1
|
Tsolakis IA, Christopoulou I, Papadopoulou E, Papaioannou W, Alexiou KE, Lyros I, Rontogianni A, Souliou CE, Tsolakis AI. Applications of Biotechnology to the Craniofacial Complex: A Critical Review. Bioengineering (Basel) 2022; 9:640. [PMID: 36354551 PMCID: PMC9687908 DOI: 10.3390/bioengineering9110640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND Biotechnology shows a promising future in bridging the gap between biomedical basic sciences and clinical craniofacial practice. The purpose of the present review is to investigate the applications of biotechnology in the craniofacial complex. METHODS This critical review was conducted by using the following keywords in the search strategy: "biotechnology", "bioengineering", "craniofacial", "stem cells", "scaffolds", "biomarkers", and "tissue regeneration". The databases used for the electronic search were the Cochrane Library, Medline (PubMed), and Scopus. The search was conducted for studies published before June 2022. RESULTS The applications of biotechnology are numerous and provide clinicians with the great benefit of understanding the etiology of dentofacial deformities, as well as treating the defected areas. Research has been focused on craniofacial tissue regeneration with the use of stem cells and scaffolds, as well as in bioinformatics with the investigation of growth factors and biomarkers capable of providing evidence for craniofacial growth and development. This review presents the biotechnological opportunities in the fields related to the craniofacial complex and attempts to answer a series of questions that may be of interest to the reader. CONCLUSIONS Biotechnology seems to offer a bright future ahead, improving and modernizing the clinical management of cranio-dento-facial diseases. Extensive research is needed as human studies on this subject are few and have controversial results.
Collapse
Affiliation(s)
- Ioannis A. Tsolakis
- Department of Orthodontics, School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Isidora Christopoulou
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Erofili Papadopoulou
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - William Papaioannou
- Department of Preventive & Community Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Konstantina-Eleni Alexiou
- Department of Oral Diagnosis & Radiology, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Ioannis Lyros
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Aliki Rontogianni
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Christina-Efthymia Souliou
- Oral and Maxilla-Facial Surgeon, Department of Oral and Maxillofacial Surgery, Georgios Gennimatas Athens Hospital, 115 27 Athens, Greece
| | - Apostolos I. Tsolakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
- Department of Orthodontics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Su ZP, Tian L, Shang HT, Yang Y, Lu JB, Kang YJ, He LS, Zhao JL. Experimental Study on the Bone Morphogenetic Protein 1-Modified Bone Marrow Mesenchymal Stem Cell Sheets to Promote Mandibular Distraction Osteogenesis. Front Surg 2022; 8:786351. [PMID: 35223968 PMCID: PMC8865418 DOI: 10.3389/fsurg.2021.786351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe present study aims to increase the concentration of genetically modified bone marrow mesenchymal stem cells (BMSCs) in the distraction osteogenesis (DO) interstitial space and induce the conversion of BMSCs to osteoblasts to improve the osteogenic efficiency in DO and shorten the treatment period.MethodsBone morphogenetic protein 1 (BMP-1) and green fluorescent protein (GFP) gene-modified cell sheets of BMSCs were constructed by tissue engineering. Thirty-six New Zealand white rabbits were randomly divided into three groups: group A (the blank control group), group B (the GFP group) with the injection of GFP gene-modified BMSC sheets into the DO gap, and group C (the BMP-1 group) with the injection of BMP-1 gene-modified BMSC sheets into the DO gap. Rabbits in all three groups were distracted for 5 days at a distraction rate of 2.0 mm/d, once/day. After distraction, the above-mentioned cell sheet suspension was injected into the distraction gap to observe osteogenesis, which was observed by gross specimen observation, micro-computed tomography (Micro-CT) scanning, and histomorphology.ResultsThe gross specimen observation showed that all animals had smooth and continuous bone cortex in the distraction region with relatively high hardness. The osteogenesis quality or hardness was ranked from the highest to the lowest, as Group C > Group B > Group A. Micro-CT and histomorphological observation revealed that group C had better maturation and bone volume of the new bone in the DO region at weeks 3 and 6 than groups B and A.ConclusionBMP-1 gene-modified BMSC sheets could effectively promote the formation of new bone during rapid DO in the mandible, compensating for the poor osteogenesis caused by rapid distraction and providing a new approach to shorten the DO treatment period in clinical practice.
