1
|
de Silva TA, Apte S, Voisey J, Spann K, Tan M, Chambers D, O'Sullivan B. Immunological Landscapes in Lung Transplantation: Insights from T Cell Profiling in BAL and PBMC. Int J Mol Sci 2024; 25:2476. [PMID: 38473722 DOI: 10.3390/ijms25052476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Lung transplant recipients frequently encounter immune-related complications, including chronic lung allograft dysfunction (CLAD). Monitoring immune cells within the lung microenvironment is pivotal for optimizing post-transplant outcomes. This study examined the proportion of T cell subsets in paired bronchoalveolar lavage (BAL) and peripheral PBMC comparing healthy (n = 4) and lung transplantation patients (n = 6, no CLAD and n = 14 CLAD) using 14-color flow cytometry. CD4+ T cell proportions were reduced in CD3 cells in both PBMC and BAL, and positive correlations were discerned between T cell populations in peripheral PBMC and BAL, suggesting the prospect of employing less invasive PBMC sampling as a means of monitoring lung T cells. Furthermore, regulatory T cells (Tregs) were enriched in BAL when compared to peripheral PBMC for transplant recipients. A parallel positive correlation emerged between Treg proportions in BAL and peripheral PBMC, underscoring potential avenues for monitoring lung Tregs. Finally, the most promising biomarker was the Teff (CD8+Granzyme B+)-Treg ratio, which was higher in both the PBMC and BAL of transplant recipients compared to healthy individuals, and increased in the patients with CLAD compared to no CLAD and healthy patients. Conclusions: Distinct T cell profiles in BAL and peripheral PBMC underscore the significance of localized immune monitoring in lung transplantation. The Teff (CD8+granzyme B+)-Treg ratio, particularly within the context of CLAD, emerges as a promising blood and BAL biomarker reflective of inflammation and transplant-related complications. These findings emphasize the imperative need for personalized immune monitoring strategies that tailored to address the unique immunological milieu in post-transplant lungs.
Collapse
Affiliation(s)
- Tharushi Ayanthika de Silva
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
| | - Simon Apte
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Kirsten Spann
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Maxine Tan
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| | - Daniel Chambers
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| | - Brendan O'Sullivan
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| |
Collapse
|
2
|
Liao M, Wang C, Zhang M, Qiao K. Insight on immune cells in rejection and infection postlung transplant. Immun Inflamm Dis 2023; 11:e868. [PMID: 37506156 PMCID: PMC10336664 DOI: 10.1002/iid3.868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE The aim of this study is to provide a concise overview of the role of immune cells in rejection and infection after lung transplantation. METHODS Based on previous clinical and basic studies, the role of various types of immune cells in the development of rejection and infection after lung transplantation is summarized. RESULTS Immune cell functional status is strongly associated with common complications after lung transplantation, such as primary graft dysfunction, infection and occlusive bronchitis syndrome. Targeted balancing of immune cell tolerance and rejection is an important tool for successful lung transplantation. CONCLUSION A comprehensive understanding of immune cell function and the mechanisms that balance immune tolerance and immune rejection may be a crucial factor in improving survival after lung transplantation.
