1
|
Bressan P. Why humans evolved blue eyes. Front Psychol 2025; 16:1442500. [PMID: 40309207 PMCID: PMC12041803 DOI: 10.3389/fpsyg.2025.1442500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/03/2025] [Indexed: 05/02/2025] Open
Abstract
A surprising number of humans are equipped with a subpar eye model-featuring pale, colorful irides that are nowhere as good as the original dark ones at guarding the retina from sunlight and do, in fact, raise one's risk of eye disease. Here I apply evolutionary theory to understand why. I propose that the allele for human blue eyes, which arose just once, managed to spread from one individual to millions at an astonishing speed because it is a greenbeard. "Greenbeards"-imaginary genes, or groups of genes, that produce both a green beard and a behavior that favors other bearers of a green beard-have been deemed exceedingly unlikely to show up in the real world. And yet, as individuals who prefer blue eyes are more inclined to mate with blue-eyed partners and invest in blue-eyed offspring, any blue-eye preference (whether random or arising from the bias for colorful stimuli shared by all recognition systems) becomes rapidly linked to the blue-eye trait. Thus, blue eyes gain an edge by working like a peacock's colorful tail and a nestling's colorful mouth: twice self-reinforcing, "double runaway" evolution via sexual and parental selection. The blue-eye ornament gene, by binding to a behavior that favors other bearers of the blue-eye ornament gene, is ultimately recognizing and helping copies of itself in both kin and strangers-and greatly prospering, just like theory predicts.
Collapse
Affiliation(s)
- Paola Bressan
- Dipartimento di Psicologia Generale, University of Padova, Padua, Italy
| |
Collapse
|
2
|
Osiurak F, Claidière N. Language is a unique form of communication that transformed human evolution but how unique is linguistic evolution?: Comment on "Language follows a distinct mode of extra-genomic evolution" by B. Bickel et al. Phys Life Rev 2025; 52:63-64. [PMID: 39672090 DOI: 10.1016/j.plrev.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Affiliation(s)
- François Osiurak
- Laboratoire d'Étude des Mécanismes Cognitifs, Université de Lyon, Lyon, France
| | | |
Collapse
|
3
|
Aubier TG, Lerch BA. The role of pleiotropy and population structure in the evolution of altruism through the greenbeard effect. Evolution 2025; 79:176-192. [PMID: 39401136 DOI: 10.1093/evolut/qpae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 02/05/2025]
Abstract
Several empirical examples and theoretical models suggest that the greenbeard effect may be an important mechanism in driving the evolution of altruism. However, previous theoretical models rely on assumptions such as spatial structure and specific sets of pleiotropic loci, the importance of which for the evolution of altruism has not been studied. Here, we develop a population-genetic model that clarifies the roles of extrinsic assortment (e.g., due to population structure) and pleiotropy in the maintenance of altruism through the greenbeard effect. We show that, when extrinsic assortment is too weak to promote the evolution of altruism on its own, the greenbeard effect can only promote altruism significantly if there is a pleiotropic locus controlling both altruism and signaling. Further, we show that indirect selection via genetic associations is too weak to have a noticeable impact on altruism evolution. We also highlight that, if extrinsic assortment is strong enough to promote the evolution of altruism on its own, it also favors the spread of alleles encoding the other functions of a greenbeard trait (signaling and discriminatory behavior), as well as genetic associations. This occurs despite the fact that the greenbeard effect did not favor the evolution of altruism in the first place. This calls for caution when inferring the causality between greenbeard traits and the evolution of altruism.
Collapse
Affiliation(s)
- Thomas G Aubier
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brian A Lerch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Patel M, Arvid Ågren J. Calculating Relatedness: A Pedigree of Definitions. Cold Spring Harb Perspect Biol 2025; 17:a041667. [PMID: 39433392 PMCID: PMC11694744 DOI: 10.1101/cshperspect.a041667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Biology can be viewed from both an organismal and a genic perspective. A good example is W.D. Hamilton's work on inclusive fitness and kin selection, which puts relatedness at the heart of our understanding of social behavior. Relatedness mediates how much an actor should value a specific behavior's effect on a relative compared to the cost incurred to itself. Despite its key explanatory role, relatedness is also a concept marred with misunderstanding. Part of the problem has been that the term has been used in different ways by different people. To help address this, we survey the history of how relatedness has been formally modeled, paying particular attention to how it is conceptualized from both a gene-centric and an organism-centric point of view.
