol, School of Chemistry, Bristol, BS8 1TS, U.K.
| | | |
Collapse
|
5
|
Yu Q, Zhou D, Ma J, Song C. Decarboxylative Nucleophilic Fluorination of Aliphatic Carboxylic Acids. Org Lett 2024; 26:4257-4261. [PMID: 38738813 DOI: 10.1021/acs.orglett.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Herein, we present a decarboxylative nucleophilic fluorination of carboxylic acids with a silver catalyst. This strategy enables the synthesis of a myriad of diverse and valuable fluorinated motifs under mild conditions, demonstrating good functional-group tolerance and utility in late-stage functionalization. In contrast to traditional electrophilic fluorination, this nucleophilic method utilizes a more readily available nucleophilic fluorinating reagent, providing substantial advantages in terms of cost efficiency, broad substrate scope, and functional-group compatibility.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Donglin Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junjun Ma
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
7
|
Feng Q, Liu CX, Wang Q, Zhu J. Palladium-Based Dyotropic Rearrangement Enables A Triple Functionalization of Gem-Disubstituted Alkenes: An Unusual Fluorolactonization Reaction. Angew Chem Int Ed Engl 2024; 63:e202316393. [PMID: 37986261 DOI: 10.1002/anie.202316393] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
We report in this paper a Pd(II)-catalyzed migratory gem-fluorolactonization of ene-carboxylic acids. Reaction of 4-methylenealkanoic acid derivatives with Selectfluor in the presence of Pd(OAc)2 (1.0 mol %) at room temperature affords fluorolactones in good to excellent yields. 2-(2-Methylenecycloalkanyl)acetic acids are transformed to bridged fluorolactones under identical conditions. One C-C, one C-O and one tertiary C-F bond were generated along the gem-disubstituted carbon-carbon double bond in this operationally simple transformation. Trapping experiments indicates that the reaction is initiated by a 5-exo-trig oxypalladation followed by Pd oxidation, regioselective ring-enlarging 1,2-alkyl/Pd(IV) dyotropic rearrangement and C-F bond forming reductive elimination cascade. Post-transformations of these fluorolactones taking advantage of the electrophilicity of the 1-fluoroalkylcarboxylate function are also documented.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Chen-Xu Liu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| |
Collapse
|
8
|
Purushotam, Bera A, Banerjee D. Recent advances on non-precious metal-catalysed fluorination, difluoromethylation, trifluoromethylation, and perfluoroalkylation of N-heteroarenes. Org Biomol Chem 2023; 21:9298-9315. [PMID: 37855147 DOI: 10.1039/d3ob01132a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
This review highlights the recent advances, from 2015 to 2023, on the introduction of organo-fluorine derivatives at the N-heteroarene core. Notable features considering new technologies based on organofluorine compounds such as: (i) approaches based on non-precious metal catalysis (Fe, Co, Mn, Ni, etc.), (ii) the development of new strategies using non-precious metal-catalysts for the introduction of organo-fluorinine derivatives using N-heterocycles with one or more heteroatoms, (iii) newer reagents for fluorination, difluoromethylation, trifluoromethylation, or perfluoroalkylation of N-heteroarenes using different approaches, (iv) mechanistic studies on various catalytic transformations, as and when required, and (v) the synthetic applications of various bio-active organo-fluorine compounds, including post-synthetic drug derivatization, are discussed.
Collapse
Affiliation(s)
- Purushotam
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
9
|
Tang J, Lu F, Sun Y, Zhang G, Zhang E, Jiang YY. Late-Stage Diversification of Peptides via Pd-Catalyzed Site-Selective δ-C(sp 2)-H Fluorination and Amination. J Org Chem 2023; 88:14165-14171. [PMID: 37751495 DOI: 10.1021/acs.joc.3c01897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Site-selective C-H fluorination is an attractive strategy for directly transforming inert C-H bonds into C-F bonds, yet it remains a significant challenge. Herein, we have developed an efficient and versatile strategy for site-selective fluorination and amination of phenylalanine-containing peptides via late-stage Pd-catalyzed δ-C(sp2)-H activation, providing a valuable tool for the in situ synthesis of fluorinated indoline scaffolds within peptides.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210096, China
| | - Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yi Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Guodong Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuan-Ye Jiang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
10
|
Rivas M, Debnath S, Giri S, Noffel YM, Sun X, Gevorgyan V. One-Pot Formal Carboradiofluorination of Alkenes: A Toolkit for Positron Emission Tomography Imaging Probe Development. J Am Chem Soc 2023; 145:19265-19273. [PMID: 37625118 PMCID: PMC10760797 DOI: 10.1021/jacs.3c04548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
We report the first one-pot formal alkene carboradiofluorination reaction employing easily accessible alkenes as both prosthetic group precursors and coupling partners. The methodology features rapid sequential Markovnikov-selective iodofluorination and photoinduced Pd(0/I/II)-catalyzed alkyl Heck reaction as a mild and robust fluorine-18 (18F) radiochemical approach for positron emission tomography (PET) imaging probe development. A new class of prosthetic groups for PET imaging probe synthesis was isolated as iodofluorinated intermediates in moderate to excellent yields. The one-pot formal alkenylfluorination reaction was carried out to produce over 30 analogues of a wide range of bioactive molecules. Further application of the Pd(0/I/II) manifold in PET probe development was illustrated by the direct carbo(radio)fluorination of electron-rich alkenes. The methods were successfully translated to radiolabel a broad scope of medicinally relevant small molecules in generally good radiochemical conversion. The protocol was further optimized to accommodate no-carrier-added conditions with similar efficiency for future (pre)clinical translation. Moreover, the radiosynthesis of prosthetic groups was automated in a radiochemistry module to facilitate its practical use in multistep radiochemical reactions.