Collapse
|
3
|
Fu R, Feng Y, Bertrand D, Du T, Liu Y, Willie BM, Yang H. Enhancing the Efficiency of Distraction Osteogenesis through Rate-Varying Distraction: A Computational Study. Int J Mol Sci 2021; 22:ijms222111734. [PMID: 34769163 PMCID: PMC8583714 DOI: 10.3390/ijms222111734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Distraction osteogenesis (DO) is a mechanobiological process of producing new bone and overlying soft tissues through the gradual and controlled distraction of surgically separated bone segments. The process of bone regeneration during DO is largely affected by distraction parameters. In the present study, a distraction strategy with varying distraction rates (i.e., "rate-varying distraction") is proposed, with the aim of shortening the distraction time and improving the efficiency of DO. We hypothesized that faster and better healing can be achieved with rate-varying distractions, as compared with constant-rate distractions. A computational model incorporating the viscoelastic behaviors of the callus tissues and the mechano-regulatory tissue differentiation laws was developed and validated to predict the bone regeneration process during DO. The effect of rate-varying distraction on the healing outcomes (bony bridging time and bone formation) was examined. Compared to the constant low-rate distraction, a low-to-high rate-varying distraction provided a favorable mechanical environment for angiogenesis and bone tissue differentiation, throughout the distraction and consolidation phase, leading to an improved healing outcome with a shortened healing time. These results suggest that a rate-varying clinical strategy could reduce the overall treatment time of DO and decrease the risk of complications related to the external fixator.
Collapse
Affiliation(s)
- Ruisen Fu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (R.F.); (Y.F.); (T.D.); (Y.L.)
| | - Yili Feng
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (R.F.); (Y.F.); (T.D.); (Y.L.)
| | - David Bertrand
- Department of Pediatric Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (D.B.); (B.M.W.)
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (R.F.); (Y.F.); (T.D.); (Y.L.)
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (R.F.); (Y.F.); (T.D.); (Y.L.)
| | - Bettina M. Willie
- Department of Pediatric Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (D.B.); (B.M.W.)
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (R.F.); (Y.F.); (T.D.); (Y.L.)
- Correspondence: ; Tel.: +86-(010)-6739-6657
| |
Collapse
|
4
|
Fu R, Feng Y, Liu Y, Yang H. Mechanical regulation of bone regeneration during distraction osteogenesis. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
5
|
Montes-Medina L, Hernández-Fernández A, Gutiérrez-Rivera A, Ripalda-Cemboráin P, Bitarte N, Pérez-López V, Granero-Moltó F, Prosper F, Izeta A. Effect of bone marrow stromal cells in combination with biomaterials in early phases of distraction osteogenesis: An experimental study in a rabbit femur model. Injury 2018; 49:1979-1986. [PMID: 30219381 DOI: 10.1016/j.injury.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
Abstract
Acceleration of the consolidation of the distracted bone is a relevant medical need. As a platform to improve in vivo bone engineering, we developed a novel distraction osteogenesis (DO) model in a rabbit large bone (femur) and tested if the application of cultured bone marrow stromal cells (BMSCs) immediately after the osteotomy promotes the formation of bone. This report consists of two components, an animal study to evaluate the quality of the regenerate following different treatments and an in vitro study to evaluate osteogenic potential of BMSC cultures. To illuminate the mechanism of action of injected cells, we tested stem cell cultures enriched in osteogenic-BMSCs (O-BMSCs) as compared with cultures enriched in non-osteogenic BMSCs (NO-BMSCs). Finally, we included a group of animals treated with biomaterials (fibrin and ground cortical bone) in addition to cells. Injection of O-BMSCs promoted the maturity of distracted callus and decreased fibrosis. When combined with biomaterials, O-BMSCs modified the ossification pattern from endochondral to intramembranous type. The use of NO-BMSCs not only did not increase the maturity but also increased porosity of the bone. These preclinical results indicate that the BMSC cultures must be tested in vitro prior to clinical use, since a number of factors may influence their outcome in bone formation. We hypothesize that the use of osteogenic BMSCs and biomaterials could be clinically beneficial to shorten the consolidation period of the distraction and the total period of bone lengthening.
Collapse
Affiliation(s)
- Laura Montes-Medina
- Department of Orthopaedic Surgery, Donostia University Hospital, San Sebastian, Spain
| | - Alberto Hernández-Fernández
- Department of Orthopaedic Surgery, Donostia University Hospital, San Sebastian, Spain; Department of Surgery, Radiology and Physical Medicine of the University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | | | | | - Nerea Bitarte
- Tissue Engineering Group, Bioengineering Area, Instituto Biodonostia, San Sebastian, Spain
| | - Virginia Pérez-López
- Tissue Engineering Group, Bioengineering Area, Instituto Biodonostia, San Sebastian, Spain
| | - Froilán Granero-Moltó
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain; Cell Therapy Area, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Cell Therapy Area, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Ander Izeta
- Tissue Engineering Group, Bioengineering Area, Instituto Biodonostia, San Sebastian, Spain; Department of Biomedical Engineering and Science, School of Engineering, Tecnun-University of Navarra, San Sebastian, Spain.
