1
|
Iyer M, Anand U, Thiruvenkataswamy S, Babu HWS, Narayanasamy A, Prajapati VK, Tiwari CK, Gopalakrishnan AV, Bontempi E, Sonne C, Barceló D, Vellingiri B. A review of chromium (Cr) epigenetic toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163483. [PMID: 37075992 DOI: 10.1016/j.scitotenv.2023.163483] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Carcinogenic metals affect a variety of cellular processes, causing oxidative stress and cancer. The widespread distribution of these metals caused by industrial, residential, agricultural, medical, and technical activities raises concern for adverse environmental and human health effects. Of these metals, chromium (Cr) and its derivatives, including Cr(VI)-induced, are of a public health concern as they cause DNA epigenetic alterations resulting in heritable changes in gene expression. Here, we review and discuss the role of Cr(VI) in epigenetic changes, including DNA methylation, histone modifications, micro-RNA changes, biomarkers of exposure and toxicity, and highlight prevention and intervention strategies to protect susceptible populations from exposure and adverse occupational health effects. Cr(VI) is a ubiquitous toxin linked to cardiovascular, developmental, neurological, and endocrine diseases as well as immunologic disorders and a high number of cancer types in humans following inhalation and skin contact. Cr alters DNA methylation levels as well as global and gene-specific histone posttranslational modifications, emphasizing the importance of considering epigenetics as a possible mechanism underlying Cr(VI) toxicity and cell-transforming ability. Our review shows that determining the levels of Cr(VI) in occupational workers is a crucial first step in shielding health problems, including cancer and other disorders. More clinical and preventative measures are therefore needed to better understand the toxicity and safeguard employees against cancer.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Saranya Thiruvenkataswamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology (PG-SF), PSG college of arts and science, Coimbatore 641014, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Chandan Kumar Tiwari
- Research and Development section, Carestream Health Inc., Oakdale, MN 55128, United States of America
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore 632 014, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, North block, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
2
|
Jin Y, Chen Z, Chen Q, Sha L, Shen C. [Role and Significance of Bioactive Substances in Sputum
in the Diagnosis of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:867-873. [PMID: 34923805 PMCID: PMC8695240 DOI: 10.3779/j.issn.1009-3419.2021.102.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
肺癌是我国目前发病率最高的恶性肿瘤之一,其诊断的金标准需要进行组织活检的病理学检查或脱落细胞学检查,二者的有创性和敏感性限制了他们的使用。痰液中含有大量核酸、蛋白质,是肺功能的良好反映物,肺癌组织也会影响痰液中的生物成分,检测其中的生物活性物质可有助于肺癌的诊断。本文综合目前国内外的研究结果,对痰液中可用于肺癌诊断的生物活性物质做一综述。
Collapse
Affiliation(s)
- Yuming Jin
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Zixuan Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Quan Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Leihao Sha
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Cheng Shen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Verma AK, Goyal Y, Bhatt D, Dev K, Beg MMA. MicroRNA: Biogenesis and potential role as biomarkers in lung diseases. Meta Gene 2021; 29:100920. [DOI: 10.1016/j.mgene.2021.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
4
|
Decreased expression of microRNA-320a promotes proliferation and invasion of non-small cell lung cancer cells by increasing VDAC1 expression. Oncotarget 2018; 7:49470-49480. [PMID: 27304056 PMCID: PMC5226522 DOI: 10.18632/oncotarget.9943] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/20/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence indicates that Voltage Dependent Anion Channel 1 (VDAC1) correlates with the initiation and progression of non-small cell lung cancer (NSCLC). However, the regulatory mechanism of VDAC1 in NSCLC remains unclear. Previous studies have reported that expression of miR-320a was decreased in human primary squamous cell lung carcinoma, which prompted us to investigate whether there is a functional link between decreased miR-320a and a high expression of VDAC1. In the present report, using computational analysis, we first show that miR-320a has a potential binding site on VDAC1 mRNA, and expression of miR-320a was decreased in NSCLC cell lines. Using gain-of-function and rescue experiments, we demonstrate that VDAC1 is a direct target of miR-320a in NSCLC cells, and miR-320a inhibits VDAC1 expression in NSCLC cells. Further we show that MiR-320a was significantly decreased in NSCLC tissues compared with adjacent non-tumor tissues, and MiR-320a level is negatively correlated with VDAC1 in NSCLC tissues by Pearson's correlation coefficient analysis. Moreover, using cellular ATP assay, we found that suppression of VDAC1 expression may inhibit cell proliferation and invasion of NSCLC by decreasing cell energy and metabolism. Importantly, we showed that ectopic overexpression of miR-320a blocked tumor cell proliferation and invasion, both in vitro and in vivo, through inhibiting VDAC1. Our results suggest that reduced expression of miR-320a facilitates the development of NSCLCs by increasing VDAC1 expression. We identified a novel regulatory mechanism between miR-320a and VDAC1, and miR-320a may serve as a tumor suppressor gene and a promising therapeutic target of NSCLCs.