Collapse
Affiliation(s)
- Mónica Rivas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Sashi Debnath
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Sachin Giri
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Yusuf M Noffel
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Xiankai Sun
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
11
|
Thangavadivale VG, Tendera L, Bertermann R, Radius U, Beweries T, Perutz RN. Solution and solid-state studies of hydrogen and halogen bonding with N-heterocyclic carbene supported nickel(II) fluoride complexes. Faraday Discuss 2023; 244:62-76. [PMID: 37097153 DOI: 10.1039/d2fd00171c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nickel fluoride complexes of the type [Ni(F)(L)2(ArF)] (L = phosphine, ArF = fluorinated arene) are well-known to form strong halogen and hydrogen bonds in solution and in the solid state. A comprehensive study of such non-covalent interactions using bis(carbene) complexes as acceptors and suitable halogen and hydrogen bond donors is presented. In solution, the complex [Ni(F)(iPr2Im)2(C6F5)] forms halogen and hydrogen bonds with iodopentafluorobenzene and indole, respectively, which have formation constants (K300) an order of magnitude greater than those of structurally related phosphine supported nickel fluorides. Co-crystallisation of this complex and its backbone-methylated analogue [Ni(F)(iPr2Me2Im)2(C6F5)] with 1,4-diiodotetrafluorobenzene produces halogen bonding adducts which were characterised by X-ray analysis and 19F MAS solid state NMR analysis. Differences in the chemical shifts between the nickel fluoride and its halogen bonding adduct are well in line with data that were obtained from titration studies in solution.
Collapse
Affiliation(s)
| | - Lukas Tendera
- Institut für Anorganische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany.
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany.
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany.
| | - Torsten Beweries
- Leibniz-Institut für Katalyse, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Robin N Perutz
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
12
|
Gong J, Wang Q, Zhu J. Diverting the 5- exo-Trig Oxypalladation to Formally 6- endo-Trig Fluorocycloetherification Product through 1,2-O/Pd(IV) Dyotropic Rearrangement. J Am Chem Soc 2023; 145:15735-15741. [PMID: 37462356 DOI: 10.1021/jacs.3c06158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Pd-catalyzed cyclizative functionalization of γ-hydroxyalkenes affords tetrahydrofuran derivatives via a key 5-exo-trig oxypalladation step. Herein, we report a palladium(II)-catalyzed, Selectfluor-mediated formal 6-endo-trig fluorocycloetherification of γ-hydroxyalkenes for the synthesis of functionalized tetrahydropyrans. Mechanistically, an σ-alkyl-Pd(II) intermediate resulting from the 5-exo-trig oxypalladation process is isolated and characterized by X-ray crystallographic analysis. Its oxidation with Selectfluor to Pd(IV) triggers the chemoselective 1,2-O/Pd(IV) dyotropic rearrangement affording, after C-F bond-forming reductive elimination, the tetrahydropyrans with concurrent generation of a tertiary carbon-fluorine bond. The occurrence of this 1,2-positional interchange is further evidenced by trapping the rearranged quaternary C(sp3)-Pd bond by an internal nucleophile that is materialized by the development of a Pd(II)-catalyzed oxidative bis-heterocyclization of alkenes.
Collapse
Affiliation(s)
- Jing Gong
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Xing S, Ma C, Liu W, Ni SF, Zhu D, Xu LW, Shao X. Lewis Base-Catalyzed Trifluoromethylsulfinylation of Allylic Alcohols: Stability-Oriented Divergent Synthesis. Org Lett 2023; 25:1066-1071. [PMID: 36779962 DOI: 10.1021/acs.orglett.2c04243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
A novel strategy is demonstrated for Lewis base-activated trifluoromethylsulfinylation of allylic alcohols. Controllable synthesis of structurally varied allylic trifluoromethanesulfones via sigmatropic rearrangements was performed, and trifluoromethanesulfinate esters were achieved. This metal-free, catalytic divergent transformation features good functional group tolerance and late-stage modification of bioactive molecules. Mechanistic studies suggested that Lewis bases interact with N-(trifluoromethylsulfinyl)phthalimide to generate an ion pair adduct followed by O-trifluoromethylsulfinylation with allylic alcohols.
