1
|
Neuchel C, Gowdavally S, Tsamadou C, Platzbecker U, Sala E, Wagner‐Drouet E, Valerius T, Kröger N, Wulf G, Einsele H, Thurner L, Schaefer‐Eckart K, Freitag S, Casper J, Dürholt M, Kaufmann M, Hertenstein B, Klein S, Ringhoffer M, Frank S, Amann EM, Rode I, Schrezenmeier H, Mytilineos J, Fürst D. Higher risk for chronic graft‐versus‐host disease (
GvHD
) in
HLA‐G
mismatched transplants following allogeneic hematopoietic stem cell transplantation: A retrospective study. HLA 2022; 100:349-360. [DOI: 10.1111/tan.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg – Hessen, Ulm University Hospital of Ulm Ulm Germany
- Institute of Transfusion Medicine University of Ulm Ulm Germany
| | - Sowmya Gowdavally
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg – Hessen, Ulm University Hospital of Ulm Ulm Germany
- Institute of Transfusion Medicine University of Ulm Ulm Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg – Hessen, Ulm University Hospital of Ulm Ulm Germany
- Institute of Transfusion Medicine University of Ulm Ulm Germany
| | - Uwe Platzbecker
- Department of Hematology/Oncology University of Leipzig Leipzig Germany
| | - Elisa Sala
- Department of Internal Medicine III University of Ulm Ulm Germany
| | - Eva Wagner‐Drouet
- Department of Medicine III Johannes Gutenberg‐University of Mainz Mainz Germany
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian Albrechts University Kiel Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation University Hospital Hamburg‐Eppendorf Hamburg Germany
| | - Gerald Wulf
- Department of Hematology/Oncology Georg‐August‐University Göttingen Göttingen Germany
| | - Hermann Einsele
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Lorenz Thurner
- Department Internal Medicine I Universitätsklinikum des Saarlandes Homburg Germany
| | | | - Sebastian Freitag
- Department of Medicine III, Hematology/Oncology/Palliative Care Rostock University Medical Center Rostock Germany
| | - Jochen Casper
- Department of Oncology and Hematology Klinikum Oldenburg, University Clinic Oldenburg Germany
| | - Mareike Dürholt
- Hematology/Oncology Evangelic Clinic Essen‐Werden Essen Germany
| | - Martin Kaufmann
- 2nd Department of Internal Medicine, Oncology and Hematology Robert Bosch Hospital Stuttgart Germany
| | | | - Stefan Klein
- Universitätsmedizin Mannheim Med. Klinik III Mannheim Germany
| | - Mark Ringhoffer
- Medizinische Klinik III Städtisches Klinikum Karlsruhe Germany
| | - Sandra Frank
- DRST ‐ Deutsches Register für Stammzelltransplantation, German Registry for Stem Cell Transplantation Ulm Germany
| | - Elisa Maria Amann
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg – Hessen, Ulm University Hospital of Ulm Ulm Germany
- Institute of Transfusion Medicine University of Ulm Ulm Germany
| | - Immanuel Rode
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg – Hessen, Ulm University Hospital of Ulm Ulm Germany
- Institute of Transfusion Medicine University of Ulm Ulm Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg – Hessen, Ulm University Hospital of Ulm Ulm Germany
- Institute of Transfusion Medicine University of Ulm Ulm Germany
| | - Joannis Mytilineos
- DRST ‐ Deutsches Register für Stammzelltransplantation, German Registry for Stem Cell Transplantation Ulm Germany
- ZKRD – Zentrales Knochenmarkspender‐Register für Deutschland German National Bone Marrow Donor Registry Ulm Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg – Hessen, Ulm University Hospital of Ulm Ulm Germany
- Institute of Transfusion Medicine University of Ulm Ulm Germany
| |
Collapse
|
2
|
Söderström A, Vonlanthen S, Jönsson-Videsäter K, Mielke S, Lindahl H, Törlén J, Uhlin M. T cell receptor excision circles are potential predictors of survival in adult allogeneic hematopoietic stem cell transplantation recipients with acute myeloid leukemia. Front Immunol 2022; 13:954716. [PMID: 36211398 PMCID: PMC9540498 DOI: 10.3389/fimmu.2022.954716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022] Open
Abstract
