1
|
Agbomhere Hamed M, Ahmed Surakat O, Olukayode Ekundina V, Bolajoko Jimoh K, Ezekiel Adeogun A, Omolola Akanji N, Joshua Babalola O, Chukwunonso Eya P. Neglected Tropical Diseases and Female Infertility: Possible Pathophysiological Mechanisms. J Trop Med 2025; 2025:2126664. [PMID: 40337250 PMCID: PMC12058319 DOI: 10.1155/jotm/2126664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Battling female infertility has posed a global challenge, where neglected tropical diseases (NTDs) are nonetheless a notable contributing factor. NTDs affect a variety of diseases, often of a chronic nature, which are often cited as some of the most lethal diseases operating against the most economically disadvantaged populations across the globe. The various causative agents for NTDs have been documented and could originate from a myriad of sources-from bacteria, fungi and viruses to ecto- and endoparasitic species-including but not limited to helminths and protozoa. This paper will seek to describe how NTDs influence female reproductive health, together with likely mediators. While these diseases have curable forms, their effects have gone well beyond female infertility, to major pain, disability and even mortality, particularly in poorer countries, thus causing economic hardship, reduced productivity and a pool of social stigma. NTDs adversely affect female reproductive functions through multiple mechanisms, including ROS-sensitive signalling, depression of steroidogenic markers and promotion of apoptosis. The effects also may reflect their influence on ovarian histomorphology, consequently resulting in female infertility. Current-directed studies, however, suggest a potential benefit in combining drugs for the most common NTDs as a deterrent to possible female infertility endowed by NTD infection. Nonetheless, further clinical investigations will be instrumental in elucidating the probable preventive value of combination drugs as adjuvant therapy to NTDs infections. This will provide comprehensive insight into the pathophysiological and molecular basis for the impairment of female fertility brought about by NTDs, leading to the development of preventive models to curb the adverse effects of NTDs on female reproductive health. Therefore, attention should be given to providing the right, timely and effective mode of treatment for NTDs-related female infertility.
Collapse
Affiliation(s)
- Moses Agbomhere Hamed
- Department of Neuroendocrinology, The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Olabanji Ahmed Surakat
- Department of Zoology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | | | - Kabirat Bolajoko Jimoh
- Department of Neuroendocrinology, The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Adetomiwa Ezekiel Adeogun
- Department of Neuroendocrinology, The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Nafisat Omolola Akanji
- Department of Neuroendocrinology, The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Patrick Chukwunonso Eya
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- Department of Environmental Health Science, National Open University of Nigeria, Jabi, Abuja, Nigeria
| |
Collapse
|
2
|
Bansal A, Gamal W, Menon IJ, Olson V, Wu X, D'Souza MJ. Laser-assisted skin delivery of immunocontraceptive rabies nanoparticulate vaccine in poloxamer gel. Eur J Pharm Sci 2020; 155:105560. [PMID: 32949750 PMCID: PMC10964170 DOI: 10.1016/j.ejps.2020.105560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023]
Abstract
A painless skin delivery of vaccine for disease prevention is of great advantage in improving compliance in patients. To test this idea as a proof of concept, we utilized a pDNA vaccine construct, pDNAg333-2GnRH that has a dual function of controlling rabies and inducing immunocontraception in animals. The pDNA was administered to mice in a nanoparticulate form delivered through the skin using the P.L.E.A.S.E.® (Precise Laser Epidermal System) microporation laser device. Laser application was well tolerated, and mild skin reaction was healed completely in 8 days. We demonstrated that adjuvanted nanoparticulate pDNA vaccine significantly upregulated the expression of co-stimulatory molecules in dendritic cells. After topical administration of the adjuvanted nano-vaccine in mice, the high avidity serum for GnRH antibodies were induced and maintained up to 9 weeks. The induced immune response was of a mixed Th1/Th2 profile as measured by IgG subclasses (IgG2a and IgG1) and cytokine levels (IFN-γ and IL-4). Using flow cytometry, we revealed an increase of CD8+ T-cells and CD45R B cells upon the administration of the adjuvanted vaccine. Our previous study used the same pDNA nanoparticulate vaccine through an IM route, and a comparable immune response was induced using P.L.E.A.S.E. However, the vaccine dose in the current study was four-fold less than what was applied through the IM route.We concluded that laser-assisted skin vaccination has a potential of becoming a safe and reliable vaccination tool for rabies vaccination in animals or even in humans for pre- or post-exposure prophylaxis.