Collapse
Affiliation(s)
- Shuya Xing
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou 515063, People's Republic of China
| | - Wen Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou 515063, People's Republic of China
| | - Dianhu Zhu
- Key Laboratory of Synthetic and Natural Functional Molecules of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
14
|
Xu W, Shao Q, Xia C, Zhang Q, Xu Y, Liu Y, Wu M. Visible-light-induced selective defluoroalkylations of polyfluoroarenes with alcohols. Chem Sci 2023; 14:916-922. [PMID: 36755709 PMCID: PMC9890929 DOI: 10.1039/d2sc06290a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
To provide α-polyfluoroarylalcohols, a novel protocol for the selective defluoroalkylation of polyfluoroarenes with easily accessible alcohols was reported via the cooperation of photoredox and hydrogen atom transfer (HAT) strategies with the assistance of Lewis acids under visible light irradiation. The protocol featured broad scope, excellent regioselectivity for both C-H and C-F bond cleavages, and mild conditions. Mechanistic studies suggested that the reaction occurred through Lewis acid-promoted HAT to provide an alkyl radical and sequential addition to polyfluoroarenes. Impressively, the regioselectivity for C-F cleavage was verified with the Fukui function. The feasibility and application of this protocol on fluoroarene synthesis were well illustrated by gram-scale synthesis under both batch and flow conditions, late-stage decoration of bioactive compounds, and further transformations of the fluoroarylalcohols.
Collapse
Affiliation(s)
- Wengang Xu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Qi Shao
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China)QingdaoShandong Province266580P. R. China
| | - Congjian Xia
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China)QingdaoShandong Province266580P. R. China
| | - Qiao Zhang
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Yadi Xu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Yingguo Liu
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Mingbo Wu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China .,College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| |
Collapse
|
15
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
16
|
Abstract
18F-Labeling methods for the preparation of 18F-labeled molecular probes can be classified into electrophilic fluorination, nucleophilic fluorination, metal-F coordination, and 18F/19F isotope exchange. Isotope exchange-based 18F-labeling methods demonstrate mild conditions featuring water resistance and facile high-performance liquid chromatography-free purification in direct 18F-labeling of substrates. This paper systematically reviews isotope exchange-based 18F-labeling methods sorted by the adjacent atom bonding with F, i.e., carbon and noncarbon atoms (Si, B, P, S, Ga, Fe, etc.). The respective isotope exchange mechanism, radiolabeling condition, radiochemical yield, molar activity, and stability of the 18F-product are mainly discussed for each isotope exchange-based 18F-labeling method as well as the cutting-edge application of the corresponding 18F-labeled molecular probes.
Collapse
Affiliation(s)
- Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Shengji Lv
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhaobiao Mou
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenru Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Taotao Dong
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
17
|
Brezová V, Barbieriková Z, Zalibera M, Lušpai K, Tholtová A, Dvoranová D. Titania-mediated photoinduced fluorination of nitrone spin traps in acetonitrile (an EPR study). J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Regiocontrolled Rh(III)-catalyzed C-C coupling/C-N cyclization mediated by distinctive 1,2-migratory insertion of gem-difluoromethylene allenes: reaction development and mechanistic insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Yang G, Wu H, Gallarati S, Corminboeuf C, Wang Q, Zhu J. Migrative Carbofluorination of Saturated Amides Enabled by Pd-Based Dyotropic Rearrangement. J Am Chem Soc 2022; 144:14047-14052. [PMID: 35916403 DOI: 10.1021/jacs.2c06578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Directly editing an all-carbon quaternary carbon itself of nonstrained acyclic molecules remains underexploited despite the recent advances in the fields of both C-H and C-C bond activation. Herein, we report a palladium-catalyzed migrative carbofluorination of saturated amides enabled by the activation of both the C(sp3)-H and the Cquaternary-Cσ bonds. In this transformation, the α-quaternary carbon of Weinreb amides is converted to α-tertiary fluoride with concurrent migration of an aryl or an amido group from the α- to β-carbon. DFT calculations indicate that the dyotropic rearrangement proceeds through an unusual anti-selective [2.1.0] bicyclic transition state. The reaction, compatible with a broad range of functional groups, is stereospecific and is applicable to the synthesis of enantioenriched products.