Collapse
Affiliation(s)
- Matishalin Patel
- Centre for Data Science, AI and Modelling, University of Hull, Hull HU6 7RX, United Kingdom
| | - J Arvid Ågren
- Department of Evolutionary Biology, Uppsala University, Uppsala 75236, Sweden
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| |
Collapse
|
5
|
Lehmann P, Katoh-Kurasawa M, Kundert P, Shaulsky G. Going against the family: Perturbation of a greenbeard pathway leads to falsebeard cheating. iScience 2024; 27:111125. [PMID: 39502291 PMCID: PMC11536038 DOI: 10.1016/j.isci.2024.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Greenbeards facilitate cooperation by encoding a perceptible signal, the ability to detect it, and a tendency to help others that display it. Falsebeards are hypothetical cheaters that display the signal without being altruistic. Despite many examples of greenbeards, evidence for falsebeards is scarce. The Dictyostelium discoideum tgrB1-tgrC1 allorecognition pathway encodes a greenbeard. It allows development, which yields fruiting bodies with altruistic stalks that increase spore dispersal. Here we show that cells lacking rapgapB, a tgrB1-tgrC1 signaling element, cheat by avoiding the stalk fate and generating more spores in chimeras than in pure populations. rapgapB - cells cheat only on partners with compatible tgrB1-tgrC1 allotypes, suggesting that beard display and recognition are intact but decoupled from altruism. The rapgapB - falsebeard provides a model to study greenbeard maintenance and subversion.
Collapse
Affiliation(s)
- Peter Lehmann
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Kundert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Martin É, Lessard S. Evolution of cooperation in social dilemmas with assortment in finite populations. J Theor Biol 2024; 592:111891. [PMID: 38945472 DOI: 10.1016/j.jtbi.2024.111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
We investigate conditions for the evolution of cooperation in social dilemmas in finite populations with assortment of players by group founders and general payoff functions for cooperation and defection within groups. Using a diffusion approximation in the limit of a large population size that does not depend on the precise updating rule, we show that the first-order effect of selection on the fixation probability of cooperation when represented once can be expressed as the difference between time-averaged payoffs with respect to effective time that cooperators and defectors spend in direct competition in the different group states. Comparing this fixation probability to its value under neutrality and to the corresponding fixation probability for defection, we deduce conditions for the evolution of cooperation. We show that these conditions are generally less stringent as the level of assortment increases under a wide range of assumptions on the payoffs such as additive, synergetic or discounted benefits for cooperation, fixed cost for cooperation and threshold benefit functions. This is not necessarily the case, however, when payoffs in pairwise interactions are multiplicatively compounded within groups.
Collapse
Affiliation(s)
- Éloi Martin
- Département de mathématiques et de statistique, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Sabin Lessard
- Département de mathématiques et de statistique, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
7
|
Subedi K, Roy PC, Saiz B, Basile F, Wall D. Cell-cell transfer of adaptation traits benefits kin and actor in a cooperative microbe. Proc Natl Acad Sci U S A 2024; 121:e2402559121. [PMID: 39012831 PMCID: PMC11287280 DOI: 10.1073/pnas.2402559121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Microbes face many physical, chemical, and biological insults from their environments. In response, cells adapt, but whether they do so cooperatively is poorly understood. Here, we use a model social bacterium, Myxococcus xanthus, to ask whether adapted traits are transferable to naïve kin. To do so we isolated cells adapted to detergent stresses and tested for trait transfer. In some cases, strain-mixing experiments increased sibling fitness by transferring adaptation traits. This cooperative behavior depended on a kin recognition system called outer membrane exchange (OME) because mutants defective in OME could not transfer adaptation traits. Strikingly, in mixed stressed populations, the transferred trait also benefited the adapted (actor) cells. This apparently occurred by alleviating a detergent-induced stress response in kin that otherwise killed actor cells. Additionally, this adaptation trait when transferred also conferred resistance against a lipoprotein toxin delivered to targeted kin. Based on these and other findings, we propose a model for stress adaptation and how OME in myxobacteria promotes cellular cooperation in response to environmental stresses.