Collapse
Affiliation(s)
- Amit Bansal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA.
| | - Wael Gamal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| | - Ipshita Jayaprakash Menon
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| | - Victoria Olson
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Xianfu Wu
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Martin J D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| |
Collapse
|
3
|
Wu X, Yang Y, Kling C, Seigler L, Gallardo-Romero NF, Martin BE, Smith TG, Olson VA. Inactivated Rabies Virus-Vectored Immunocontraceptive Vaccine in a Thermo-Responsive Hydrogel Induces High and Persistent Antibodies against Rabies, but Insufficient Antibodies against Gonadotropin-Releasing Hormone for Contraception. Vaccines (Basel) 2019; 7:E73. [PMID: 31349649 PMCID: PMC6789544 DOI: 10.3390/vaccines7030073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/30/2022] Open
Abstract
Rabies is preventable through vaccination, but the need to mount annual canine vaccination campaigns presents major challenges in rabies control and prevention. The development of a rabies vaccine that ensures lifelong immunity and animal population management in one dose could be extremely advantageous. A nonsurgical alternative to spay/neuter is a high priority for animal welfare, but irreversible infertility in one dose has not been achieved. Towards this goal, we developed a rabies virus-vectored immunocontraceptive vaccine ERA-2GnRH, which protected against rabies virus challenge and induced >80% infertility in mice after three doses in a live, liquid-vaccine formulation (Wu et al., 2014). To improve safety and use, we formulated an inactivated vaccine in a thermo-responsive chitosan hydrogel for one-dose delivery and studied the immune responses in mice. The hydrogel did not cause any injection site reactions, and the killed ERA-2GnRH vaccine induced high and persistent rabies virus neutralizing antibodies (rVNA) in mice. The rVNA in the hydrogel group reached an average of 327.40 IU/mL, more than 200 times higher than the liquid vaccine alone. The Gonadotropin-releasing hormone (GnRH) antibodies were also present and lasted longer in the hydrogel group, but did not prevent fertility in mice, reflecting a possible threshold level of GnRH antibodies for contraception. In conclusion, the hydrogel facilitated a high and long-lasting immunity, and ERA-2GnRH is a promising dual vaccine candidate. Future studies will focus on rabies protection in target species and improving the anti-GnRH response.
Collapse
Affiliation(s)
- Xianfu Wu
- Centers for Disease Control and Prevention, Poxvirus and Rabies Branch/DHCPP/NCEZID, Atlanta, GA 30329, USA.
| | - Yong Yang
- Centers for Disease Control and Prevention, Poxvirus and Rabies Branch/DHCPP/NCEZID, Atlanta, GA 30329, USA
- ARK Temporary Staffing, Lawrenceville, GA 30046, USA
| | - Chantal Kling
- Centers for Disease Control and Prevention, Poxvirus and Rabies Branch/DHCPP/NCEZID, Atlanta, GA 30329, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Laurie Seigler
- Centers for Disease Control and Prevention, Poxvirus and Rabies Branch/DHCPP/NCEZID, Atlanta, GA 30329, USA
- ARK Temporary Staffing, Lawrenceville, GA 30046, USA
| | - Nadia F Gallardo-Romero
- Centers for Disease Control and Prevention, Poxvirus and Rabies Branch/DHCPP/NCEZID, Atlanta, GA 30329, USA
| | - Brock E Martin
- Centers for Disease Control and Prevention, Poxvirus and Rabies Branch/DHCPP/NCEZID, Atlanta, GA 30329, USA
| | - Todd G Smith
- Centers for Disease Control and Prevention, Poxvirus and Rabies Branch/DHCPP/NCEZID, Atlanta, GA 30329, USA
| | - Victoria A Olson
- Centers for Disease Control and Prevention, Poxvirus and Rabies Branch/DHCPP/NCEZID, Atlanta, GA 30329, USA
| |
Collapse
|
4
|
Zhang Y, Yang J, Li M, Cui M, Fu ZF, Zhao L, Zhou M. A Recombinant Rabies Virus Expressing Fms-like Tyrosine Kinase 3 Ligand (Flt3L) Induces Enhanced Immunogenicity in Mice. Virol Sin 2019; 34:662-672. [PMID: 31254272 DOI: 10.1007/s12250-019-00144-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Rabies is a zoonotic disease that still causes 59,000 human deaths each year, and rabies vaccine is the most effective way to control the disease. Our previous studies suggested that the maturation of DC plays an important role in enhancing the immunogenicity of rabies vaccine. Flt3L has been reported to own the ability to accelerate the DC maturation, therefore, in this study, a recombinant rabies virus expressing mouse Flt3L, designated as LBNSE-Flt3L, was constructed, and its immunogenicity was characterized. It was found that LBNSE-Flt3L could enhance the maturation of DC both in vitro and in vivo, and significantly more TFH cells and Germinal Center B (GC B) cells were generated in mice immunized with LBNSE-Flt3L than those immunized with the parent virus LBNSE. Consequently, expressing of Flt3L could elevate the level of virus-neutralizing antibodies (VNA) in immunized mice which provides a better protection from a lethal rabies virus challenge. Taken together, our study extends the potential of Flt3L as a good adjuvant to develop novel rabies vaccine by enhancing the VNA production through activating the DC-TFH-GC B axis in immunized mice.