| |
Collapse
|
6
|
He Y, Yao W, Zhang M, Zhang Y, Zhang D, Jiang Z, Ma T, Sun J, Shao M, Chen J. Changes in osteogenic gene expression in hypertrophic chondrocytes induced by SIN-1. Exp Ther Med 2018; 16:609-618. [PMID: 30116317 PMCID: PMC6090273 DOI: 10.3892/etm.2018.6261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanisms underlying osteoarthritis (OA) and Kashin-Beck disease (KBD) remain poorly understood. Hypertrophic chondrocytes serve an important role in the development of both OA and KBD, whereas oxidative stress can contribute to the pathological progression of cartilage damage. Therefore, the aim of the present study was to detect altered expression of osteogenesis-related genes in hypertrophic chondrocytes, following treatment with 3-morpholinosydnonimine (SIN-1). ATDC5 cells were induced to develop into hypertrophic chondrocytes via Insulin-Transferrin-Selenium. The appropriate concentration and time of SIN-1 treatment was determined via MTT assay. Following hypertrophic chondrocyte stimulation with SIN-1, a liquid chip was analyzed using a polymerase chain reaction (PCR) array. Reverse transcription-quantitative PCR was conducted on individual genes to validate the array-based data. Analyses of protein-protein interactions, gene ontology functions and Kyoto Encyclopedia of Genes and Genomes pathway enrichment of the differentially expressed genes were also performed. A total of 6 upregulated and 34 downregulated genes were identified, including the mothers against decapentaplegic homolog (Smad) family (Smad1-4), bone morphogenetic proteins and their receptors (Bmp2, Bmp3, Bmpr1α and Bmpr1β), and matrix metalloproteinases (MMP2,−9 and−10). These genes are associated with collagen biology, transcriptional control, skeletal development, bone mineral metabolism, and cell adhesion. SIN-1 induced death of hypertrophic chondrocytes likely through TGF-β/Smad or BMP/Smad pathways. Oxidative-stress-dependent induction of abnormal gene expression may be associated with chondronecrosis in the cartilage of patients with OA or KBD.
Collapse
Affiliation(s)
- Ying He
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China.,Graduate Students Teaching Experiment Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Wen Yao
- Department of Neurology, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Meng Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Ying Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Dan Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Zhuocheng Jiang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Tianyou Ma
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Mingming Shao
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Jinghong Chen
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
7
|
Safari S, Mahdian A, Motamedian SR. Applications of stem cells in orthodontics and dentofacial orthopedics: Current trends and future perspectives. World J Stem Cells 2018; 10:66-77. [PMID: 29988866 PMCID: PMC6033713 DOI: 10.4252/wjsc.v10.i6.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
A simple overview of daily orthodontic practice involves use of brackets, wires and elastomeric modules. However, investigating the underlying effect of orthodontic forces shows various molecular and cellular changes. Also, orthodontics is in close relation with dentofacial orthopedics which involves bone regeneration. In this review current and future applications of stem cells (SCs) in orthodontics and dentofacial orthopedics have been discussed. For craniofacial anomalies, SCs have been applied to regenerate hard tissue (such as treatment of alveolar cleft) and soft tissue (such as treatment of hemifacial macrosomia). Several attempts have been done to reconstruct impaired temporomandibular joint. Also, SCs with or without bone scaffolds and growth factors have been used to regenerate bone following distraction osteogenesis of mandibular bone or maxillary expansion. Current evidence shows that SCs also have potential to be used to regenerate infrabony alveolar defects and move the teeth into regenerated areas. Future application of SCs in orthodontics could involve accelerating tooth movement, regenerating resorbed roots and expanding tooth movement limitations. However, evidence supporting these roles is weak and further studies are required to evaluate the possibility of these ideas.
Collapse
Affiliation(s)
- Shiva Safari
- Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 13819, Iran
| | - Arezoo Mahdian
- Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 13819, Iran
| | - Saeed Reza Motamedian
- Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 13819, Iran.