Background Lymphocyte neogenesis from primary lymphoid organs is essential for a successful reconstitution of immunity after allogeneic hematopoietic stem cell transplantation (HSCT). This single-center retrospective study aimed to evaluate T cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC) as surrogate markers for T and B cell recovery, as predictors for transplantation-related outcomes in adult acute myeloid leukemia (AML) patients. Methods Ninety adult patients diagnosed with AML and treated with HSCT between 2010 and 2015 were included in the study. TREC and KREC levels were measured by quantitative PCR at 1, 3, 6, and 12 months after transplantation. Results Overall, excision circle levels increased between 3 and 6 months post-HSCT for TREC (p = 0.005) and 1 and 3 months for KREC (p = 0.0007). In a landmark survival analysis at 12 months post-HSCT, TREC levels were associated with superior overall survival (HR: 0.52, 95% CI: 0.34 - 0.81, p = 0.004). The incidence of viral infections within the first 100 days after transplantation was associated with lower TREC levels at 6 months (p = 0.0002). CMV reactivation was likewise associated with lower TREC levels at 6 months (p = 0.02) post-HSCT. KREC levels were not associated with clinical outcomes in statistical analyzes. Conclusions Results from the present study indicate that TREC measurement could be considered as part of the post-HSCT monitoring to identify AML patients with inferior survival after transplantation. Further prospective studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Anna Söderström
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Anna Söderström,
| | - Sofie Vonlanthen
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Jönsson-Videsäter
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Stephan Mielke
- Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Hannes Lindahl
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan Törlén
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Donor genetic determinant of thymopoiesis rs2204985 impacts clinical outcome after single HLA mismatched hematopoietic stem cell transplantation. Bone Marrow Transplant 2022; 57:1539-1547. [PMID: 35804057 PMCID: PMC9532242 DOI: 10.1038/s41409-022-01751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
A common genetic variant within the T cell receptor alpha (TCRA)-T cell receptor delta (TCRD) locus (rs2204985) has been recently found to associate with thymic function. Aim of this study was to investigate the potential impact of donor rs2204985 genotype on patient’s outcome after unrelated hematopoietic stem cell transplantation (uHSCT). 2016 adult patients were retrospectively analyzed. rs2204985 genotyping was performed by next generation sequencing, p < 0.05 was considered significant and donor rs2204985 GG/AG genotypes were set as reference vs. the AA genotype. Multivariate analysis of the combined cohort regarding the impact of donor’s rs2204985 genotype indicated different risk estimates in 10/10 and 9/10 HLA matched transplantations. A subanalysis on account of HLA incompatibility revealed that donor AA genotype in single HLA mismatched cases (n = 624) associated with significantly inferior overall- (HR: 1.48, p = 0.003) and disease-free survival (HR: 1.50, p = 0.001). This effect was driven by a combined higher risk of relapse incidence (HR: 1.40, p = 0.026) and non-relapse mortality (HR: 1.38, p = 0.042). This is the first study to explore the role of rs2204985 in a clinical uHSCT setting. Our data suggest that donor rs2204985 AA genotype in combination with single HLA mismatches may adversely impact post-HSCT outcome and should thus be avoided.
Collapse
|
4
|
Prabahran A, Koldej R, Chee L, Ritchie D. Clinical features, pathophysiology, and therapy of poor graft function post-allogeneic stem cell transplantation. Blood Adv 2022; 6:1947-1959. [PMID: 34492685 PMCID: PMC8941468 DOI: 10.1182/bloodadvances.2021004537] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Poor graft function (PGF), defined by the presence of multilineage cytopenias in the presence of 100% donor chimerism, is a serious complication of allogeneic stem cell transplant (alloSCT). Inducers or potentiators of alloimmunity such as cytomegalovirus reactivation and graft-versus-host disease are associated with the development of PGF, however, more clinical studies are required to establish further risk factors and describe outcomes of PGF. The pathophysiology of PGF can be conceptualized as dysfunction related to the number or productivity of the stem cell compartment, defects in bone marrow microenvironment components such as mesenchymal stromal cells and endothelial cells, or immunological suppression of post-alloSCT hematopoiesis. Treatment strategies focused on improving stem cell number and function and microenvironment support of hematopoiesis have been attempted with variable success. There has been limited use of immune manipulation as a therapeutic strategy, but emerging therapies hold promise. This review details the current understanding of the causes of PGF and methods of treatment to provide a framework for clinicians managing this complex problem.