Collapse
Affiliation(s)
- Yachun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingming Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
El-Sayed A. Advances in rabies prophylaxis and treatment with emphasis on immunoresponse mechanisms. Int J Vet Sci Med 2018; 6:8-15. [PMID: 30255072 PMCID: PMC6149183 DOI: 10.1016/j.ijvsm.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Rabies is a vaccine-preventable fatal disease in man and most mammals. Although rabies is recorded in 150 territories and is responsible for at least 60,000 human deaths every year worldwide, it is a neglected tropical problem. Most of the rabies free countries are considered to be fragile free as the disease may re-emerge easily through wild mammals. For the performance of effective rabies eradication programs, a complex set of strategies and activities is required. At the time, a joint project of WHO-OIE-FAO which was announced in 2015, plans to control animal-human-ecosystems rabies interface. For effective rabies control, prophylactic policies must be applied. These include various educational outreaches for farmers and people living in endemic areas, enforced legislation for responsible dog ownership, control programs for the free-ranging stray dog and cat populations, field large-scale vaccination campaigns, and the development of new vaccine delivery strategies for both humans and animals. The present work presents the advances in the development of new safe, effective and economic vaccines for domestic dogs, and oral vaccines for the control of the disease in wild animals. It presents also some therapeutic protocols used for the treatment of patients.
Collapse
Affiliation(s)
- A El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Bansal A, Wu X, Olson V, D'Souza MJ. Characterization of rabies pDNA nanoparticulate vaccine in poloxamer 407 gel. Int J Pharm 2018; 545:318-328. [PMID: 29746999 DOI: 10.1016/j.ijpharm.2018.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022]
Abstract
Plasmid DNA (pDNA) vaccines have the potential for protection against a wide range of diseases including rabies but are rapid in degradation and poor in uptake by antigen-presenting cells. To overcome the limitations, we fabricated a pDNA nanoparticulate vaccine. The negatively charged pDNA was adsorbed onto the surface of cationic PLGA (poly (d, l-lactide-co-glycolide))-chitosan nanoparticles and were used as a delivery vehicle. To create a hydrogel for sustainable vaccine release, we dispersed the pDNA nanoparticles in poloxamer 407 gel which is liquid at 4 °C and turns into soft gels at 37 °C, providing ease of administration and preventing burst release of pDNA. Complete immobilization of pDNA to cationic nanoparticles was achieved at a pDNA to nanoparticles ratio (P/N) of 1/50. Cellular uptake of nanoparticles was both time and concentration dependent and followed a saturation kinetics with Vmax of 11.389 µg/mL h and Km of 139.48 µg/mL. The in vitro release studies showed the nanoparticulate vaccine has a sustained release for up to 24 days. In summary, pDNA PLGA-chitosan nanoparticles were non-cytotoxic, their buffering capacity and cell uptake were enhanced, and sustained the release of pDNA. We expect our pDNA vaccine's potency will be greatly improved in the animal studies.
Collapse
Affiliation(s)
- Amit Bansal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA.
| | - Xianfu Wu
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Victoria Olson
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Martin J D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| |
Collapse
|
7
|
Zhang Y, Zhou M, Li Y, Luo Z, Chen H, Cui M, Fu ZF, Zhao L. Recombinant rabies virus with the glycoprotein fused with a DC-binding peptide is an efficacious rabies vaccine. Oncotarget 2018; 9:831-841. [PMID: 29416659 PMCID: PMC5787516 DOI: 10.18632/oncotarget.23160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Our previous studies demonstrated that recruiting and/or activating dendritic cells (DCs) enhanced the immunogenicity of recombinant rabies viruses (rRABV). In this study, rRABV LBNSE with a small DC-binding peptide (designated as rLBNSE-DCBp) or a negative control peptide (designated as rLBNSE-DCCp) fused to the glycoprotein (G) was constructed and rescued. As expected, significantly more activated DCs were detected in rLBNSE-DCBp-immunized mice than those immunized with rLBNSE or rLBNSE-DCCp. Subsequently, significantly more generation of TFH and GC B cells were observed in rLBNSE-DCBp immunized mice than those in rLBNSE or rLBNSE-DCCp-immunized mice. In addition, significantly higher levels of virus neutralizing antibodies (VNAs) were observed in mice immunized with rLBNSE-DCBp than those immunized with rLBNSE or rLBNSE-DCCp, resulting in a better protection of rLBNSE-DCBp immunized mice against the lethal challenge. Taken together, our results suggest that rRABV with G fused with DCBp is a promising rabies vaccine candidate.