| |
Collapse
|
8
|
Grol MW, Stone A, Ruan MZ, Guse K, Lee BH. Prospects of Gene Therapy for Skeletal Diseases. GENETICS OF BONE BIOLOGY AND SKELETAL DISEASE 2018:119-137. [DOI: 10.1016/b978-0-12-804182-6.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Henry GA, Cole R. Fracture Healing and Complications in Dogs. TEXTBOOK OF VETERINARY DIAGNOSTIC RADIOLOGY 2018:366-389. [DOI: 10.1016/b978-0-323-48247-9.00031-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Effects of Intermittent Low-Dose Parathyroid Hormone Treatment on Rapid Mandibular Distraction Osteogenesis in Rabbits. J Oral Maxillofac Surg 2017; 75:1722-1731. [PMID: 28500874 DOI: 10.1016/j.joms.2017.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
|
11
|
Li S, Xie X, Yang X, Liu L, Tang X. [Research of enhanced green fluorescent protein gene transfer with ultrasound-mediated microbubble destruction in bone defects]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:437-442. [PMID: 29798609 PMCID: PMC8498166 DOI: 10.7507/1002-1892.201611059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/23/2017] [Indexed: 02/05/2023]
Abstract
Objective To investigate the effect of ultrasonic irradiation time on enhanced green fluorescent protein (EGFP) gene transfection efficiency and local tissue in bone defects using ultrasound-mediated microbubble destruction. Methods Thirty 3-month-old New Zealand rabbits (2.5-3.0 kg in weight) were randomly divided into 5 groups ( n=6) and bone defect models were made on the right ulna. At 10 days after modeling, suspension of microbubbles and EGFP plasmids were locally injected (0.3 mL/kg) and then ultrasound was performed on defect at a frequency of 1 MHz, a intensity of 0.5 W/cm 2, and a duty ratio of 20% for 1, 2, 3, 4, and 5 minutes respectively (in 1, 2, 3, 4, and 5 minutes groups respectively). The survival condition was observed. Rabbits were sacrificed for gross observation at 7 days after transfer. The gene expression was observed by fluorescence staining. HE staining and transmission electron microscopy were used to observe the local tissue damage. Results The animals all survived. New soft tissue formed in bone defects area at 1 week after transfer, the surrounding muscle tissue was partly filled in it. Green fluorescence expression was observed in all rabbits. The expression was the strongest in 2 minutes group, and was the weakest in 1 minute group. The absorbance ( A) value showed significant differences when compared 1 minute and 2 minutes groups with other groups ( P<0.05), but no significant difference was found between 3, 4, and 5 minutes groups ( P>0.05). Tissue damage was observed in all groups and it was aggravated with the increase of irradiation time. Conclusion EGFP transfection efficiency in bone defect by ultrasound-mediated microbubble destruction is related to irradiation time. EGFP gene can be efficiently transfected without obvious toxicity at 1 MHz, 0.5W/cm 2, and duty ratio of 20% for 2 minutes in bone defects of rabbits.
Collapse
Affiliation(s)
- Shiwei Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Guangdong, 510623, P.R.China
| | - Xiaodong Yang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Lijun Liu
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xueyang Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
12
|
Fliefel R, Kühnisch J, Ehrenfeld M, Otto S. Gene Therapy for Bone Defects in Oral and Maxillofacial Surgery: A Systematic Review and Meta-Analysis of Animal Studies. Stem Cells Dev 2016; 26:215-230. [PMID: 27819181 DOI: 10.1089/scd.2016.0172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Craniofacial bone defects are challenging problems for maxillofacial surgeons over the years. With the development of cell and molecular biology, gene therapy is a breaking new technology with the aim of regenerating tissues by acting as a delivery system for therapeutic genes in the craniofacial region rather than treating genetic disorders. A systematic review was conducted summarizing the articles reporting gene therapy in maxillofacial surgery to answer the question: Was gene therapy successfully applied to regenerate bone in the maxillofacial region? Electronic searching of online databases was performed in addition to hand searching of the references of included articles. No language or time restrictions were enforced. Meta-analysis was done to assess significant bone formation after delivery of gene material in the surgically induced maxillofacial defects. The search identified 2081 articles, of which 57 were included with 1726 animals. Bone morphogenetic proteins were commonly used proteins for gene therapy. Viral vectors were the universally used vectors. Sprague-Dawley rats were the frequently used animal model in experimental studies. The quality of the articles ranged from excellent to average. Meta-analysis results performed on 21 articles showed that defects favored bone formation by gene therapy. Funnel plot showed symmetry with the absence of publication bias. Gene therapy is on the top list of innovative strategies that developed in the last 10 years with the hope of developing a simple chair-side protocol in the near future, combining improvement of gene delivery as well as knowledge of the molecular basis of oral and maxillofacial structures.
Collapse
Affiliation(s)
- Riham Fliefel
- 1 Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians-University , Munich, Germany .,2 Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University , Munich, Germany .,3 Department of Oral and Maxillofacial Surgery, Alexandria University , Alexandria, Egypt
| | - Jan Kühnisch
- 4 Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University , Munich, Germany
| | - Michael Ehrenfeld
- 2 Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University , Munich, Germany
| | - Sven Otto
- 2 Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University , Munich, Germany
| |
Collapse
|
13
|
Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-Based Delivery of Bone Marrow Mesenchymal Stem Cell Sheet Fragments Enhances New Bone Formation In Vivo. J Oral Maxillofac Surg 2016; 75:92-104. [PMID: 27637777 DOI: 10.1016/j.joms.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/28/2023]
Abstract
PURPOSE Stem cell therapy is becoming a potent strategy to shorten the consolidation time and reduce potential complications during distraction osteogenesis (DO). However, the conventional local injection or scaffold-based delivery of bone marrow mesenchymal stem cell (BMSC) suspension deprives the cells of their endogenous extracellular matrix, which might dampen cell differentiation and tissue regeneration after implantation. Therefore, in our study, a BMSC sheet was established and was then minced into fragments and loaded onto a hydroxyapatite (HA) scaffold for grafting. MATERIALS AND METHODS The purified and characterized BMSCs were grown into a cell sheet, and bone formation and mineralization capacity, as well as the cell sheet composition, were analyzed. Afterward, the in vivo osteogenic ability of cell sheet fragments (CSFs) was evaluated in immunocompromised mouse and rabbit models of DO. RESULTS The BMSC sheet exhibited higher alkaline phosphatase activity than osteogenic cell suspension cultures. Alkaline phosphatase activity and mineral particles in the cell sheet increased further after osteogenic induction. Moreover, calcium and phosphorus were present only in the osteogenic cell sheet, along with the common elements carbon, oxygen, chlorine, sodium, and sulfur, as indicated by x-ray photoelectron spectroscopy analysis. In a mouse model, the CSF-HA complex was injected subcutaneously. Micro-computed tomography analysis showed that the osteogenic CSF-HA complex led to a considerably higher bone volume than the BMSC-HA or CSF-HA complex. The osteogenic CSF-HA specimens showed increased angiogenesis and deposition of type I collagen compared with the non-osteogenic CSF-HA or BMSC-HA specimens. Moreover, the osteogenic CSF-HA markedly improved bone consolidation and increased bone mass in DO rabbits. CONCLUSIONS Collectively, the incorporation of osteogenic BMSC sheets into HA particles greatly promoted bone regeneration, which offers therapeutic alternatives for DO.