Collapse
Affiliation(s)
- Ashvind Prabahran
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel Koldej
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Lynette Chee
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - David Ritchie
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Williams KM, Inamoto Y, Im A, Hamilton B, Koreth J, Arora M, Pusic I, Mays JW, Carpenter PA, Luznik L, Reddy P, Ritz J, Greinix H, Paczesny S, Blazar BR, Pidala J, Cutler C, Wolff D, Schultz KR, Pavletic SZ, Lee SJ, Martin PJ, Socie G, Sarantopoulos S. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2020 Etiology and Prevention Working Group Report. Transplant Cell Ther 2021; 27:452-466. [PMID: 33877965 DOI: 10.1016/j.jtct.2021.02.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Preventing chronic graft-versus-host disease (GVHD) remains challenging because the unique cellular and molecular pathways that incite chronic GVHD are poorly understood. One major point of intervention for potential prevention of chronic GVHD occurs at the time of transplantation when acute donor anti-recipient immune responses first set the events in motion that result in chronic GVHD. After transplantation, additional insults causing tissue injury can incite aberrant immune responses and loss of tolerance, further contributing to chronic GVHD. Points of intervention are actively being identified so that chronic GVHD initiation pathways can be targeted without affecting immune function. The major objective in the field is to continue basic studies and to translate what is learned about etiopathology to develop targeted prevention strategies that decrease the risk of morbid chronic GVHD without increasing the risks of cancer relapse or infection. Development of strategies to predict the risk of developing debilitating or deadly chronic GVHD is a high research priority. This working group recommends further interrogation into the mechanisms underpinning chronic GVHD development, and we highlight considerations for future trial design in prevention trials.
Collapse
Affiliation(s)
- Kirsten M Williams
- Division of Blood and Marrow Transplantation, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Annie Im
- Division of Hematology Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Betty Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - John Koreth
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Mukta Arora
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Iskra Pusic
- BMT and Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline W Mays
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pavan Reddy
- Divsion of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Hildegard Greinix
- Clinical Division of Hematology, Medical University of Graz, Graz, Austria
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Joseph Pidala
- Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Corey Cutler
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Kirk R Schultz
- Pediatric Oncology, Hematology, and Bone Marrow Transplant, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Gerard Socie
- Hematology Transplantation, Saint Louis Hospital, AP-HP, and University of Paris, INSERM U976, Paris, France.
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke Cancer Institute, Durham, North Carolina.
| |
Collapse
|
6
|
Gaballa A, Clave E, Uhlin M, Toubert A, Arruda LCM. Evaluating Thymic Function After Human Hematopoietic Stem Cell Transplantation in the Personalized Medicine Era. Front Immunol 2020; 11:1341. [PMID: 32849495 PMCID: PMC7412601 DOI: 10.3389/fimmu.2020.01341] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an effective treatment option for several malignant and non-malignant hematological diseases. The clinical outcome of this procedure relies to a large extent on optimal recovery of adaptive immunity. In this regard, the thymus plays a central role as the primary site for de novo generation of functional, diverse, and immunocompetent T-lymphocytes. The thymus is exquisitely sensitive to several insults during HSCT, including conditioning drugs, corticosteroids, infections, and graft-vs.-host disease. Impaired thymic recovery has been clearly associated with increased risk of opportunistic infections and poor clinical outcomes in HSCT recipients. Therefore, better understanding of thymic function can provide valuable information for improving HSCT outcomes. Recent data have shown that, besides gender and age, a specific single-nucleotide polymorphism affects thymopoiesis and may also influence thymic output post-HSCT, suggesting that the time of precision medicine of thymic function has arrived. Here, we review the current knowledge about thymic role in HSCT and the recent work of genetic control of human thymopoiesis. We also discuss different transplant-related factors that have been associated with impaired thymic recovery and the use of T-cell receptor excision circles (TREC) to assess thymic output, including its clinical significance. Finally, we present therapeutic strategies that could boost thymic recovery post-HSCT.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuel Clave
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Antoine Toubert
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Assessment of TREC, KREC and telomere length in long-term survivors after allogeneic HSCT: the role of GvHD and graft source and evidence for telomere homeostasis in young recipients. Bone Marrow Transplant 2017; 53:69-77. [PMID: 28991250 DOI: 10.1038/bmt.2017.216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 11/08/2022]
Abstract
Reconstitution of the adaptive immune system following allogeneic hematopoietic stem cell transplantation is crucial for beneficial outcome and is affected by several factors, such as GvHD and graft source. The impact of these factors on immune reconstitution has been thoroughly investigated during the early phase after transplantation. However, little is known about their long-term effect. Similarly, leukocyte telomere length (TL) shortening has been reported shortly after transplantation. Nevertheless, whether TL shortening continues in long-term aspect is still unsettled. Here, we assessed T-cell receptor excision circle (TREC), kappa deleting recombination excision circle (KREC) and leukocyte TL in recipients and donors several years post transplantation (median 17 years). Our analysis showed that, recipients who received bone marrow (BM) as the graft source have higher levels of both TREC and KREC. Also, chronic GvHD affected TREC levels and TL but not KREC levels. Finally, we show that recipient's TL was longer than respective donors in a group of young age recipients with high KREC levels. Our results suggest that BM can be beneficial for long-term adaptive immune recovery. We also present supporting evidence for recipient telomere homeostasis, especially in young age recipients, rather than telomere shortening.