Collapse
Affiliation(s)
- Guoqiang Yang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Hua Wu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland.,School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Simone Gallarati
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Fujii T, Gallarati S, Corminboeuf C, Wang Q, Zhu J. Modular Synthesis of Benzocyclobutenes via Pd(II)-Catalyzed Oxidative [2+2] Annulation of Arylboronic Acids with Alkenes. J Am Chem Soc 2022; 144:8920-8926. [PMID: 35561421 DOI: 10.1021/jacs.2c03565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Benzocyclobutenes (BCBs) are highly valuable compounds in organic synthesis, medicinal chemistry, and materials science. However, catalytic modular synthesis of functionalized BCBs from easily accessible starting materials remains limited. We report herein an efficient synthesis of diversely functionalized BCBs by a Pd(II)-catalyzed formal [2+2] annulation between arylboronic acids and alkenes in the presence of N-fluorobenzenesulfonimide (NFSI). An intermolecular carbopalladation followed by palladium oxidation, intramolecular C(sp2)-H activation by a transient C(sp3)-Pd(IV) species, and selective carbon-carbon (C-C) bond-forming reductive elimination from a high-valent five-membered palladacycle is proposed to account for the reaction outcome. Kinetically competent oxidation of alkylPd(II) to alkylPd(IV) species is important to avoid the formation of a Heck adduct. The reaction forges two C-C bonds of the cyclobutene core and is compatible with a wide range of functional groups. No chelating bidentate directing group in the alkene part is needed for this transformation.
Collapse
Affiliation(s)
- Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Simone Gallarati
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Kittilä T, Calero P, Fredslund F, Lowe PT, Tezé D, Nieto-Domínguez M, O'Hagan D, Nikel PI, Welner DH. Oligomerization engineering of the fluorinase enzyme leads to an active trimer that supports synthesis of fluorometabolites in vitro. Microb Biotechnol 2022; 15:1622-1632. [PMID: 35084776 PMCID: PMC9049626 DOI: 10.1111/1751-7915.14009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
The fluorinase enzyme represents the only biological mechanism capable of forming stable C–F bonds characterized in nature thus far, offering a biotechnological route to the biosynthesis of value‐added organofluorines. The fluorinase is known to operate in a hexameric form, but the consequence(s) of the oligomerization status on the enzyme activity and its catalytic properties remain largely unknown. In this work, this aspect was explored by rationally engineering trimeric fluorinase variants that retained the same catalytic rate as the wild‐type enzyme. These results ruled out hexamerization as a requisite for the fluorination activity. The Michaelis constant (KM) for S‐adenosyl‐l‐methionine, one of the substrates of the fluorinase, increased by two orders of magnitude upon hexamer disruption. Such a shift in S‐adenosyl‐l‐methionine affinity points to a long‐range effect of hexamerization on substrate binding – likely decreasing substrate dissociation and release from the active site. A practical application of trimeric fluorinase is illustrated by establishing in vitro fluorometabolite synthesis in a bacterial cell‐free system.
Collapse
Affiliation(s)
- Tiia Kittilä
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Patricia Calero
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Folmer Fredslund
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Phillip T Lowe
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - David Tezé
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - David O'Hagan
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Ditte H Welner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
22
|
Sindhe H, Chaudhary B, Chowdhury N, Kamble A, Kumar V, Lad A, Sharma S. Recent advances in transition-metal catalyzed directed C–H functionalization with fluorinated building blocks. Org Chem Front 2022. [DOI: 10.1039/d1qo01544c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on the advances in transition-metal catalyzed reactions with fluorinated building blocks via directed C–H bond activation for the construction of diverse organic molecules with an insight into the probable mechanistic pathway.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Bharatkumar Chaudhary
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Vivek Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Aishwarya Lad
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| |
Collapse
|
23
|
Farley GW, Siegler MA, Goldberg DP. Halogen Transfer to Carbon Radicals by High-Valent Iron Chloride and Iron Fluoride Corroles. Inorg Chem 2021; 60:17288-17302. [PMID: 34709780 DOI: 10.1021/acs.inorgchem.1c02666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-valent iron halide corroles were examined to determine their reactivity with carbon radicals and their ability to undergo radical rebound-like processes. Beginning with Fe(Cl)(ttppc) (1) (ttppc = 5,10,15-tris(2,4,6-triphenylphenyl)corrolato3-), the new iron corroles Fe(OTf)(ttppc) (2), Fe(OTf)(ttppc)(AgOTf) (3), and Fe(F)(ttppc) (4) were synthesized. Complexes 3 and 4 are the first iron triflate and iron fluoride corroles to be structurally characterized by single crystal X-ray diffraction. The structure of 3 reveals an AgI-pyrrole (η2-π) interaction. The Fe(Cl)(ttppc) and Fe(F)(ttppc) complexes undergo halogen transfer to triarylmethyl radicals, and kinetic analysis of the reaction between (p-OMe-C6H4)3C• and 1 gave k = 1.34(3) × 103 M-1 s-1 at 23 °C and 2.2(2) M-1 s-1 at -60 °C, ΔH⧧ = +9.8(3) kcal mol-1, and ΔS⧧ = -14(1) cal mol-1 K-1 through an Eyring analysis. Complex 4 is significantly more reactive, giving k = 1.16(6) × 105 M-1 s-1 at 23 °C. The data point to a concerted mechanism and show the trend X = F- > Cl- > OH- for Fe(X)(ttppc). This study provides mechanistic insights into halogen rebound for an iron porphyrinoid complex.
