1
|
Peng J, Hu T, Xu D, Xu Z, Zheng H, Lin Y, Wang Y, Dong J, Liu Y. Land ecology for achieving China's ecological civilization: key issues and frontier topics. Sci Bull (Beijing) 2025:S2095-9273(25)00370-6. [PMID: 40274440 DOI: 10.1016/j.scib.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Affiliation(s)
- Jian Peng
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Tao Hu
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Dongmei Xu
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zihan Xu
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Huining Zheng
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yifan Lin
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yupeng Wang
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianquan Dong
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yanxu Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Cooke R, Outhwaite CL, Bladon AJ, Millard J, Rodger JG, Dong Z, Dyer EE, Edney S, Murphy JF, Dicks LV, Hui C, Jones JI, Newbold T, Purvis A, Roy HE, Woodcock BA, Isaac NJB. Integrating multiple evidence streams to understand insect biodiversity change. Science 2025; 388:eadq2110. [PMID: 40179198 DOI: 10.1126/science.adq2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Insects dominate animal species diversity yet face many threats from anthropogenic drivers of change. Many features of insect ecology make them a challenging group, and the fragmented state of knowledge compromises our ability to make general statements about their status. In this Review, we discuss the challenges of assessing insect biodiversity change. We describe how multiple lines of evidence-time series, spatial comparisons, experiments, and expert opinion-can be integrated to provide a synthesis overview of how insect biodiversity responds to drivers. Applying this approach will generate testable predictions of insect biodiversity across space, time, and changing drivers. Given the urgency of accelerating human impacts across the environment, this approach could yield a much-needed rapid assessment of insect biodiversity change.
Collapse
Affiliation(s)
- Rob Cooke
- UK Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, UK
| | - Charlotte L Outhwaite
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | - Andrew J Bladon
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
- Ecology and Evolutionary Biology Division, School of Biological Sciences, University of Reading, Reading, UK
| | - Joseph Millard
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
- Biodiversity Futures Lab, Natural History Museum, Cromwell Road, London, UK
| | - James G Rodger
- Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Zhaoke Dong
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ellie E Dyer
- UK Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, UK
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Siobhan Edney
- UK Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, UK
| | - John F Murphy
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lynn V Dicks
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
| | - Cang Hui
- Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Centre for Invasion Biology, African Institute for Mathematical Sciences, National Institute for Theoretical and Computational Sciences, Cape Town, South Africa
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Andy Purvis
- Biodiversity Futures Lab, Natural History Museum, Cromwell Road, London, UK
- Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park, Ascot, UK
| | - Helen E Roy
- UK Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, UK
- Center for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, UK
| | - Ben A Woodcock
- UK Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, UK
| | - Nick J B Isaac
- UK Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, UK
| |
Collapse
|
3
|
Chala D, Endresen D, Demissew S, Slaughter LA, Johnsen EB, Stenseth NC. Stop using racist, unethical, and inappropriate names in taxonomy. Proc Natl Acad Sci U S A 2024; 121:e2415490121. [PMID: 39475652 PMCID: PMC11551436 DOI: 10.1073/pnas.2415490121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024] Open
Affiliation(s)
- Desalegn Chala
- Natural History Museum, University of Oslo, Oslo0316, Norway
| | - Dag Endresen
- Natural History Museum, University of Oslo, Oslo0316, Norway
| | - Sebsebe Demissew
- Department of Plant Biology and Biodiversity Management, College of Natural Sciences, Addis Ababa University, Addis Ababa1176, Ethiopia
| | - Laura A. Slaughter
- dScience - Centre for Computational and Data Science, University of Oslo, Oslo0316, Norway
| | | | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo0316, Norway
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa1176, Ethiopia
| |
Collapse
|
4
|
Ewers RM. An audacious approach to conservation. Trends Ecol Evol 2024; 39:995-1003. [PMID: 39122563 DOI: 10.1016/j.tree.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
New digital and sensor technology provides a huge opportunity to revolutionise conservation, but we lack a plan for deploying the technologies effectively. I argue that environmental research should be concentrated at a small number of 'super-sites' and that the concentrated knowledge from super-sites should be used to develop holistic ecosystem models. These, in turn, should be morphed into digital twin ecosystems by live connecting them with automated environmental monitoring programmes. Data-driven simulations can then help select pathways to achieve locally determined conservation goals, and digital twins could revise and adapt those decisions in real-time. This technology-heavy vision for 'smart conservation' provides a map toward a future defined by more flexible, more responsive, and more efficient management of natural environments.
Collapse
Affiliation(s)
- Robert M Ewers
- Georgina Mace Centre, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK.
| |
Collapse
|
5
|
Johnston ASA. Predicting emergent animal biodiversity patterns across multiple scales. GLOBAL CHANGE BIOLOGY 2024; 30:e17397. [PMID: 38984852 DOI: 10.1111/gcb.17397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Restoring biodiversity-based resilience and ecosystem multi-functionality needs to be informed by more accurate predictions of animal biodiversity responses to environmental change. Ecological models make a substantial contribution to this understanding, especially when they encode the biological mechanisms and processes that give rise to emergent patterns (population, community, ecosystem properties and dynamics). Here, a distinction between 'mechanistic' and 'process-based' ecological models is established to review existing approaches. Mechanistic and process-based ecological models have made key advances to understanding the structure, function and dynamics of animal biodiversity, but are typically designed to account for specific levels of biological organisation and spatiotemporal scales. Cross-scale ecological models, which predict emergent co-occurring biodiversity patterns at interacting scales of space, time and biological organisation, is a critical next step in predictive ecology. A way forward is to first capitalise on existing models to systematically evaluate the ability of scale-explicit mechanisms and processes to predict emergent patterns at alternative scales. Such model intercomparisons will reveal mechanism to process transitions across fine to broad scales, overcome approach-specific barriers to model realism or tractability and identify gaps which necessitate the development of new fundamental principles. Key challenges surrounding model complexity and uncertainty would need to be addressed, and while opportunities from big data can streamline the integration of multiple scale-explicit biodiversity patterns, ambitious cross-scale field studies are also needed. Crucially, overcoming cross-scale ecological modelling challenges would unite disparate fields of ecology with the common goal of improving the evidence-base to safeguard biodiversity and ecosystems under novel environmental change.