Collapse
|
8
|
Gaballa A, Sundin M, Stikvoort A, Abumaree M, Uzunel M, Sairafi D, Uhlin M. T Cell Receptor Excision Circle (TREC) Monitoring after Allogeneic Stem Cell Transplantation; a Predictive Marker for Complications and Clinical Outcome. Int J Mol Sci 2016; 17:E1705. [PMID: 27727179 PMCID: PMC5085737 DOI: 10.3390/ijms17101705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a well-established treatment modality for a variety of malignant diseases as well as for inborn errors of the metabolism or immune system. Regardless of disease origin, good clinical effects are dependent on proper immune reconstitution. T cells are responsible for both the beneficial graft-versus-leukemia (GVL) effect against malignant cells and protection against infections. The immune recovery of T cells relies initially on peripheral expansion of mature cells from the graft and later on the differentiation and maturation from donor-derived hematopoietic stem cells. The formation of new T cells occurs in the thymus and as a byproduct, T cell receptor excision circles (TRECs) are released upon rearrangement of the T cell receptor. Detection of TRECs by PCR is a reliable method for estimating the amount of newly formed T cells in the circulation and, indirectly, for estimating thymic function. Here, we discuss the role of TREC analysis in the prediction of clinical outcome after allogeneic HSCT. Due to the pivotal role of T cell reconstitution we propose that TREC analysis should be included as a key indicator in the post-HSCT follow-up.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
| | - Mikael Sundin
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
- Pediatric Blood Disorders, Immunodeficiency and Stem Cell Transplantation, Astrid Lindgren Children's Hospital, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| | - Arwen Stikvoort
- Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
| | - Muhamed Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, KSA-11461 Riyadh, Saudi Arabia.
| | - Mehmet Uzunel
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| | - Darius Sairafi
- Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
| | - Michael Uhlin
- Department of Oncology and Pathology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
9
|
Uzunel M, Sairafi D, Remberger M, Mattsson J, Uhlin M. T-Cell Receptor Excision Circle Levels After Allogeneic Stem Cell Transplantation Are Predictive of Relapse in Patients with Acute Myeloid Leukemia and Myelodysplastic Syndrome. Stem Cells Dev 2014; 23:1559-67. [DOI: 10.1089/scd.2013.0588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mehmet Uzunel
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Darius Sairafi
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Remberger
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Mattsson
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Uhlin
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Mahadeo KM, Masinsin B, Kapoor N, Shah AJ, Abdel-Azim H, Parkman R. Immunologic resolution of human chronic graft-versus-host disease. Biol Blood Marrow Transplant 2014; 20:1508-15. [PMID: 24979733 DOI: 10.1016/j.bbmt.2014.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/23/2014] [Indexed: 11/24/2022]
Abstract
To determine the role of regulatory T lymphocytes (Tregs) in the pathogenesis of human chronic graft-versus-host disease (GVHD) and its clinical resolution, we evaluated long-term recipients of pediatric allogeneic hematopoietic stem cell transplantation (HSCT). Seventy-one recipients were evaluated, 30 of whom had a history of chronic GVHD, including 16 with active chronic GVHD and 14 with resolved chronic GVHD. There were no significant clinical differences and no differences in the frequency of Tregs (CD4(+), CD127(-), CD25(+)) between the recipients with active chronic GVHD and those with resolved chronic GVHD. Using the Miyara/Sakaguchi classification scheme to identify functional Tregs, a decreased frequency of functional resting Tregs (rTregs) was identified in recipients with active chronic GVHD (P = .009 compared with normal donors; P = .001 compared with HSCT recipients without history of chronic GVHD; P = .005 compared with recipients with resolved chronic GVHD). The frequency and number of recent thymic emigrants in rTregs were normal in recipients with resolved chronic GVHD, but persistently decreased in recipients with active chronic GVHD. These results support the hypothesis that the reestablishment of normal numbers of functional rTregs is required for the clinical resolution of chronic GVHD.