Collapse
Affiliation(s)
- Geoffrey W Farley
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
24
|
Jana R, Begam HM, Dinda E. The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery. Chem Commun (Camb) 2021; 57:10842-10866. [PMID: 34596175 DOI: 10.1039/d1cc04083a] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to the market competitiveness and urgent societal need, an optimum speed of drug discovery is an important criterion for successful implementation. Despite the rapid ascent of artificial intelligence and computational and bioanalytical techniques to accelerate drug discovery in big pharma, organic synthesis of privileged scaffolds predicted in silico for in vitro and in vivo studies is still considered as the rate-limiting step. C-H activation is the latest technology added into an organic chemist's toolbox for the rapid construction and late-stage modification of functional molecules to achieve the desired chemical and physical properties. Particularly, elimination of prefunctionalization steps, exceptional functional group tolerance, complexity-to-diversity oriented synthesis, and late-stage functionalization of privileged medicinal scaffolds expand the chemical space. It has immense potential for the rapid synthesis of a library of molecules, structural modification to achieve the required pharmacological properties such as absorption, distribution, metabolism, excretion, toxicology (ADMET) and attachment of chemical reporters for proteome profiling, metabolite synthesis, etc. for preclinical studies. Although heterocycle synthesis, late-stage drug modification, 18F labelling, methylation, etc. via C-H functionalization have been reviewed from the synthetic standpoint, a general overview of these protocols from medicinal and drug discovery aspects has not been reviewed. In this feature article, we will discuss the recent trends of C-H activation methodologies such as synthesis of medicinal scaffolds through C-H activation/annulation cascade; C-H arylation for sp2-sp2 and sp2-sp3 cross-coupling; C-H borylation/silylation to introduce a functional linchpin for further manipulation; C-H amination for N-heterocycles and hydrogen bond acceptors; C-H fluorination/fluoroalkylation to tune polarity and lipophilicity; C-H methylation: methyl magic in drug discovery; peptide modification and macrocyclization for therapeutics and biologics; fluorescent labelling and radiolabelling for bioimaging; bioconjugation for chemical biology studies; drug-metabolite synthesis for biodistribution and excretion studies; late-stage diversification of drug-molecules to increase efficacy and safety; cutting-edge DNA encoded library synthesis and improved synthesis of drug molecules via C-H activation in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| |
Collapse
|
25
|
|
26
|
Xu W, Zhang Q, Shao Q, Xia C, Wu M. Photocatalytic C−F Bond Activation of Fluoroarenes,
gem
‐Difluoroalkenes and Trifluoromethylarenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wengang Xu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
| | - Qiao Zhang
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Qi Shao
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Congjian Xia
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Mingbo Wu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| |
Collapse
|
27
|
Qian H, Chen J, Zhang B, Cheng Y, Xiao WJ, Chen JR. Visible-Light-Driven Photoredox-Catalyzed Three-Component Radical Cyanoalkylfluorination of Alkenes with Oxime Esters and a Fluoride Ion. Org Lett 2021; 23:6987-6992. [PMID: 34432474 DOI: 10.1021/acs.orglett.1c02686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A metal-free, photoredox-catalyzed three-component cyanoalkylfluorination of alkenes under mild and redox-neutral conditions is reported. This protocol features use of readily available alkenes, oxime esters, and cost-effective nucleophilic fluoride reagents, giving diverse cyanoalkylfluorinated products with generally good yields. Excellent functional group tolerance and mild reaction conditions also render this protocol suitable for cyanoalkylfluorination of pharmaceutically relevant molecule-derived alkene.