Collapse
|
6
|
Sheard JK, Adriaens T, Bowler DE, Büermann A, Callaghan CT, Camprasse ECM, Chowdhury S, Engel T, Finch EA, von Gönner J, Hsing PY, Mikula P, Rachel Oh RY, Peters B, Phartyal SS, Pocock MJO, Wäldchen J, Bonn A. Emerging technologies in citizen science and potential for insect monitoring. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230106. [PMID: 38705194 PMCID: PMC11070260 DOI: 10.1098/rstb.2023.0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
Emerging technologies are increasingly employed in environmental citizen science projects. This integration offers benefits and opportunities for scientists and participants alike. Citizen science can support large-scale, long-term monitoring of species occurrences, behaviour and interactions. At the same time, technologies can foster participant engagement, regardless of pre-existing taxonomic expertise or experience, and permit new types of data to be collected. Yet, technologies may also create challenges by potentially increasing financial costs, necessitating technological expertise or demanding training of participants. Technology could also reduce people's direct involvement and engagement with nature. In this perspective, we discuss how current technologies have spurred an increase in citizen science projects and how the implementation of emerging technologies in citizen science may enhance scientific impact and public engagement. We show how technology can act as (i) a facilitator of current citizen science and monitoring efforts, (ii) an enabler of new research opportunities, and (iii) a transformer of science, policy and public participation, but could also become (iv) an inhibitor of participation, equity and scientific rigour. Technology is developing fast and promises to provide many exciting opportunities for citizen science and insect monitoring, but while we seize these opportunities, we must remain vigilant against potential risks. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Julie Koch Sheard
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO), Havenlaan 88 bus 73, 1000 Brussels, Belgium
| | - Diana E. Bowler
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Andrea Büermann
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Corey T. Callaghan
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, FL 33314, USA
| | - Elodie C. M. Camprasse
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Shawan Chowdhury
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Thore Engel
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Elizabeth A. Finch
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Julia von Gönner
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Pen-Yuan Hsing
- Faculty of Life Sciences, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK
| | - Peter Mikula
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748 Garching, Germany
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Rui Ying Rachel Oh
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Birte Peters
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Shyam S. Phartyal
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India
| | | | - Jana Wäldchen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany
| | - Aletta Bonn
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Essl F, García‐Rodríguez A, Lenzner B, Alexander JM, Capinha C, Gaüzère P, Guisan A, Kühn I, Lenoir J, Richardson DM, Rumpf SB, Svenning J, Thuiller W, Zurell D, Dullinger S. Potential sources of time lags in calibrating species distribution models. JOURNAL OF BIOGEOGRAPHY 2024; 51:89-102. [PMID: 38515765 PMCID: PMC10952696 DOI: 10.1111/jbi.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 03/23/2024]
Abstract
The Anthropocene is characterized by a rapid pace of environmental change and is causing a multitude of biotic responses, including those that affect the spatial distribution of species. Lagged responses are frequent and species distributions and assemblages are consequently pushed into a disequilibrium state. How the characteristics of environmental change-for example, gradual 'press' disturbances such as rising temperatures due to climate change versus infrequent 'pulse' disturbances such as extreme events-affect the magnitude of responses and the relaxation times of biota has been insufficiently explored. It is also not well understood how widely used approaches to assess or project the responses of species to changing environmental conditions can deal with time lags. It, therefore, remains unclear to what extent time lags in species distributions are accounted for in biodiversity assessments, scenarios and models; this has ramifications for policymaking and conservation science alike. This perspective piece reflects on lagged species responses to environmental change and discusses the potential consequences for species distribution models (SDMs), the tools of choice in biodiversity modelling. We suggest ways to better account for time lags in calibrating these models and to reduce their leverage effects in projections for improved biodiversity science and policy.
Collapse
Affiliation(s)
- Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Adrián García‐Rodríguez
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Bernd Lenzner
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - César Capinha
- Centre of Geographical StudiesInstitute of Geography and Spatial Planning, University of LisbonLisboaPortugal
- Associate Laboratory TERRALisbonPortugal
| | - Pierre Gaüzère
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRSLECAGrenobleF‐38000France
| | | | - Ingolf Kühn
- Helmholtz Centre for Environmental Research – UFZHalleGermany
- Martin Luther University Halle‐WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Jonathan Lenoir
- UMR CNRS 7058, Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN)Université de Picardie Jules VerneAmiensFrance
| | - David M. Richardson
- Department of Botany and Zoology, Centre for Invasion BiologyStellenbosch UniversityStellenboschSouth Africa
- Department of Invasion EcologyCzech Academy of Sciences, Institute of BotanyPrůhoniceCzech Republic
| | - Sabine B. Rumpf
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Jens‐Christian Svenning
- Department of Biology, Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE)Aarhus UniversityAarhusDenmark
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRSLECAGrenobleF‐38000France
| | - Damaris Zurell
- Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Stefan Dullinger
- Division of Biodiversity Dynamics and Conservation, Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| |
Collapse
|