Collapse
Affiliation(s)
- Yachun Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingying Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaochen Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S, Manjunatha Reddy GB, Panda S, Dhama K. Rabies - epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet Q 2017. [PMID: 28643547 DOI: 10.1080/01652176.2017.1343516] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a zoonotic, fatal and progressive neurological infection caused by rabies virus of the genus Lyssavirus and family Rhabdoviridae. It affects all warm-blooded animals and the disease is prevalent throughout the world and endemic in many countries except in Islands like Australia and Antarctica. Over 60,000 peoples die every year due to rabies, while approximately 15 million people receive rabies post-exposure prophylaxis (PEP) annually. Bite of rabid animals and saliva of infected host are mainly responsible for transmission and wildlife like raccoons, skunks, bats and foxes are main reservoirs for rabies. The incubation period is highly variable from 2 weeks to 6 years (avg. 2-3 months). Though severe neurologic signs and fatal outcome, neuropathological lesions are relatively mild. Rabies virus exploits various mechanisms to evade the host immune responses. Being a major zoonosis, precise and rapid diagnosis is important for early treatment and effective prevention and control measures. Traditional rapid Seller's staining and histopathological methods are still in use for diagnosis of rabies. Direct immunofluoroscent test (dFAT) is gold standard test and most commonly recommended for diagnosis of rabies in fresh brain tissues of dogs by both OIE and WHO. Mouse inoculation test (MIT) and polymerase chain reaction (PCR) are superior and used for routine diagnosis. Vaccination with live attenuated or inactivated viruses, DNA and recombinant vaccines can be done in endemic areas. This review describes in detail about epidemiology, transmission, pathogenesis, advances in diagnosis, vaccination and therapeutic approaches along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Rajendra Singh
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Karam Pal Singh
- b Centre for Animal Disease Research and Diagnosis (CADRAD) , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Susan Cherian
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Mani Saminathan
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Sanjay Kapoor
- c Department of Veterinary Microbiology , LLR University of Veterinary and Animal Sciences , Hisar , Haryana , India
| | - G B Manjunatha Reddy
- d ICAR-National Institute of Veterinary Epidemiology and Disease Informatics , Bengaluru , Karnataka , India
| | - Shibani Panda
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Kuldeep Dhama
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| |
Collapse
|
9
|
Smith TG, Wu X, Ellison JA, Wadhwa A, Franka R, Langham GL, Skinner BL, Hanlon CA, Bronshtein VL. Assessment of the immunogenicity of rabies vaccine preserved by vaporization and delivered to the duodenal mucosa of gray foxes (Urocyon cinereoargenteus). Am J Vet Res 2017; 78:752-756. [PMID: 28541146 PMCID: PMC5520579 DOI: 10.2460/ajvr.78.6.752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To assess the immunogenicity of thermostable live-attenuated rabies virus (RABV) preserved by vaporization (PBV) and delivered to the duodenal mucosa of a wildlife species targeted for an oral vaccination program. ANIMALS 8 gray foxes (Urocyon cinereoargenteus). PROCEDURES Endoscopy was used to place RABV PBV (n = 3 foxes), alginate-encapsulated RABV PBV (3 foxes), or nonpreserved RABV (2 foxes) vaccine into the duodenum of foxes. Blood samples were collected weekly to monitor the immune response. Saliva samples were collected weekly and tested for virus shedding by use of a conventional reverse-transcriptase PCR assay. Foxes were euthanized 28 days after vaccine administration, and relevant tissues were collected and tested for presence of RABV. RESULTS 2 of 3 foxes that received RABV PBV and 1 of 2 foxes that received nonpreserved RABV seroconverted by day 28. None of the 3 foxes receiving alginate-encapsulated RABV PBV seroconverted. No RABV RNA was detected in saliva at any of the time points, and RABV antigen or RNA was not detected in any of the tissues obtained on day 28. None of the foxes displayed any clinical signs of rabies. CONCLUSIONS AND CLINICAL RELEVANCE Results for this study indicated that a live-attenuated RABV vaccine delivered to the duodenal mucosa can induce an immune response in gray foxes. A safe, potent, thermostable RABV vaccine that could be delivered orally to wildlife or domestic animals would enhance current rabies control and prevention efforts.
Collapse
|