Collapse
Affiliation(s)
- Hao Qian
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jun Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Bin Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
28
|
Zhang H, Yu F, Li C, Tian P, Zhou Y, Cao ZY. Iron-Catalyzed, Site-Selective Difluoromethylthiolation (-SCF 2H) and Difluoromethylselenation (-SeCF 2H) of Unactivated C(sp 3)-H Bonds in N-Fluoroamides. Org Lett 2021; 23:4721-4725. [PMID: 34080880 DOI: 10.1021/acs.orglett.1c01443] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The iron-catalyzed δ-C(sp3)-H bond difluoromethylthiolation and difluoromethylselenation of aliphatic amides with high site selectivity are reported. Essential to the success is the employment of an amide radical formed in situ to activate the inert C(sp3)-H bond and the utilization of the easily handled PhSO2SCF2H and PhSO2SeCF2H as coupling reagents under mild conditions. This scalable protocol exhibits a broad substrate scope bearing versatile functional groups. Mechanistic studies indicate that the reaction proceeds through -SCF2H and -SeCF2H radical transfer.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Fei Yu
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Chuang Li
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Peiyuan Tian
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yulu Zhou
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
29
|
Wu Q, Mao YJ, Zhou K, Wang S, Chen L, Xu ZY, Lou SJ, Xu DQ. Pd-Catalysed direct C(sp 2)-H fluorination of aromatic ketones: concise access to anacetrapib. Chem Commun (Camb) 2021; 57:4544-4547. [PMID: 33956008 DOI: 10.1039/d1cc01047f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Pd-cataylsed direct ortho-C(sp2)-H fluorination of aromatic ketones has been developed for the first time. The reaction features good regioselectivity and simple operations, constituting an alternative shortcut to access fluorinated ketones. A concise synthesis of anacetrapib has also been achieved by using late-stage C-H fluorination as a key step.
Collapse
Affiliation(s)
- Qiuzi Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kun Zhou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuang Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Lei Chen
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
30
|
Zick ME, Lee JH, Gonzalez MI, Velasquez EO, Uliana AA, Kim J, Long JR, Milner PJ. Fluoroarene Separations in Metal-Organic Frameworks with Two Proximal Mg 2+ Coordination Sites. J Am Chem Soc 2021; 143:1948-1958. [PMID: 33492140 DOI: 10.1021/jacs.0c11530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fluoroarenes are widely used in medicinal, agricultural, and materials chemistry, and yet their production remains a critical challenge in organic synthesis. Indeed, the nearly identical physical properties of these vital building blocks hinders their purification by traditional methods, such as flash chromatography or distillation. As a result, the Balz-Schiemann reaction is currently employed to prepare fluoroarenes instead of more atom-economical C-H fluorination reactions, which produce inseparable mixtures of regioisomers. Herein, we propose an alternative solution to this problem: the purification of mixtures of fluoroarenes using metal-organic frameworks (MOFs). Specifically, we demonstrate that controlling the interaction of fluoroarenes with adjacent coordinatively unsaturated Mg2+ centers within a MOF enables the separation of fluoroarene mixtures with unparalleled selectivities. Liquid-phase multicomponent equilibrium adsorption data and breakthrough measurements coupled with van der Waals-corrected density functional theory calculations reveal that the materials Mg2(dobdc) (dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) and Mg2(m-dobdc) (m-dobdc4- = 2,4-dioxidobenzene-1,5-dicarboxylate) are capable of separating the difluorobenzene isomers from one another. Additionally, these frameworks facilitate the separations of fluoroanisoles, fluorotoluenes, and fluorochlorobenzenes. In addition to enabling currently unfeasible separations for the production of fluoroarenes, our results suggest that carefully controlling the interaction of isomers with not one but two strong binding sites within a MOF provides a general strategy for achieving challenging liquid-phase separations.
Collapse
Affiliation(s)
- Mary E Zick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Miguel I Gonzalez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ever O Velasquez
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Adam A Uliana
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Jaehwan Kim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
31
|
Wu QZ, Mao YJ, Zhou K, Hao HY, Chen L, Wang S, Xu ZY, Lou SJ, Xu DQ. Regioselective C(sp 3)-H fluorination of ketones: from methyl to the monofluoromethyl group. Chem Commun (Camb) 2021; 57:765-768. [PMID: 33355557 DOI: 10.1039/d0cc07093a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a novel strategy to access CH2F-containing ketones through Pd-catalysed β-selective methyl C(sp3)-H fluorination. The reaction features high regioselectivity and a broad substrate scope, constituting a modular method for the late-stage transformation of the native methyl (CH3) into the monofluoromethyl (CH2F) group.
Collapse
Affiliation(s)
- Qiu-Zi Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kun Zhou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hong-Yan Hao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Lei Chen
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuang Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
32
|
Sarkissian E, Golbon Haghighi M. Strategy for Selective C sp2-F and C sp2-C sp2 Formations from Organoplatinum Complexes. Inorg Chem 2021; 60:1016-1020. [PMID: 33397093 DOI: 10.1021/acs.inorgchem.0c03122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By changing the parameters of fluorination reaction of bisaryl-platinum(II) complexes, each possible competitive pathway of Ar-Ar and Ar-F formation can be selectively controlled. It was discovered that steric hindrance, type of fluorinating reagent, and temperature of reaction are determinants for Ar-F vs Ar-Ar bond formation pathway from bisaryl-fluoro-platinum(IV) complexes. The combination of bulky ligands such as mesityl with Selectfluor at RT leads to Ar-F bond formation in the presence of possible Ar-Ar formation.