Collapse
Affiliation(s)
- Kalpana Subedi
- Department of Molecular Biology, University of Wyoming, Laramie, WY82071
- Department of Chemistry, University of Wyoming, Laramie, WY82071
| | - Pravas C. Roy
- Department of Molecular Biology, University of Wyoming, Laramie, WY82071
| | - Brandon Saiz
- Department of Chemistry, University of Wyoming, Laramie, WY82071
| | - Franco Basile
- Department of Chemistry, University of Wyoming, Laramie, WY82071
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, WY82071
| |
Collapse
|
8
|
Katoh-Kurasawa M, Lehmann P, Shaulsky G. The greenbeard gene tgrB1 regulates altruism and cheating in Dictyostelium discoideum. Nat Commun 2024; 15:3984. [PMID: 38734736 PMCID: PMC11088635 DOI: 10.1038/s41467-024-48380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Greenbeard genetic elements encode rare perceptible signals, signal recognition ability, and altruism towards others that display the same signal. Putative greenbeards have been described in various organisms but direct evidence for all the properties in one system is scarce. The tgrB1-tgrC1 allorecognition system of Dictyostelium discoideum encodes two polymorphic membrane proteins which protect cells from chimerism-associated perils. During development, TgrC1 functions as a ligand-signal and TgrB1 as its receptor, but evidence for altruism has been indirect. Here, we show that mixing wild-type and activated tgrB1 cells increases wild-type spore production and relegates the mutants to the altruistic stalk, whereas mixing wild-type and tgrB1-null cells increases mutant spore production and wild-type stalk production. The tgrB1-null cells cheat only on partners that carry the same tgrC1-allotype. Therefore, TgrB1 activation confers altruism whereas TgrB1 inactivation causes allotype-specific cheating, supporting the greenbeard concept and providing insight into the relationship between allorecognition, altruism, and exploitation.
Collapse
Affiliation(s)
- Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peter Lehmann
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Montazeaud G, Keller L. Greenbeards in plants? THE NEW PHYTOLOGIST 2024; 242:870-877. [PMID: 38403933 DOI: 10.1111/nph.19599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024]
Abstract
Greenbeards are selfish genetic elements that make their bearers behave either altruistically towards individuals bearing similar greenbeard copies or harmfully towards individuals bearing different copies. They were first proposed by W. D. Hamilton over 50 yr ago, to illustrate that kin selection may operate at the level of single genes. Examples of greenbeards have now been reported in a wide range of taxa, but they remain undocumented in plants. In this paper, we discuss the theoretical likelihood of greenbeard existence in plants. We then question why the greenbeard concept has never been applied to plants and speculate on how hypothetical greenbeards could affect plant-plant interactions. Finally, we point to different research directions to improve our knowledge of greenbeards in plants.
Collapse
Affiliation(s)
- Germain Montazeaud
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France
| | - Laurent Keller
- Social Evolution Unit, Cornuit 8, BP 855, Chesières, Switzerland
| |
Collapse
|
10
|
Scott TW. Crozier's paradox and kin recognition: Insights from simplified models. J Theor Biol 2024; 581:111735. [PMID: 38246487 DOI: 10.1016/j.jtbi.2024.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/19/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Crozier's paradox suggests that genetic kin recognition will not be evolutionarily stable. The problem is that more common tags (markers) are more likely to be recognised and helped. This causes common tags to increase in frequency, eliminating the genetic variability that is required for genetic kin recognition. In recent years, theoretical models have resolved Crozier's paradox in different ways, but they are based on very complicated multi-locus population genetics. Consequently, it is hard to see exactly what is going on, and whether different theoretical resolutions of Crozier's paradox lead to different types of kin discrimination. I address this by making unrealistic simplifying assumptions to produce a more tractable and understandable model of Crozier's paradox. I use this to interpret a more complex multi-locus population genetic model where I have not made the same simplifying assumptions. I explain how Crozier's paradox can be resolved, and show that only one known theoretical resolution of Crozier's paradox - multiple social encounters - leads without restrictive assumptions to the type of highly cooperative and reliable form of kin discrimination that we observe in nature. More generally, I show how adopting a methodological approach where complex models are compared with simplified ones can lead to greater understanding and accessibility.