Collapse
Affiliation(s)
- Mingfeng Liao
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious DiseasesShenzhen Third People's HospitalShenzhenGuangdong ProvincePeople's Republic of China
| | - Chaoxi Wang
- Department of Thoracic SurgeryShenzhen Third People's HospitalShenzhenGuangdong ProvincePeople's Republic of China
| | - Mingxia Zhang
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious DiseasesShenzhen Third People's HospitalShenzhenGuangdong ProvincePeople's Republic of China
| | - Kun Qiao
- Department of Thoracic SurgeryShenzhen Third People's HospitalShenzhenGuangdong ProvincePeople's Republic of China
| |
Collapse
|
3
|
Renaud-Picard B, Koutsokera A, Cabanero M, Martinu T. Acute Rejection in the Modern Lung Transplant Era. Semin Respir Crit Care Med 2021; 42:411-427. [PMID: 34030203 DOI: 10.1055/s-0041-1729542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute cellular rejection (ACR) remains a common complication after lung transplantation. Mortality directly related to ACR is low and most patients respond to first-line immunosuppressive treatment. However, a subset of patients may develop refractory or recurrent ACR leading to an accelerated lung function decline and ultimately chronic lung allograft dysfunction. Infectious complications associated with the intensification of immunosuppression can also negatively impact long-term survival. In this review, we summarize the most recent evidence on the mechanisms, risk factors, diagnosis, treatment, and prognosis of ACR. We specifically focus on novel, promising biomarkers which are under investigation for their potential to improve the diagnostic performance of transbronchial biopsies. Finally, for each topic, we highlight current gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Benjamin Renaud-Picard
- Division of Respirology and Toronto Lung Transplant Program, University of Toronto and University Health Network, Toronto, Canada
| | - Angela Koutsokera
- Division of Pulmonology, Lung Transplant Program, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Cabanero
- Department of Pathology, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Tereza Martinu
- Division of Respirology and Toronto Lung Transplant Program, University of Toronto and University Health Network, Toronto, Canada
| |
Collapse
|
4
|
Liu X, Lu Y, Lian Y, Chen Z, Xia J, Meng L, Qi Z. Macrophage Depletion Improves Chronic Rejection in Rats With Allograft Heart Transplantation. Transplant Proc 2020; 52:992-1000. [PMID: 32122662 DOI: 10.1016/j.transproceed.2019.12.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/11/2019] [Accepted: 12/15/2019] [Indexed: 10/24/2022]
Abstract
BACKGROUND Macrophages may be important in chronic rejection after organ transplantation. This study aimed to investigate the possibility of depleting macrophages for a certain amount of time to alleviate chronic rejection in a heart transplant model of Fischer to Lewis rats. METHODS Clodronate liposome was injected abdominally to deplete macrophages for 2 time frames. The expression levels of ectodysplasin 1, arginase 1 (Arg1), chitinase-like lectin (Ym1), interferon gamma, tumor necrosis factor α (TNF-α), smooth muscle α-actin (α-SMA), monocyte chemoattractant protein 1 (MCP-1), and interleukin 10 (IL-10) were detected. RESULTS 1. The expression levels of α-SMA, interferon gamma, TNF-α, and MCP-1 and the transformation of peripheral T cells were lower after macrophage depletion for 2 or 4 weeks. 2. The expression levels of α-SMA, TNF-α, and MCP-1 and the transformation of peripheral T cells were even lower after 4 weeks compared with 2 weeks, except for interferon gamma. 3. A higher level of expression of Arg1 and Ym1 after macrophage depletion for 2 weeks was observed. 4. A higher level of expression of IL-10 after macrophage depletion for 2 weeks, but not 4 weeks, was also observed. CONCLUSIONS Macrophage clearance after heart transplantation alleviated chronic rejection probably via M2 polarization of regenerated macrophages, reduced T-lymphocyte proliferation, and changed the expression levels of interferon gamma, TNF-α, MCP-1, and IL-10.
Collapse
Affiliation(s)
- X Liu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China; Department of General Surgery, Affiliated Xiang'an Hospital of Xiamen University, Xiamen, China.