Collapse
Affiliation(s)
- Elin Sarkissian
- Department of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran
| | | |
Collapse
|
33
|
Jordan A, Stoy P, Sneddon HF. Chlorinated Solvents: Their Advantages, Disadvantages, and Alternatives in Organic and Medicinal Chemistry. Chem Rev 2020; 121:1582-1622. [DOI: 10.1021/acs.chemrev.0c00709] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrew Jordan
- GlaxoSmithKline Carbon Neutral Laboratory for Sustainable Chemistry, Jubilee Campus, University of Nottingham, 6 Triumph Road, Nottingham NG7 2GA, U.K
| | - Patrick Stoy
- Drug Design and Selection, Platform and Technology Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Helen F. Sneddon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
34
|
Zhang F, Wang X, Zhou Y, Shi H, Feng Z, Ma J, Marek I. Remote Fluorination and Fluoroalkyl(thiol)ation Reactions. Chemistry 2020; 26:15378-15396. [DOI: 10.1002/chem.202003416] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Fa‐Guang Zhang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 China
| | - Xue‐Qi Wang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 China
| | - Yin Zhou
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 China
| | - Hong‐Song Shi
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 China
| | - Zhe Feng
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 China
| | - Jun‐An Ma
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 China
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200009 Israel
| |
Collapse
|
35
|
Müller V, Ghorai D, Capdevila L, Messinis AM, Ribas X, Ackermann L. C-F Activation for C(sp 2)-C(sp 3) Cross-Coupling by a Secondary Phosphine Oxide (SPO)-Nickel Complex. Org Lett 2020; 22:7034-7040. [PMID: 32816494 DOI: 10.1021/acs.orglett.0c02609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A secondary phosphine oxide (SPO)-nickel catalyst allowed the activation of otherwise inert C-F bonds of unactivated arenes in terms of challenging couplings with primary and secondary alkyl Grignard reagents. The C-F activation is characterized by mild reaction conditions and high levels of branched selectivity. Electron-rich and electron-deficient arenes were suitable electrophiles for this transformation. In addition, this strategy also proved suitable to heterocycles and for the activation of C-O bonds under slightly modified conditions.
Collapse
Affiliation(s)
- Valentin Müller
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Debasish Ghorai
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lorena Capdevila
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Dep. Quı́mica, Universitat de Girona, Campus de Montilivi, E-17003 Girona, Catalonia, Spain
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xavi Ribas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Dep. Quı́mica, Universitat de Girona, Campus de Montilivi, E-17003 Girona, Catalonia, Spain
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
36
|
Burianova V, Dar'in D, Krasavin M. Direct conversion of diazo compounds to fluoro derivatives. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Wang M, Waser J. Oxidative Fluorination of Cyclopropylamides through Organic Photoredox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Ming Wang
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
38
|
Wang M, Waser J. Oxidative Fluorination of Cyclopropylamides through Organic Photoredox Catalysis. Angew Chem Int Ed Engl 2020; 59:16420-16424. [DOI: 10.1002/anie.202007864] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Ming Wang
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
39
|
Gramage-Doria R. Steering Site-Selectivity in Transition Metal-Catalyzed C-H Bond Functionalization: the Challenge of Benzanilides. Chemistry 2020; 26:9688-9709. [PMID: 32237177 DOI: 10.1002/chem.202000672] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/18/2020] [Indexed: 12/31/2022]
Abstract
Selective C-H bond functionalization catalyzed by metal complexes have completely revolutionized the way in which chemical synthesis is conceived nowadays. Typically, the reactivity of a transition metal catalyst is the key to control the site-, regio- and/or stereo-selectivity of a C-H bond functionalization. Of particular interests are molecules that contain multiple C-H bonds prone to undergo C-H bond activations with very similar bond dissociation energies at different positions. This is the case of benzanilides, relevant chemical motifs that are found in many useful fine chemicals, in which two C-H sites are present in chemically different aromatic fragments. In the last years, it has been found that depending on the metal catalyst and the reaction conditions, the amide motif might behave as a directing group towards the metal-catalyzed C-H bond activation in the benzamide site or in the anilide site. The impact and the consequences of such subtle control of site-selectivity are herein reviewed with important applications in carbon-carbon and carbon-heteroatom bond forming processes. The mechanisms unraveling these unique transformations are discussed in order to provide a better understanding for future developments in the field of site-selective C-H bond functionalization with transition metal catalysts.