Collapse
Affiliation(s)
- Thomas W Scott
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom.
| |
Collapse
|
11
|
Belcher LJ, Dewar AE, Hao C, Katz Z, Ghoul M, West SA. SOCfinder: a genomic tool for identifying social genes in bacteria. Microb Genom 2023; 9:001171. [PMID: 38117204 PMCID: PMC10763506 DOI: 10.1099/mgen.0.001171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
Bacteria cooperate by working collaboratively to defend their colonies, share nutrients, and resist antibiotics. Nevertheless, our understanding of these remarkable behaviours primarily comes from studying a few well-characterized species. Consequently, there is a significant gap in our understanding of microbial social traits, particularly in natural environments. To address this gap, we can use bioinformatic tools to identify genes that control cooperative or otherwise social traits. Existing tools address this challenge through two approaches. One approach is to identify genes that encode extracellular proteins, which can provide benefits to neighbouring cells. An alternative approach is to predict gene function using annotation tools. However, these tools have several limitations. Not all extracellular proteins are cooperative, and not all cooperative behaviours are controlled by extracellular proteins. Furthermore, existing functional annotation methods frequently miss known cooperative genes. We introduce SOCfinder as a new tool to find bacterial genes that control cooperative or otherwise social traits. SOCfinder combines information from several methods, considering if a gene is likely to [1] code for an extracellular protein [2], have a cooperative functional annotation, or [3] be part of the biosynthesis of a cooperative secondary metabolite. We use data on two extensively-studied species (P. aeruginosa and B. subtilis) to show that SOCfinder is better at finding known cooperative genes than existing tools. We also use theory from population genetics to identify a signature of kin selection in SOCfinder cooperative genes, which is lacking in genes identified by existing tools. SOCfinder opens up a number of exciting directions for future research, and is available to download from https://github.com/lauriebelch/SOCfinder.
Collapse
Affiliation(s)
| | - Anna E. Dewar
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Zohar Katz
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Stuart A. West
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
12
|
Scott TW, Grafen A, West SA. Host-parasite coevolution and the stability of genetic kin recognition. Proc Natl Acad Sci U S A 2023; 120:e2220761120. [PMID: 37463213 PMCID: PMC10372634 DOI: 10.1073/pnas.2220761120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/26/2023] [Indexed: 07/20/2023] Open
Abstract
Crozier's paradox suggests that genetic kin recognition will not be evolutionarily stable. The problem is that more common tags (markers) are more likely to be recognized and helped. This causes common tags to increase in frequency, eliminating the genetic variability that is required for genetic kin recognition. Two potential solutions to this problem have been suggested: host-parasite coevolution and multiple social encounters. We show that the host-parasite coevolution hypothesis does not work as commonly assumed. Host-parasite coevolution only stabilizes kin recognition at a parasite resistance locus if parasites adapt rapidly to hosts and cause intermediate or high levels of damage (virulence). Additionally, when kin recognition is stabilized at a parasite resistance locus, this can have an additional cost of making hosts more susceptible to parasites. However, we show that if the genetic architecture is allowed to evolve, meaning natural selection can choose the recognition locus, genetic kin recognition is more likely to be stable. The reason for this is that host-parasite coevolution can maintain tag diversity at another (neutral) locus by genetic hitchhiking, allowing that other locus to be used for genetic kin recognition. These results suggest a way that host-parasite coevolution can resolve Crozier's paradox, without making hosts more susceptible to parasites. However, the opportunity for multiple social encounters may provide a more robust resolution of Crozier's paradox.
Collapse
Affiliation(s)
- Thomas W. Scott
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Alan Grafen
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Stuart A. West
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| |
Collapse
|
13
|
Choi J, Lee S, Kim H, Park J. The role of recognition error in the stability of green-beard genes. Evol Lett 2023; 7:157-167. [PMID: 37251589 PMCID: PMC10210436 DOI: 10.1093/evlett/qrad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
The empirical examples of the green-beard genes, once a conundrum of evolutionary biology, are accumulating, while theoretical analyses of this topic are occasional compared to those concerning (narrow-sense) kin selection. In particular, the recognition error of the green-beard effect that the cooperator fails to accurately recognize the other cooperators or defectors is readily found in numerous green-beard genes. To our knowledge, however, no model up to date has taken that effect into account. In this article, we investigated the effect of recognition error on the fitness of the green-beard gene. By employing theories of evolutionary games, our mathematical model predicts that the fitness of the green-beard gene is frequency dependent (frequency of the green-beard gene), which was corroborated by experiments performed with yeast FLO1. The experiment also shows that the cells with the green-beard gene (FLO1) are sturdier under severe stress. We conclude that the low recognition error among the cooperators, the higher reward of cooperation, and the higher cost of defection confer an advantage to the green-beard gene under certain conditions, confirmed by numerical simulation as well. Interestingly, we expect that the recognition error to the defectors may promote the cooperator fitness if the cooperator frequency is low and mutual defection is detrimental. Our ternary approach of mathematical analysis, experiments, and simulation lays the groundwork of the standard model for the green-beard gene that can be generalized to other species.