| | - Y Lu
- Department of General Surgery, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Y Lian
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China; Department of Thoracic Surgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Z Chen
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China; Department of General Surgery, The Second Hospital of Xiamen City, Xiamen, China
| | - J Xia
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China
| | - L Meng
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China
| | - Z Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Engel PJH, Fiehn AMK, Munck LK, Kristensson M. The subtypes of microscopic colitis from a pathologist's perspective: past, present and future. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:69. [PMID: 29610757 DOI: 10.21037/atm.2017.03.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microscopic colitis (MC) is a chronic inflammatory bowel disease, encompassing a triad of chronic diarrhea, normal endoscopy and characteristic histological findings. MC embraces two histological subtypes described as lymphocytic colitis (LC) and collagenous colitis (CC). The diagnostic criteria of MC were established several years ago and the histological description of LC and CC was based almost exclusively on heamatoxylin-eosin (HE) stained sections. Since the establishment of the diagnostic criteria, important changes have occurred in the concept and diagnostic methods of MC: the emergence of the entity "microscopic colitis incomplete" (MCi), comprising collagenous colitis incomplete (CCi) and lymphocytic colitis incomplete (LCi) and pathologists' increasing use of special stains in everyday diagnostics. The diagnostic challenges of today are threefold: which stains to apply to properly distinguish between MC, MCi and slight inflammatory changes, how to handle cases of diagnostic uncertainty and how to minimize inter observer variability. The views of this article are from the pathologist's perspective. We describe the changes in criteria and diagnostic methods of MC occurring over time, discus pathologists' diagnostic challenges and suggest how these can be met: by automated image analysis of tissue sections and by international collaboration under auspices of the PRO-MC collaboration, a European collaboration on the disease course of MC.
Collapse
Affiliation(s)
- Peter Johan Heiberg Engel
- Department of Pathology, Zealand University Hospital Roskilde, Roskilde, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Kristian Munck
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Medicine, Zealand University Hospital Køge, Køge, Denmark
| | | |
Collapse
|
6
|
Analysis of long term CD4+CD25highCD127- T-reg cells kinetics in peripheral blood of lung transplant recipients. BMC Pulm Med 2017; 17:102. [PMID: 28720146 PMCID: PMC5516333 DOI: 10.1186/s12890-017-0446-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Background The role of CD4+CD25highCD127− T-reg cells in solid-organ Transplant (Tx) acceptance has been extensively studied. In previous studies on kidney and liver recipients, peripheral T-reg cell counts were associated to graft survival, while in lung Tx, there is limited evidence for similar findings. This study aims to analyze long term peripheral kinetics of T-reg-cells in a cohort of lung recipients and tests its association to several clinical variables. Methods From jan 2009 to dec 2014, 137 lung Tx recipients were submitted to an immunological follow up (median: 105.9 months (6.7–310.5)). Immunological follow up consisted of a complete blood peripheral immuno-phenotype, inclusive of CD4+CD25highCD127− T and FOXP3+ cells. We tested the association between T-reg and relevant variables by linear OR regression models for repeated measures, adjusting for time from Tx. Also, by ordered logistic models for panel data, the association between Chronic Lung Allograft Dysfuncton (CLAD) onset/progression and T-reg counts in the previous 3 months was tested. Results Among all variables analyzed at multivariate analysis: Bronchiolitis Obliterans Syndrome (OR −6.51, p < 0.001), Restrictive Allograft Syndrome (OR −5.19, p = 0.04) and Extracorporeal photopheresis (OR −5.65, p < 0.001) were significantly associated to T-reg cell. T-reg cell counts progressively decreased according to the severity of CLAD. Furthermore, patients with higher mean T-reg counts in a trimester had a significantly lower risk (OR 0.97, p = 0.012) of presenting CLAD or progressing in the graft dysfunction in the following trimester. Conclusions Our present data confirm animal observations on the possible role of T-reg in the evolution of CLAD.