Collapse
Affiliation(s)
- Ge Ma
- Attending Physician, State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; Department of Oral and Maxillofacial Surgery, No. 3 Hospital of PLA, Baoji, China
| | - Jin-Long Zhao
- Associate Professor, State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ming Mao
- Associate Chief Physician, Department of Oral and Maxillofacial Surgery, No. 3 Hospital of PLA, Baoji, China
| | - Jie Chen
- Attending Physician, State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; Department of Oral and Maxillofacial Surgery, General Hospital of Lanzhou Military Area Command, Lanzhou, China
| | - Zhi-Wei Dong
- Attending Physician, State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; Department of Oral and Maxillofacial Surgery, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Yan-Pu Liu
- Professor, State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
14
|
Tee BC, Sun Z. Mandibular distraction osteogenesis assisted by cell-based tissue engineering: a systematic review. Orthod Craniofac Res 2016; 18 Suppl 1:39-49. [PMID: 25865532 DOI: 10.1111/ocr.12087] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To review the advances and limitations of recent investigations on mandibular distraction osteogenesis (MDO) assisted by mesenchymal stem cell (MSC) transplantation. MATERIALS AND METHODS Following the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines, the PubMed, Scopus, and Cochrane electronic databases were systematically searched and screened from their inception through August 2014. Searching terms included the following: 'distraction osteogenesis', 'mandible OR mandibular OR jaw', and 'cells', without any other limitations. RESULTS Nineteen studies meeting the eligibility criteria were selected from 227 published articles and used for qualitative synthesis. Fifteen of the studies used small animal models (rats or rabbits), while the other four used large animal models (dogs, pigs or sheep). Among these studies, large variations exist in MDO protocol, cell transplantation time, route and quantity, as well as methodology of outcome assessment. Additionally, all studies had certain biases. Nevertheless, the majority of studies found that MSC transplantation enhanced MDO bone regeneration. CONCLUSION Evidence from animal studies indicates that MDO may be enhanced by mesenchymal stem cell transplantation, but many questions related to animal models, MDO protocols, and cell transplantation remain to be investigated.
Collapse
Affiliation(s)
- B C Tee
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
15
|
Guiran Z, Ying W, Guijun W, Chengyue W, Yusheng Y. A New Way to Accelerate the Distraction of the Transpalatal Suture in Growing Dogs Using Recombinant Human Bone Morphogenetic Protein-2. Cleft Palate Craniofac J 2015; 54:193-201. [PMID: 26523326 DOI: 10.1597/15-044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the administration of recombinant human bone morphogenetic protein-2 (rhBMP-2) on trans-sutural distraction osteogenesis (TSDO) of the transverse palatal suture in growing dogs. STUDY DESIGN A total of 36 growing dogs were used in this study. The experimental animals were treated with different elastic force and rhBMP-2. The bone regeneration was determined with X-ray, histology, and clinical evaluation. The computed values underwent statistical analyses using analysis of variance. RESULTS The maxillary complex was most noticeably advanced with an applied elastic force of 600 g (22.4 ± 5.0 mm) and 800 g + rhBMP-2 (24 ± 5.1 mm). Immunohistochemical staining showed that the expression of bone morphogenetic protein-2 and bone morphogenetic protein-4 varied with different elastic force. These changes were statistically significant when 600 g and 800 g + rhBMP-2 were applied within 2 weeks of distraction when compared with controls (P < .05). CONCLUSIONS The results of this study suggest that TSDO in the growing dog should be safe and well tolerated when inducing bony lengthening of the maxilla. rhBMP-2 plays an important role in bone regeneration using TSDO.
