1
|
Mueller FB, Yang H, Li C, Dadhania DM, Xiang JZ, Salvatore S, Seshan SV, Sharma VK, Suthanthiran M, Muthukumar T. RNA-sequencing of Human Kidney Allografts and Delineation of T-Cell Genes, Gene Sets, and Pathways Associated With Acute T Cell-mediated Rejection. Transplantation 2024; 108:911-922. [PMID: 38291584 PMCID: PMC10963156 DOI: 10.1097/tp.0000000000004896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Delineation of T-cell genes, gene sets, pathways, and T-cell subtypes associated with acute T cell-mediated rejection (TCMR) may improve its management. METHODS We performed bulk RNA-sequencing of 34 kidney allograft biopsies (16 Banff TCMR and 18 no rejection [NR] biopsies) from 34 adult recipients of human kidneys. Computational analysis was performed to determine the differential intragraft expression of T-cell genes at the level of single-gene, gene set, and pathways. RESULTS T-cell signaling pathway gene sets for plenary T-cell activation were overrepresented in TCMR biopsies compared with NR biopsies. Heightened expression of T-cell signaling genes was validated using external TCMR biopsies. Pro- and anti-inflammatory immune gene sets were enriched, and metabolism gene sets were depleted in TCMR biopsies compared with NR biopsies. Gene signatures of regulatory T cells, Th1 cells, Th2 cells, Th17 cells, T follicular helper cells, CD4 tissue-resident memory T cells, and CD8 tissue-resident memory T cells were enriched in TCMR biopsies compared with NR biopsies. T-cell exhaustion and anergy were also molecular attributes of TCMR. Gene sets associated with antigen processing and presentation, and leukocyte transendothelial migration were overexpressed in TCMR biopsies compared with NR biopsies. Cellular deconvolution of graft infiltrating cells by gene expression patterns identified CD8 T cell to be the most abundant T-cell subtype infiltrating the allograft during TCMR. CONCLUSIONS Our delineation of intragraft T-cell gene expression patterns, in addition to yielding new biological insights, may help prioritize T-cell genes and T-cell subtypes for therapeutic targeting.
Collapse
Affiliation(s)
- Franco B. Mueller
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Hua Yang
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Carol Li
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Darshana M. Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
- Department of Transplantation Medicine, NewYork Presbyterian Hospital-Weill Cornell Medical College, New York, NY
| | - Jenny Z. Xiang
- Genomics Resources Core Facility, Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY
| | - Steven Salvatore
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Surya V. Seshan
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Vijay K. Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
- Department of Transplantation Medicine, NewYork Presbyterian Hospital-Weill Cornell Medical College, New York, NY
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
- Department of Transplantation Medicine, NewYork Presbyterian Hospital-Weill Cornell Medical College, New York, NY
| |
Collapse
|
2
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
3
|
The Ratio of CD226 and TIGIT Expression in Tfh and PD-1 +ICOS +Tfh Cells Are Potential Biomarkers for Chronic Antibody-Mediated Rejection in Kidney Transplantation. J Immunol Res 2022; 2022:5326083. [PMID: 35733922 PMCID: PMC9206998 DOI: 10.1155/2022/5326083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
Kidney transplantation is the ideal treatment for end-stage renal disease (ESRD). Chronic antibody-mediated rejection (CAMR) is the main cause of graft failure. Tfh and B cells are key immune cells that play important roles in CAMR. In this study, the populations of different Tfh cell phenotypes and B cell subsets in CAMR were investigated in a total of 36 patients. Based on Banff-2019, 15 patients were diagnosed with CAMR (CAMR group), 11 recipients were diagnosed with recurrent or de novo IgA nephropathy (IgAN group), and 10 patients displayed stable renal function (stable group). The Tfh and B cell subsets were analyzed by flow cytometry. The percentage and absolute number of PD-1+ICOS+Tfh cells were significantly higher in CAMR (p < 0.05), as was the ratio of CD226+Tfh cells to TIGIT+Tfh cells (p < 0.05). Compared with stable recipients, CAMR patients had lower naïve B cells and higher unswitched memory B cells, which were also significantly related to renal function (p < 0.05). Using the logistic regression model, we concluded that the estimated glomerular filtration rate (eGFR), absolute number of PD-1+ICOS+Tfh cells, and ratio of CD226+Tfh cells to TIGIT+Tfh cells were independent risk factors for CAMR. The combination of eGFR, PD-1+ICOS+Tfh cells, and the ratio of CD226+Tfh cells to TIGIT+Tfh cells showed better diagnostic efficacy for CAMR than each single parameter. The collective findings show that monitoring different Tfh phenotypes and B cell subsets is beneficial to kidney transplant recipients and implicate the combination of eGFR, number of PD-1+ICOS+Tfh cells, and ratio of CD226+Tfh cells to TIGIT+Tfh cells as a biomarker for diagnosing CAMR. The findings may also inform new strategies to identify and treat CAMR.
Collapse
|