Collapse
Affiliation(s)
- Jibeom Choi
- Corresponding authors: Department of Applied Mathematics, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Seoeun Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Junpyo Park
- Department of Applied Mathematics, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
14
|
Vihinen M. Individual Genetic Heterogeneity. Genes (Basel) 2022; 13:1626. [PMID: 36140794 PMCID: PMC9498725 DOI: 10.3390/genes13091626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation has been widely covered in literature, however, not from the perspective of an individual in any species. Here, a synthesis of genetic concepts and variations relevant for individual genetic constitution is provided. All the different levels of genetic information and variation are covered, ranging from whether an organism is unmixed or hybrid, has variations in genome, chromosomes, and more locally in DNA regions, to epigenetic variants or alterations in selfish genetic elements. Genetic constitution and heterogeneity of microbiota are highly relevant for health and wellbeing of an individual. Mutation rates vary widely for variation types, e.g., due to the sequence context. Genetic information guides numerous aspects in organisms. Types of inheritance, whether Mendelian or non-Mendelian, zygosity, sexual reproduction, and sex determination are covered. Functions of DNA and functional effects of variations are introduced, along with mechanism that reduce and modulate functional effects, including TARAR countermeasures and intraindividual genetic conflict. TARAR countermeasures for tolerance, avoidance, repair, attenuation, and resistance are essential for life, integrity of genetic information, and gene expression. The genetic composition, effects of variations, and their expression are considered also in diseases and personalized medicine. The text synthesizes knowledge and insight on individual genetic heterogeneity and organizes and systematizes the central concepts.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
15
|
Bruner JP, Smead R. Tag-based Spite with Correlated Interactions. J Theor Biol 2022; 540:111052. [PMID: 35247376 DOI: 10.1016/j.jtbi.2022.111052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
Abstract
We use evolutionary game theory to study the evolution of harming behavior (spite) in settings involving both tags and (anti-)correlated interaction. Our results show an interesting interaction between these mechanisms. The presence of tags shows that pure spite is less likely to evolve when theoretically expected, but that conditional spite is more likely than expected. Moreover, we identify a novel tag-based equilibrium where spite occurs within but not between groups. We discuss implications for the evolution of spite, punishment, and the methodological approach of using exogenous parameters to represent (anti-)correlated interactions.
Collapse
Affiliation(s)
- Justin P Bruner
- Department of Political Economy and Moral Science, University of Arizona.
| | - Rory Smead
- Department of Philosophy and Religion, Northeastern University.
| |
Collapse
|
16
|
West SA, Cooper GA, Ghoul MB, Griffin AS. Ten recent insights for our understanding of cooperation. Nat Ecol Evol 2021; 5:419-430. [PMID: 33510431 PMCID: PMC7612052 DOI: 10.1038/s41559-020-01384-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Since Hamilton published his seminal papers in 1964, our understanding of the importance of cooperation for life on Earth has evolved beyond recognition. Early research was focused on altruism in the social insects, where the problem of cooperation was easy to see. In more recent years, research into cooperation has expanded across the entire tree of life, and has been revolutionized by advances in genetic, microbiological and analytical techniques. We highlight ten insights that have arisen from these advances, which have illuminated generalizations across different taxa, making the world simpler to explain. Furthermore, progress in these areas has opened up numerous new problems to solve, suggesting exciting directions for future research.
Collapse
Affiliation(s)
- Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Guy A Cooper
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
17
|
|
18
|
Sathe S, Kümmerli R. Antagonistic interactions subdue inter-species green-beard cooperation in bacteria. J Evol Biol 2020; 33:1245-1255. [PMID: 32946129 DOI: 10.1111/jeb.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Cooperation can be favoured through the green-beard mechanism, where a set of linked genes encodes both a cooperative trait and a phenotypic marker (green beard), which allows carriers of the trait to selectively direct cooperative acts to other carriers. In theory, the green-beard mechanism should favour cooperation even when interacting partners are totally unrelated at the genome level. Here, we explore such an extreme green-beard scenario between two unrelated bacterial species-Pseudomonas aeruginosa and Burkholderia cenocepacia, which share a cooperative locus encoding the public good pyochelin (an iron-scavenging siderophore) and its cognate receptor (green beard) required for iron-pyochelin uptake. We show that pyochelin, when provided in cell-free supernatants, can be mutually exchanged between species and provide fitness benefits under iron limitation. However, in co-culture we observed that these cooperative benefits vanished and communities were dominated by P. aeruginosa, regardless of strain background and species starting frequencies. Our results further suggest that P. aeruginosa engages in interference competition to suppress B. cenocepacia, indicating that inter-species conflict arising from dissimilarities at the genome level overrule the aligned cooperative interests at the pyochelin locus. Thus, green-beard cooperation is subdued by competition, indicating that interspecific siderophore cooperation is difficult to evolve and to be maintained.