Collapse
|
16
|
Transport distraction osteogenesis with recombinant human bone morphogenic protein-2 for large calvarial defect reconstruction. J Craniofac Surg 2015; 25:502-8. [PMID: 24621696 DOI: 10.1097/scs.0000000000000672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Transport distraction osteogenesis (TDO) has been used in attempts to treat large calvarial defects but has, until now, lacked consistency and reliability. To achieve sufficient bone formation, the effect of TDO was compared to the effect of TDO combined with recombinant human bone morphogenic protein-2 (rhBMP-2). METHODS Fourteen dogs were divided into 2 groups; 6 animals in the control group received TDO only, and 8 received TDO combined with rhBMP-2. A calvarial defect 33 × 35 mm in size was generated, and the drug-delivering internal distractor was applied. After a 5-day latency period, distraction with rhBMP-2 at 10 μg/day was initiated at a rate of 2 mm/day. This was followed by a consolidation period of 3 months, after which areas of osteogenesis and strength were measured and histologic examinations were conducted. RESULTS The average area of osteogenesis was higher in the experimental group (P < 0.01). Regenerated bone of the experimental group showed increased strength (P < 0.05). Histological examination showed typical mature bone in the experimental group. Prominent osteoblastic rimming was observed in the bone marrow of the experimental group. CONCLUSIONS TDO with an internal distraction device delivering rhBMP-2 can enhance bone regeneration of large calvarial defects in a dog model. These results suggest the potential for human clinical testing of TDO combined with rhBMP-2.
Collapse
|
17
|
Slack GC, Fan KL, Tabit C, Andrews B, Hindin DI, Kawamoto HK, Bradley JP. Necessity of latency period in craniofacial distraction: Investigations with in vitro microdistractor and clinical outcomes. J Plast Reconstr Aesthet Surg 2015; 68:1206-14. [PMID: 26261092 DOI: 10.1016/j.bjps.2015.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/10/2015] [Accepted: 04/13/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND To determine the need for latency period in membranous bone distraction, we performed 1) in vitro comparison of preosteoblasts suspended in a 3D microdistraction model and 2) a clinical study comparing mandibular distraction cases with/without latency. METHODS In the In Vitro study, Preosteoblasts polymerized in 3D-collagen gel were placed in a microdistractor and separated into three groups: 1) distraction with latency, 2) distraction without latency, and 3) static. After 2, 4, 6, and 8 days, cell proliferation, total protein levels, alkaline phosphatase activity, and osteogenic gene expression were assessed through RT-PCR. In the clinical study, patients underwent mandibular distraction in two groups: 1) latency and 2) no latency (n = 45). The rest of the distraction protocol was identical. Outcome was based on clinical examination, radiographs at six months, and 3D CT scans. RESULTS In the In Vitro study, The distraction without latency group compared to the latency group had delays in: proliferation, total protein count, alkaline phosphatase activity, osteogenic gene expression in CBFA-1 (fourfold vs. eighteenfold), and in osteocalcin (twofold vs. sixfold). The distraction without latency group had higher apoptotic levels during the first four days compared to the latency group (68% vs. 14%). For the clinical study, similar perioperative complications (5% vs. 6%), X-ray mineralization (93% vs. 94%), bone volume, (8.6 vs. 9.1 cc) and bone density of central distraction zone (78% vs. 81%) were observed with or without latency. CONCLUSIONS In vitro studies showed poorer results in cell survival, proliferation and osteogenic activity compared to distraction with latency; yet, clinically, there were no differences in distraction with latency versus without.
Collapse
Affiliation(s)
- Ginger C Slack
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Kenneth L Fan
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Christina Tabit
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Brian Andrews
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, Los Angeles, CA, USA
| | - David I Hindin
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Henry K Kawamoto
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, Los Angeles, CA, USA
| | - James P Bradley
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Makhdom AM, Nayef L, Tabrizian M, Hamdy RC. The potential roles of nanobiomaterials in distraction osteogenesis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1-18. [PMID: 24965757 DOI: 10.1016/j.nano.2014.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/25/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
19
|
Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF, Tian W, Tang W, Long J. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res 2014; 32:709-720. [PMID: 24522890 DOI: 10.1002/jor.22590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/14/2014] [Indexed: 02/04/2023]
Abstract
Promoting new bone formation during distraction osteogenesis (DO) in elderly patients with osteoporosis is still a challenge. In this study, we investigated the effect of gene therapy using local Runt-related gene 2 on new bone formation during osteoporotic mandibular DO in rabbits. First, we successfully established a mandibular osteoporotic animal model by ovariectomizing rabbits. Second, the right mandibles of the osteoporotic rabbits were distracted after corticotomy. The distraction gap of the rabbits in Group A2 and B2 were injected with Adv-hRunx2-GFP-transfected adipose-derived stromal cells (ADSCs) and Adv-GFP-transfected ADSCs, respectively. Rabbits in Groups C2 (ovariectomized control) and D2 (sham surgery control) were injected with physiologic saline. New-generation bone tissue in the distraction gap was analyzed via plain radiographic examinations, micro-computed tomography, histological examinations, and biomechanical testing at weeks 3, 6, and 9 of the consolidation period. Results of above examinations showed that no ideal new bone formation was observed in Groups B2 and C2, but obvious ideal new bone formation was observed in Group A2 and D2. The results suggested that gene therapy using rhRunx2-modified ADSCs promoted new bone formation during osteoporotic mandibular DO and effectively compensated for the detrimental effects of systemic osteoporosis on new bone formation.