Collapse
|
7
|
Müller C, Andersson-Sjöland A, Schultz HH, Eriksson LT, Andersen CB, Iversen M, Westergren-Thorsson G. Early extracellular matrix changes are associated with later development of bronchiolitis obliterans syndrome after lung transplantation. BMJ Open Respir Res 2017; 4:e000177. [PMID: 28469930 PMCID: PMC5411729 DOI: 10.1136/bmjresp-2016-000177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
Background Chronic lung allograft dysfunction in the form of bronchiolitis obliterans syndrome (BOS) is the main cause of death beyond 1-year post-lung transplantation. The disease-initiating triggers as well as the molecular changes leading to fibrotic alterations in the transplanted lung are largely unknown. The aim of this study was to identify potential early changes in the extracellular matrix (ECM) in different compartments of the transplanted lung prior to the development of BOS. Methods Transbronchial biopsies from a cohort of 58 lung transplantation patients at the Copenhagen University hospital between 2005 and 2006, with or without development of BOS in a 5-year follow-up, were obtained 3 and 12 months after transplantation. Biopsies were assessed for total collagen, collagen type IV and biglycan in the alveolar and small airway compartments using Masson's Trichrome staining and immunohistochemistry. Results A time-specific and compartment-specific pattern of ECM changes was detected. Alveolar total collagen (p=0.0190) and small airway biglycan (p=0.0199) increased between 3 and 12 months after transplantation in patients developing BOS, while collagen type IV (p=0.0124) increased in patients without BOS. Patients with early-onset BOS mirrored this increase. Patients developing grade 3 BOS showed distinct ECM changes already at 3 months. Patients with BOS with treated acute rejections displayed reduced alveolar total collagen (p=0.0501) and small airway biglycan (p=0.0485) at 3 months. Conclusions Patients with future BOS displayed distinct ECM changes compared with patients without BOS. Our data indicate an involvement of alveolar and small airway compartments in post-transplantation changes in the development of BOS.
Collapse
Affiliation(s)
- Catharina Müller
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Hans Henrik Schultz
- Section for Lung Transplantation, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Leif T Eriksson
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Respiratory Medicine and Allergology, Lund University Hospital, Lund, Sweden
| | - Claus B Andersen
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Martin Iversen
- Section for Lung Transplantation, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
8
|
Hsiao HM, Scozzi D, Gauthier JM, Kreisel D. Mechanisms of graft rejection after lung transplantation. Curr Opin Organ Transplant 2017; 22:29-35. [PMID: 27861263 PMCID: PMC5443682 DOI: 10.1097/mot.0000000000000371] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To date, outcomes after lung transplantation are far worse than after transplantation of other solid organs. New insights into mechanisms that contribute to graft rejection and tolerance after lung transplantation remain of great interest. This review examines the recent literature on the role of innate and adaptive immunity in shaping the fate of lung grafts. RECENT FINDINGS Innate and adaptive immune cells orchestrate allograft rejection after transplantation. Innate immune cells such as neutrophils are recruited to the lung graft early after reperfusion and subsequently promote allograft rejection. Although it is widely recognized that CD4 T lymphocytes in concert with CD8 T cells promote graft rejection, regulatory Foxp3 CD4 T, central memory CD8 T cells, and natural killer cells can facilitate tolerance. SUMMARY This review highlights interactions between innate and adaptive immune pathways and how they contribute to lung allograft rejection. These findings lay a foundation for the design of new therapeutic strategies that target both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hsi-Min Hsiao
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Davide Scozzi
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Jason M. Gauthier
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
9
|
Mirza K, Gustafsson F, Gullestad L, Arora S, Andersen C. Effect of everolimus initiation and early calcineurin inhibitor withdrawal on myocardial FOXP3 + regulatory T cells in heart transplantation. Transpl Immunol 2016; 38:75-7. [DOI: 10.1016/j.trim.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/14/2022]
|
10
|
Krustrup D, Iversen M, Martinussen T, Schultz HHL, Andersen CB. The number of FoxP3+ cells in transbronchial lung allograft biopsies does not predict bronchiolitis obliterans syndrome within the first five years after transplantation. Clin Transplant 2015; 29:179-84. [DOI: 10.1111/ctr.12502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Dorrit Krustrup
- Department of Pathology; Copenhagen University Hospital; Rigshospitalet Denmark
| | - Martin Iversen
- The Heart and Lung Transplantation Unit; Copenhagen University Hospital; Rigshospitalet Denmark
| | - Torben Martinussen
- Department of Biostatistics; University of Copenhagen; Copenhagen Denmark
| | - Hans Henrik L. Schultz
- The Heart and Lung Transplantation Unit; Copenhagen University Hospital; Rigshospitalet Denmark
| | - Claus B. Andersen
- Department of Pathology; Copenhagen University Hospital; Rigshospitalet Denmark
| |
Collapse
|