Collapse
|
40
|
Larkovich RV, Ponomarev SA, Aldoshin AS, Tabolin AA, Ioffe SL, Nenajdenko VG. Diels-Alder Reaction of β-Fluoro-β-nitrostyrenes. Synthesis of Mono-fluorinated Six-Membered Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roman V. Larkovich
- Department of Chemistry; Lomonosov Moscow State University; Leninskie gory 1 119991 Moscow Russian Federation
| | - Savva A. Ponomarev
- Department of Chemistry; Lomonosov Moscow State University; Leninskie gory 1 119991 Moscow Russian Federation
| | - Alexander S. Aldoshin
- Department of Chemistry; Lomonosov Moscow State University; Leninskie gory 1 119991 Moscow Russian Federation
| | - Andrey A. Tabolin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Sema L. Ioffe
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Valentine G. Nenajdenko
- Department of Chemistry; Lomonosov Moscow State University; Leninskie gory 1 119991 Moscow Russian Federation
| |
Collapse
|
41
|
Bower JK, Cypcar AD, Henriquez B, Stieber SCE, Zhang S. C(sp 3)-H Fluorination with a Copper(II)/(III) Redox Couple. J Am Chem Soc 2020; 142:8514-8521. [PMID: 32275410 DOI: 10.1021/jacs.0c02583] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the growing interest in the synthesis of fluorinated organic compounds, few reactions are able to incorporate fluoride ions directly into alkyl C-H bonds. Here, we report the C(sp3)-H fluorination reactivity of a formally copper(III) fluoride complex. The C-H fluorination intermediate, LCuF, along with its chloride and bromide analogues, LCuCl and LCuBr, were prepared directly from halide sources with a chemical oxidant and fully characterized with single-crystal X-ray diffraction, X-ray absorption spectroscopy, UV-vis spectroscopy, and 1H nuclear magnetic resonance spectroscopy. Quantum chemical calculations reveal significant halide radical character for all complexes, suggesting their ability to initiate and terminate a C(sp3)-H halogenation sequence by sequential hydrogen atom abstraction (HAA) and radical capture. The capability of HAA by the formally copper(III) halide complexes was explored with 9,10-dihydroanthracene, revealing that LCuF exhibits rates 2 orders of magnitude higher than LCuCl and LCuBr. In contrast, all three complexes efficiently capture carbon radicals to afford C(sp3)-halogen bonds. Mechanistic investigation of radical capture with a triphenylmethyl radical revealed that LCuF proceeds through a concerted mechanism, while LCuCl and LCuBr follow a stepwise electron transfer-halide transfer pathway. The capability of LCuF to perform both hydrogen atom abstraction and radical capture was leveraged to enable fluorination of allylic and benzylic C-H bonds and α-C-H bonds of ethers at room temperature.
Collapse
Affiliation(s)
- Jamey K Bower
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Andrew D Cypcar
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Brenda Henriquez
- Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - S Chantal E Stieber
- Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
42
|
Wang H, Liu CF, Song Z, Yuan M, Ho YA, Gutierrez O, Koh MJ. Engaging α-Fluorocarboxylic Acids Directly in Decarboxylative C–C Bond Formation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongyu Wang
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| | - Chen-Fei Liu
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| | - Zhihui Song
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yee Ann Ho
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| |
Collapse
|
43
|
Caron S. Where Does the Fluorine Come From? A Review on the Challenges Associated with the Synthesis of Organofluorine Compounds. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00030] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Stéphane Caron
- Chemical Research & Development, Pfizer Worldwide Research & Development, MS 8220-2432, Eastern Point Rd, Groton, Connecticut 06340, United States
| |
Collapse
|
44
|
Mao YJ, Luo G, Hao HY, Xu ZY, Lou SJ, Xu DQ. Anion ligand promoted selective C–F bond reductive elimination enables C(sp2)–H fluorination. Chem Commun (Camb) 2019; 55:14458-14461. [DOI: 10.1039/c9cc07726j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A detailed mechanism study on the anion ligand promoted selective C–H bond fluorination is reported.
Collapse
Affiliation(s)
- Yang-Jie Mao
- College of Chemical Engineering
- Catalytic Hydrogenation Research Center
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Gen Luo
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Hong-Yan Hao
- College of Chemical Engineering
- Catalytic Hydrogenation Research Center
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Zhen-Yuan Xu
- College of Chemical Engineering
- Catalytic Hydrogenation Research Center
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Shao-Jie Lou
- College of Chemical Engineering
- Catalytic Hydrogenation Research Center
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Dan-Qian Xu
- College of Chemical Engineering
- Catalytic Hydrogenation Research Center
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
| |
Collapse
|
45
|
Abstract
This review presents the methods available for the fluorination and radiofluorination of aromatic and aliphatic organoboron compounds.
Collapse
Affiliation(s)
- Graham Pattison
- Chemistry Research Group
- School of Pharmacy and Biomolecular Sciences
- University of Brighton
- Brighton
- UK
| |
Collapse
|