Collapse
Affiliation(s)
- Jing-Jing Sun
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, P.R, China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, P.R, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
de Oliveira EMF, Martinez EF, Bossonaro JP, Ribeiro RC, de Araújo VC, Napimoga MH. In-vitro analysis of rhBMP-2 effects in human osteogenic cells. Can J Physiol Pharmacol 2013; 91:929-34. [PMID: 24117260 DOI: 10.1139/cjpp-2013-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the in vitro expression of bone-related proteins by osteoblasts in the presence of different concentrations of human recombinant bone morphogenetic protein-2 (rhBMP-2). Immortalized human fetal osteoblastic cell line 1.19 (hFOB) were exposed to different concentrations of rhBMP-2 (10, 50, or 100 ng/mL) for 72 h. Cell proliferation and viability (MTT assay), as well as the expression of fibronectin, osteonectin, and osteopontin were assessed by indirect immunofluorescence and Western blot. Neither of the 3 concentrations of rhBMP-2 caused statistically significant alterations in cell proliferation and viability, although the concentration of 100 ng/mL showed lower values for both assays after both 48 and 72 h of exposure. There was no alteration in the expression of noncollagenous proteins, as analyzed by immunofluorescence, when compared with the control group. Furthermore, in the Western blot assay we observed a statistically significant decrease in fibronectin and osteonectin at 100 ng rhBMP-2/mL (p < 0.05) by comparison with the medium alone. The expression of osteopontin decreased slightly in all 3 concentrations of rhBMP-2 tested; however, the change was not statistically significant (p > 0.05). In this in-vitro study, the tested concentrations of rhBMP-2 appeared to decrease the expression of important bone-related molecules in pre-osteoblast cells.
Collapse
Affiliation(s)
- Eder M F de Oliveira
- a Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Makhdom AM, Hamdy RC. The Role of Growth Factors on Acceleration of Bone Regeneration During Distraction Osteogenesis. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:442-53. [PMID: 23582172 DOI: 10.1089/ten.teb.2012.0717] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Asim M. Makhdom
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- Department of Orthopaedic Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reggie C. Hamdy
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Sun Z, Tee BC, Kennedy KS, Kennedy PM, Kim DG, Mallery SR, Fields HW. Scaffold-based delivery of autologous mesenchymal stem cells for mandibular distraction osteogenesis: preliminary studies in a porcine model. PLoS One 2013; 8:e74672. [PMID: 24040314 PMCID: PMC3764039 DOI: 10.1371/journal.pone.0074672] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/02/2013] [Indexed: 01/12/2023] Open
Abstract
Purpose Bone regeneration through distraction osteogenesis (DO) is promising but remarkably slow. To accelerate it, autologous mesenchymal stem cells have been directly injected to the distraction site in a few recent studies. Compared to direct injection, a scaffold-based method can provide earlier cell delivery with potentially better controlled cell distribution and retention. This pilot project investigated a scaffold-based cell-delivery approach in a porcine mandibular DO model. Materials and Methods Eleven adolescent domestic pigs were used for two major sets of studies. The in-vitro set established methodologies to: aspirate bone marrow from the tibia; isolate, characterize and expand bone marrow-derived mesenchymal stem cells (BM-MSCs); enhance BM-MSC osteogenic differentiation using FGF-2; and confirm cell integration with a gelatin-based Gelfoam scaffold. The in-vivo set transplanted autologous stem cells into the mandibular distraction sites using Gelfoam scaffolds; completed a standard DO-course and assessed bone regeneration by macroscopic, radiographic and histological methods. Repeated-measure ANOVAs and t-tests were used for statistical analyses. Results From aspirated bone marrow, multi-potent, heterogeneous BM-MSCs purified from hematopoietic stem cell contamination were obtained. FGF-2 significantly enhanced pig BM-MSC osteogenic differentiation and proliferation, with 5 ng/ml determined as the optimal dosage. Pig BM-MSCs integrated readily with Gelfoam and maintained viability and proliferative ability. After integration with Gelfoam scaffolds, 2.4–5.8×107 autologous BM-MSCs (undifferentiated or differentiated) were transplanted to each experimental DO site. Among 8 evaluable DO sites included in the final analyses, the experimental DO sites demonstrated less interfragmentary mobility, more advanced gap obliteration, higher mineral content and faster mineral apposition than the control sites, and all transplanted scaffolds were completely degraded. Conclusion It is technically feasible and biologically sound to deliver autologous BM-MSCs to the distraction site immediately after osteotomy using a Gelfoam scaffold to enhance mandibular DO.