Collapse
Affiliation(s)
- Kris M Mahadeo
- Division of Blood and Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, and Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bernadette Masinsin
- Division of Blood and Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, and Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Neena Kapoor
- Division of Blood and Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, and Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ami J Shah
- Division of Blood and Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, and Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hisham Abdel-Azim
- Division of Blood and Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, and Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robertson Parkman
- Division of Blood and Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, and Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
11
|
Sairafi D, Mattsson J, Uhlin M, Uzunel M. Thymic function after allogeneic stem cell transplantation is dependent on graft source and predictive of long term survival. Clin Immunol 2011; 142:343-50. [PMID: 22227522 DOI: 10.1016/j.clim.2011.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/28/2011] [Accepted: 12/03/2011] [Indexed: 01/23/2023]
Abstract
T-cell deficiency after allogeneic stem cell transplantation (ASCT) is common and has major impact on clinical outcome. In this retrospective study 210 patients were analyzed with regards to levels of T-cell receptor excision circles (TRECs) during the first 24 months after transplantation. We could for the first time show a significant correlation between the use of bone marrow grafts and higher TREC levels >6 months post-ASCT (p<0.001). Treatment with anti-thymocyte globulin was correlated with lower TREC levels ≤6 months post-ASCT (p<0.001). Patients with TREC levels above median at 3 months had a superior overall survival, 80% vs. 56% (p=0.002), and lower transplantation-related mortality, 7% vs. 21% (p=0.01). We conclude that graft source and conditioning regimen may have a significant effect on T-cell reconstitution after ASCT and can thus affect outcome. These results strongly support the use of TREC measurement as part of the standard repertoire of immunological monitoring after ASCT.
Collapse
Affiliation(s)
- Darius Sairafi
- Center for Allogeneic Stem Cell Transplantation, B87, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| | | | | | | |
Collapse
|
12
|
Abstract
OBJECTIVE Assays for T cell receptor excision circles (TREC) have been utilized in human, primate, and mouse models as a measure of thymic activity, but no comparable assay has been described in artiodactyls. We describe the development of the porcine signal joint (sj) TREC assay, and provide a likely reason for previous difficulties in its identification in artiodactyls. DESIGN AND METHODS Utilizing the homology between the known genomic sequences in sjTREC in human and mouse, polymerase chain reaction (PCR) primers were derived for the putative porcine sjTREC. Primers from the ψJα side of the sjTREC were derived from the known porcine sequence. RESULTS The sjTREC in two artiodactyls, swine and sheep, was identified using forward primers from the ψJα region, and reverse primers from the putative δ-rec region. Unlike in the detection of primate TRECs, initially the use of similar primers close to the δ-rec failed to yield the sjTREC product. Marching about 800 basepairs into δ-rec, primers derived from a homology region between human and mouse led to the detection of sjTREC. Comparing sjTREC amongst the species revealed highest homology between the two artiodactyls. A quantitative PCR (QPCR) assay of porcine sjTREC was also developed. CONCLUSION Identification and analysis of the sjTREC sequences in two artiodactyls suggested why previous attempts at cloning the pig TREC using known sjTREC sequences were unsuccessful. The development of the porcine signal joint TREC assay should enable a more direct quantification of thymic activity in porcine models of transplant biology.
Collapse
|
13
|
Wils EJ, van der Holt B, Broers AEC, Posthumus-van Sluijs SJ, Gratama JW, Braakman E, Cornelissen JJ. Insufficient recovery of thymopoiesis predicts for opportunistic infections in allogeneic hematopoietic stem cell transplant recipients. Haematologica 2011; 96:1846-54. [PMID: 21859737 DOI: 10.3324/haematol.2011.047696] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Recovery of thymopoiesis after allogeneic hematopoietic stem cell transplantation is considered pivotal for full immune competence. However, it is still unclear to what extent insufficient recovery of thymopoiesis predicts for subsequent opportunistic infections and non-relapse mortality. DESIGN AND METHODS A detailed survey of all post-engraftment infectious complications, non-relapse mortality and overall survival during long-term follow-up was performed in 83 recipients of allogeneic stem cell grafts after myeloablative conditioning. Recovery of thymopoiesis was assessed using analysis of signal joint T-cell receptor rearrangement excision circles. The impact of recovery of thymopoiesis at 2, 6, 9 and 12 months post-transplantation on clinical outcome beyond those time points was evaluated by univariate and multivariate Cox regression analyses. RESULTS The cumulative incidence of severe infections at 12 months after transplantation was 66% with a median number of 1.64 severe infectious episodes per patient. Patients in whom thymopoiesis did not recover were at significantly higher risk of severe infections according to multivariable analysis. Hazard ratios indicated 3- and 9-fold increases in severe infections at 6 and 12 months, respectively. Impaired recovery of thymopoiesis also translated into a higher risk of non-relapse mortality and outweighed pre-transplant risk factors including age, donor type, and disease risk-status. CONCLUSIONS These results indicate that patients who fail to recover thymopoiesis after allogeneic hematopoietic stem cell transplantation are at very high risk of severe infections and adverse clinical outcome.