Collapse
Affiliation(s)
- Santosh Sathe
- Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland.,Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.,Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland.,Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Sah GP, Wall D. Kin recognition and outer membrane exchange (OME) in myxobacteria. Curr Opin Microbiol 2020; 56:81-88. [PMID: 32828979 DOI: 10.1016/j.mib.2020.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
Myxobacteria conduct complex social traits that requires populations to be highly related and devoid of exploiters. To enrich for clonal cells in populations, they employ kin discrimination mechanisms. One key system involves a polymorphic cell surface receptor, TraA, which recognizes self by homotypic interactions with neighboring myxobacterial cells. Recent studies revealed that TraA and its partner TraB are fluid outer membrane proteins that coalesce into foci upon recognition of kin. The formation of foci leads to transient membrane fusion junctions and the bidirectional exchange of outer membrane components that facilitates cooperative behaviors. Additionally, expansive suites of polymorphic lipoprotein toxins are exchanged, which act as self-identity barcodes that exquisitely discriminate against nonself to assemble homogenous populations.
Collapse
Affiliation(s)
- Govind Prasad Sah
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
20
|
Ruhe ZC, Low DA, Hayes CS. Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery. Annu Rev Microbiol 2020; 74:497-520. [PMID: 32680451 DOI: 10.1146/annurev-micro-020518-115638] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All bacteria must compete for growth niches and other limited environmental resources. These existential battles are waged at several levels, but one common strategy entails the transfer of growth-inhibitory protein toxins between competing cells. These antibacterial effectors are invariably encoded with immunity proteins that protect cells from intoxication by neighboring siblings. Several effector classes have been described, each designed to breach the cell envelope of target bacteria. Although effector architectures and export pathways tend to be clade specific, phylogenetically distant species often deploy closely related toxin domains. Thus, diverse competition systems are linked through a common reservoir of toxin-immunity pairs that is shared via horizontal gene transfer. These toxin-immunity protein pairs are extraordinarily diverse in sequence, and this polymorphism underpins an important mechanism of self/nonself discrimination in bacteria. This review focuses on the structures, functions, and delivery mechanisms of polymorphic toxin effectors that mediate bacterial competition.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
21
|
Madgwick PG, Wolf JB. Evolution of strategic cooperation. Evol Lett 2020; 4:164-175. [PMID: 32313691 PMCID: PMC7156107 DOI: 10.1002/evl3.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/23/2020] [Accepted: 02/02/2020] [Indexed: 11/30/2022] Open
Abstract
Group‐beneficial behaviors have presented a long‐standing challenge for evolutionary theory because, although their benefits are available to all group members, their costs are borne by individuals. Consequently, an individual could benefit from “cheating” their group mates by not paying the costs while still reaping the benefits. There have been many proposed evolutionary mechanisms that could favor cooperation (and disfavor cheating) in particular circumstances. However, if cooperation is still favored in some circumstances, then we might expect evolution to favor strategic cooperation, where the level of contribution toward group‐beneficial behavior is varied in response to the social context. To uncover how and why individuals should contribute toward group‐beneficial behavior across social contexts, we model strategic cooperation as an evolutionary game where players can quantitatively adjust the amount they contribute toward group‐beneficial behavior. We find that the evolutionarily stable strategy (ESS) predicts, unsurprisingly, that players should contribute in relation to their relatedness to the group. However, we surprisingly find that players often contribute to cooperation in such a way that their fitness is inverse to their relatedness to the group such that those that contribute to cooperation end up with the same return from group‐beneficial behavior, essentially removing any potential advantage of higher relatedness. These results bring to light a paradox of group‐beneficial cooperation: groups do best when they contain highly related individuals, but those with the highest relatedness to the group will often have the lowest fitness within the group.
Collapse
Affiliation(s)
- P G Madgwick
- Milner Centre for Evolution, Department of Biology and Biochemistry University of Bath Bath BA2 7AY United Kingdom
| | - J B Wolf
- Milner Centre for Evolution, Department of Biology and Biochemistry University of Bath Bath BA2 7AY United Kingdom
| |
Collapse
|