Collapse
Affiliation(s)
- Zongyang Sun
- Division of Orthodontics, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Boon Ching Tee
- Division of Orthodontics, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Kelly S. Kennedy
- Division of Oral and Maxillofacial Surgery, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Patrick M. Kennedy
- Division of Oral and Maxillofacial Surgery, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Susan R. Mallery
- Division of Oral Pathology and Radiology, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Henry W. Fields
- Division of Orthodontics, College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
23
|
Wegman F, Oner FC, Dhert WJA, Alblas J. Non-viral gene therapy for bone tissue engineering. Biotechnol Genet Eng Rev 2013; 29:206-20. [PMID: 24568281 DOI: 10.1080/02648725.2013.801227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The possibilities of using gene therapy for bone regeneration have been extensively investigated. Improvements in the design of new transfection agents, combining vectors and delivery/release systems to diminish cytotoxicity and increase transfection efficiencies have led to several successful in vitro, ex vivo and in vivo strategies. These include growth factor or short interfering ribonucleic acid (siRNA) delivery, or even enzyme replacement therapies, and have led to increased osteogenic differentiation and bone formation in vivo. These results provide optimism to consider use in humans with some of these gene-delivery strategies in the near future.
Collapse
Affiliation(s)
- Fiona Wegman
- a Department of Orthopaedics , UMC Utrecht , Utrecht , The Netherlands
| | | | | | | |
Collapse
|
24
|
Hong P, Boyd D, Beyea SD, Bezuhly M. Enhancement of bone consolidation in mandibular distraction osteogenesis: A contemporary review of experimental studies involving adjuvant therapies. J Plast Reconstr Aesthet Surg 2013; 66:883-95. [PMID: 23602673 DOI: 10.1016/j.bjps.2013.03.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 02/14/2013] [Accepted: 03/16/2013] [Indexed: 11/28/2022]
|
25
|
Stübinger S, Dard M. The rabbit as experimental model for research in implant dentistry and related tissue regeneration. J INVEST SURG 2013; 26:266-82. [PMID: 23617292 DOI: 10.3109/08941939.2013.778922] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of rabbits for experimental research has a long historical tradition. The aim of this review consists in outlining the use of the rabbit for research in implant dentistry and related tissue regeneration. Rabbits appear as a first-hand choice for fundamental implant design studies because of their size, easy handling, short life span, and economical aspects in purchasing and sustaining. In the following, the various anatomical sites in the rabbit will be summarized to provide an overview of current possibilities and limitations of this model for bone research in oral implantology.
Collapse
Affiliation(s)
- Stefan Stübinger
- Musculoskeletal Research Unit, University of Zurich , Zurich , Switzerland
| | | |
Collapse
|
26
|
Yusheng Y, Chengyue W, Zhiying W, Guijun W. Transsutural distraction and tissue regeneration of the midfacial skeleton: experimental studies in growing dogs. Cleft Palate Craniofac J 2013; 51:326-33. [PMID: 23369015 DOI: 10.1597/12-056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective : The purpose of this study was to evaluate the effect of different mechanical forces on the expansion of the palatine suture using transsutural distraction osteogenesis. Methods : A total of 48 dogs were used in this study. The experimental groups were treated with a custom-designed internal distractor. Bone regeneration was determined with x-rays and histology. The computed values underwent statistical analyses using analysis of variance. Results : The maxillary complex was most noticeably advanced with an applied mechanical force of 600 g (20.15 ± 1.36 mm), compared with forces of 400 g (19.88 ± 1.41 mm) and 800 g (2.24 ± 0.93 mm). Immunohistochemical staining showed that the expression of bone morphogenetic protein-2 and bone morphogenetic protein-4 fluctuated with different mechanical forces. These changes were statistically significant when 600 g of force was applied within 30 days of distraction (P < .05). Conclusions : Transsutural distraction osteogenesis in the growing dog should be safe and well tolerated in inducing bony lengthening of the maxilla, and the optimal force is 600 × g. Bone morphogenetic protein-2 and bone morphogenetic protein-4 may play an important roles in the signaling pathways that link mechanical forces and biological responses.
Collapse
|
27
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Alman BA, Kelley SP, Nam D. Heal thyself: using endogenous regeneration to repair bone. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:431-6. [PMID: 21682602 DOI: 10.1089/ten.teb.2011.0189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bone has the capacity to repair itself after an injury, and this occurs in normal fracture repair. This reparative process can be harnessed to regenerate segments of bone using distraction osteogenesis, in which the healing bone is slowly stretched. The use of animal models is identifying the important sources of cells for this endogenous bone regeneration, signaling molecules that regulate this reparative process, and the environmental cues important for success bone regeneration. A more complete understanding of the cells and pathways involved in this process can be applied to improve the outcome of distraction osteogenesis and to the development of methods to enhance endogenous bone regeneration.
Collapse
Affiliation(s)
- Benjamin A Alman
- Division of Orthopaedics and Department of Surgery, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|