Collapse
Affiliation(s)
- Evert-Jan Wils
- Erasmus MC/Daniel den Hoed Cancer Center, Department of Hematology, EA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Cytoreductive conditioning regimens used in the context of allogeneic hematopoietic cell transplantation (HCT) elicit deficits in innate and adaptive immunity, which predispose patients to infections. As such, transplantation outcomes depend vitally on the successful reconstruction of immune competence. Restoration of a normal peripheral T-cell pool after HCT is a slow process that requires the de novo production of naive T cells in a functionally competent thymus. However, there are several challenges to this regenerative process. Most notably, advanced age, the cytotoxic pretransplantation conditioning, and posttransplantation alloreactivity are risk factors for T-cell immune deficiency as they independently interfere with normal thymus function. Here, we discuss preclinical allogeneic HCT models and clinical observations that have contributed to a better understanding of the transplant-related thymic dysfunction. The identification of the cellular and molecular mechanisms that control regular thymopoiesis but are altered in HCT patients is expected to provide the basis for new therapies that improve the regeneration of the adaptive immune system, especially with functionally competent, naive T cells.
Collapse
|
15
|
Klyuchnikov E, Asenova S, Kern W, Kilinc G, Ayuk F, Wiedemann B, Lioznov M, Freiberger P, Zalyalov Y, Zander AR, Kröger N, Bacher U. Post-transplant immune reconstitution after unrelated allogeneic stem cell transplant in patients with acute myeloid leukemia. Leuk Lymphoma 2010; 51:1450-63. [PMID: 20557144 DOI: 10.3109/10428194.2010.496015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We evaluated immune recovery in 67 patients with acute myeloid leukemia (AML) with a median age of 40 years (4-69) following allo-SCT after reduced (n = 35) or myeloablative (n = 32) conditioning. The following lymphocyte populations were determined on days +30, +90, +180, +270, and +365 by flow associated cell sorting: CD3+, CD3+CD4+, CD3+CD8+, CD3+CD4+/CD3+CD8+ ratio, CD3-CD56+, and CD19+ cells. Peripheral blast count >5% was related to lower number of CD3+CD4+ (day +30) and NK cells (day +180; p = 0.02). Intensity of conditioning did not have any significant impact on the kinetics of immune recovery. Patients with normal CD3+CD4+/CD3+CD8+ ratio (day +30) and NK cell count (day +90; p <0.05) experienced better survival than those with decreased parameters. Post-transplant sepsis/severe infections impaired CD3+CD8+ (day +90; p = 0.015) and CD19+ (day +90; p = 0.02) recovery. Relapse in patients following allo-SCT showed an association with decreased numbers of CD19+ (day +270) and NK cells (day +365). Acute GvHD (II-IV) was accompanied by reduced CD19+ and CD3+CD4+ cells. Thus, the evaluation of post-transplant immune reconstitution in patients with AML might improve risk stratification concerning either relapse or TRM and remains to be further explored.
Collapse
Affiliation(s)
- Evgeny Klyuchnikov
- Clinic for Stem Cell Transplantation, University Cancer Center Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Castermans E, Hannon M, Dutrieux J, Humblet-Baron S, Seidel L, Cheynier R, Willems E, Gothot A, Vanbellinghen JF, Geenen V, Sandmaier BM, Storb R, Beguin Y, Baron F. Thymic recovery after allogeneic hematopoietic cell transplantation with non-myeloablative conditioning is limited to patients younger than 60 years of age. Haematologica 2010; 96:298-306. [PMID: 20934996 DOI: 10.3324/haematol.2010.029702] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Long-term immune recovery in older patients given hematopoietic cell transplantation after non-myeloablative conditioning remains poorly understood. This prompted us to investigate long-term lymphocyte reconstitution and thymic function in 80 patients given allogeneic peripheral blood stem cells after non-myeloablative conditioning. DESIGN AND METHODS Median age at transplant was 57 years (range 10-71). Conditioning regimen consisted of 2 Gy total body irradiation (TBI) with (n=46) or without (n=20) added fludarabine, 4 Gy TBI with fludarabine (n=6), or cyclophosphamide plus fludarabine (n=8). Stem cell sources were unmanipulated (n=56), CD8-depleted (n=19), or CD34-selected (n=5) peripheral blood stem cells. Immune recovery was assessed by signal-joint T-cell receptor excision circle quantification and flow cytometry. RESULTS Signal-joint T-cell receptor excision circle levels increased from day 100 to one and two years after transplantation in patients under 50 years of age (n=23; P=0.02 and P=0.04, respectively), and in those aged 51-60 years (n=35; P=0.17 and P=0.06, respectively), but not in patients aged over 60 (n=22; P=0.3 and P=0.3, respectively). Similarly, CD4(+)CD45RA(+) (naïve) T-cell counts increased from day 100 to one and two years after transplantation in patients aged 50 years and under 50 (P=0.002 and P=0.02, respectively), and in those aged 51-60 (P=0.4 and P=0.001, respectively), but less so in patients aged over 60 (P=0.3 and P=0.06, respectively). In multivariate analyses, older patient age (P<0.001), extensive chronic GVHD (P<0.001), and prior (resolved) extensive chronic graft-versus-host disease (P=0.008) were associated with low signal-joint T-cell receptor excision circle levels one year or more after HCT. CONCLUSIONS In summary, our data suggest that thymic neo-generation of T cells occurred from day 100 onwards in patients under 60 while signal-joint T-cell receptor excision circle levels remained low for patients aged over 60. Further, chronic graft-versus-host disease had a dramatic impact on thymic function, as observed previously in patients given grafts after myeloablative conditioning.
Collapse
Affiliation(s)
- Emilie Castermans
- University of Liège, Department of Hematology, CHU Sart-Tilman, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
ZHANG X, LI Y, CHEN S, YANG L, CHEN S, WU X, ZHANG T, ZHONG J, ZHU K. The feature of clonal expansion of TCR Vβ repertoire, thymic recent output function and TCRζ chain expression in patients with immune thrombocytopenic purpura. Int J Lab Hematol 2009; 31:639-48. [DOI: 10.1111/j.1751-553x.2008.01091.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Acute graft-versus-host disease transiently impairs thymic output in young patients after allogeneic hematopoietic stem cell transplantation. Blood 2009; 113:6477-84. [PMID: 19258596 DOI: 10.1182/blood-2008-09-176594] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Long-term T-cell reconstitution after hematopoietic stem cell transplantation (HSCT) is dependent on patient thymic function and affected by graft-versus-host disease (GVHD). To assess the impact of acute GVHD (aGVHD) on thymic function, we followed a cohort of 93 patients who received HSCT from a human histocompatibility leukocyte antigen-identical sibling, mainly for hematologic malignancies. Thymic output was measured by signal-joint T-cell receptor excision circles (sjTREC) real-time polymerase chain reaction. Absolute sjTREC number was lower at 6 months in patients with aGVHD (P = .014), associated with lower absolute counts of naive CD4 T cells at 6 and 12 months (P = .04 and .02), and persistent abnormalities in T-cell repertoire diversity. Age and aGVHD affected thymic function independently in multivariate analysis. In patients less than 25 years of age, thymic function recovered almost totally at 1 year. As a marker of thymocyte proliferation, we quantified the betaTREC generated during the T-cell receptor beta-chain recombination, in a group of 20 age-matched patients. Mean betaTREC level was reduced at 6 months in patients with aGVHD, indicating an impact on early thymic differentiation rather than on intrathymic proliferation. These data show that aGVHD or its treatment has a transient impact on thymic function in younger patients in the first months after HSCT.
Collapse
|
19
|
Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A. Cytomegalovirus and human immunosenescence. Rev Med Virol 2008; 19:47-56. [PMID: 19035529 DOI: 10.1002/rmv.598] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Graham Pawelec
- Center for Medical Research, University of Tübingen Medical School, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
20
|
Immune reconstitution and implications for immunotherapy following haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 2008; 21:579-96. [PMID: 18790456 DOI: 10.1016/j.beha.2008.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recovery of a fully functional immune system is a slow and often incomplete process following allogeneic stem cell transplantation. While innate immunity reconstitutes quickly, adaptive B- and especially T-cell lymphopoeisis may be compromised for years following transplantation. In large part, these immune system deficits are due to the decrease, or even absence, of thymopoiesis following transplantation. Thereby, T-cell reconstitution initially relies upon expansion of mature donor T cells; a proliferation driven by high cytokine levels and the presence of allo-reactive antigens. This peripheral mechanism of T-cell generation may have important clinical consequences. By expanding tumouricidal T cells, it may provide a venue to enhance T-cellular immunotherapy following transplantation. Alternatively, decreased thymic function may impair long-term anti-tumour immunity and increase the likelihood of graft-versus-host disease.
Collapse
|
21
|
Derhovanessian E, Solana R, Larbi A, Pawelec G. Immunity, ageing and cancer. IMMUNITY & AGEING 2008; 5:11. [PMID: 18816370 PMCID: PMC2564902 DOI: 10.1186/1742-4933-5-11] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/24/2008] [Indexed: 11/22/2022]
Abstract
Compromised immunity contributes to the decreased ability of the elderly to control infectious disease and to their generally poor response to vaccination. It is controversial as to how far this phenomenon contributes to the well-known age-associated increase in the occurrence of many cancers in the elderly. However, should the immune system be important in controlling cancer, for which there is a great deal of evidence, it is logical to propose that dysfunctional immunity in the elderly would contribute to compromised immunosurveillance and increased cancer occurrence. The chronological age at which immunosenescence becomes clinically important is known to be influenced by many factors, including the pathogen load to which individuals are exposed throughout life. It is proposed here that the cancer antigen load may have a similar effect on "immune exhaustion" and that pathogen load and tumor load may act additively to accelerate immunosenescence. Understanding how and why immune responsiveness changes in humans as they age is essential for developing strategies to prevent or restore dysregulated immunity and assure healthy longevity, clearly possible only if cancer is avoided. Here, we provide an overview of the impact of age on human immune competence, emphasizing T-cell-dependent adaptive immunity, which is the most sensitive to ageing. This knowledge will pave the way for rational interventions to maintain or restore appropriate immune function not only in the elderly but also in the cancer patient.
Collapse
|
22
|
Abstract
Although studies have demonstrated that androgen withdrawal increases thymic size, molecular mechanisms underlying this expansion remain largely unknown. We show that decreased androgen signaling leads to enhanced immigration of bone marrow T-cell precursors, as manifested by both an early increase of early thymic progenitors (ETP) and improved uptake of adoptively transferred quantified precursors into congenic castrated hosts. We provide evidence that the ETP niche is enhanced after androgen withdrawal by proliferation of UEA(+) thymic epithelial cells (TEC) and increased TEC production of CCL25, a ligand critical for ETP entry. Moreover, the greatest increase in CCL25 production is by UEA(+) TEC, linking function of this subset with the increase in ETP immigration. Furthermore, blockade of CCL25 abrogated the effects of castration by impairing ETP entry, retarding immature thymocyte development, limiting increase of thymic size, and impairing increase of thymopoiesis. Taken together, these findings describe a cohesive mechanism underlying increased thymic productivity after androgen withdrawal.
Collapse
|
23
|
Williams KM, Hakim FT, Gress RE. T cell immune reconstitution following lymphodepletion. Semin Immunol 2007; 19:318-30. [PMID: 18023361 DOI: 10.1016/j.smim.2007.10.004] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 10/02/2007] [Indexed: 12/14/2022]
Abstract
T cell reconstitution following lymphopenia from chemotherapy or stem cell transplant is often slow and incompetent, contributing to the development of infectious diseases, relapse, and graft-versus-host disease. This is due to the fact that de novo T cell production is impaired following cytoreductive regimens. T cells can be generated from two pathways: (1) thymus derived through active thymopoiesis and (2) peripherally expanded clones through homeostatic proliferation. During recovery from lymphopenia, the thymic pathway is commonly compromised in adults and T cells rely upon peripheral expansion to restore T cell numbers. This homeostatic proliferation exploits the high cytokine levels following lymphopenia to rapidly generate T cells in the periphery. Moreover, this early peripheral expansion of T cells can also be driven by exogenous antigen. This results in loss of T cell repertoire diversity and may predispose to auto- or allo-immunity. Alternatively, the high homeostatic proliferation following lymphopenia may facilitate expansion of anti-tumor immunity. Murine and human studies have provided insight into the cytokine and cellular regulators of these two pathways of T cell generation and the disparate portraits of T cell immunity created through robust thymopoiesis or peripheral expansion following lymphopenia. This insight has permitted the manipulation of the immune system to maximize anti-tumor immunity through lymphopenia and led to an appreciation of mechanisms that underlie graft versus host disease.
Collapse
Affiliation(s)
- Kirsten M Williams
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
24
|
Jiménez M, Ercilla G, Martínez C. Immune reconstitution after allogeneic stem cell transplantation with reduced-intensity conditioning regimens. Leukemia 2007; 21:1628-37. [PMID: 17525730 DOI: 10.1038/sj.leu.2404681] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reduced-intensity conditioning (RIC) regimens have been increasingly used as an alternative to conventional myeloablative conditioning (MAC) regimens for elderly patients, for patients medically infirm to qualify for conventional allogeneic stem cell transplantation (SCT), and for disorders in which traditional MAC-SCT are associated with high rates of non-relapse mortality. One of the theoretical advantages of RIC-SCT is that it might lend to better immune reconstitution after transplantation due to less damage of the thymus, allowing regeneration of naive T cells derived from prethymic donor stem cells, and due to the proliferation of immunologically competent host T cells that survive the conditioning regimen. Although limited, studies comparing immune recovery following RIC and MAC-SCT have been insightful. One of the main difficulties of these studies is the current spectrum of RIC protocols, which vary considerably in myeloablative and immunosuppressive potential, resulting in apparently contradictory findings. In spite of this, most reports have shown significant quantitative and/or qualitative differences in T- and B-cell reconstitution after RIC-SCT in comparison with conventional SCT. This paper will review current knowledge of immune reconstitution following RIC-SCT.
Collapse
Affiliation(s)
- M Jiménez
- Department of Hematology, Institute of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|