Collapse
|
5
|
Xu X, Cao L, Zhang Y, Yin Y, Hu X, Cui Y. Network analysis of DEGs and verification experiments reveal the notable roles of PTTG1 and MMP9 in lung cancer. Oncol Lett 2018; 15:257-263. [PMID: 29387220 PMCID: PMC5768071 DOI: 10.3892/ol.2017.7329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/02/2017] [Indexed: 01/05/2023] Open
Abstract
Lung cancer, a malignant tumor, is the most frequently fatal cancer, with poor survival rates in the advanced stages. In order to improve the understanding of this disease, and to improve the outcomes of patients, additional studies are required. In the present study, differentially expressed genes (DEGs) in patients with lung cancer compared with controls were identified. To understand how these DEGs act together to account for the initiation of lung cancer, a protein interaction network and a transcriptional regulatory network were constructed to explore the clusters and pathways in lung cancer, and the results indicated that PTTG1 and MMP9 served major roles in the development of lung cancer in the regulatory system. Consistent with this, mRNA and protein expression levels of PTTG1 and MMP9 were significantly upregulated in lung cancer tissues compared with normal lung tissues. The overexpression of PTTG1 or MMP9 was induced in the human bronchial epithelial BEAS-2B cell line, indicating that increased PTTG1 or MMP9 alone may not only facilitate cell migration, proliferation and induce colony formation, but also suppress cell apoptosis. In summary, PTTG1 and MMP9 were identified as potential targets for therapeutic intervention through gene therapy in lung cancer.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Ye Zhang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yan Yin
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xue Hu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yushang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
6
|
Alipoor SD, Adcock IM, Garssen J, Mortaz E, Varahram M, Mirsaeidi M, Velayati A. The roles of miRNAs as potential biomarkers in lung diseases. Eur J Pharmacol 2016; 791:395-404. [PMID: 27634639 PMCID: PMC7094636 DOI: 10.1016/j.ejphar.2016.09.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which can act as master regulators of gene expression, modulate almost all biological process and are essential for maintaining cellular homeostasis. Dysregulation of miRNA expression has been associated with aberrant gene expression and may lead to pathological conditions. Evidence suggests that miRNA expression profiles are altered between health and disease and as such may be considered as biomarkers of disease. Evidence is increasing that miRNAs are particularly important in lung homeostasis and development and have been demonstrated to be the involved in many pulmonary diseases such as asthma, COPD, sarcoidosis, lung cancer and other smoking related diseases. Better understanding of the function of miRNA and the mechanisms underlying their action in the lung, would help to improve current diagnosis and therapeutics strategies in pulmonary diseases. Recently, some miRNA-based drugs have been introduced as possible therapeutic agents. In this review we aim to summarize the recent findings regarding the role of miRNAs in the airways and lung and emphasise their potential therapeutic roles in pulmonary diseases.
Collapse
Affiliation(s)
- Shamila D Alipoor
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biotechnology, Molecular Medicine Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Nutricia Research Centre for Specialized Nutrition, Utrecht, The Netherlands
| | - Esmaeil Mortaz
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK; Clinical Tuberculosis and Epidemiology Research Center, National Research and Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Aliakbar Velayati
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Fawzy MS, Hussein MH, Abdelaziz EZ, Yamany HA, Ismail HM, Toraih EA. Association of MicroRNA-196a2 Variant with Response to Short-Acting β2-Agonist in COPD: An Egyptian Pilot Study. PLoS One 2016; 11:e0152834. [PMID: 27043015 PMCID: PMC4820109 DOI: 10.1371/journal.pone.0152834] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multifactorial chronic respiratory disease, characterized by an obstructive pattern. Understanding the genetic predisposition of COPD is essential to develop personalized treatment regimens. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that modulate the expression levels of specific proteins based on sequence complementarity with their target mRNA molecules. Emerging evidences demonstrated the potential use of miRNAs as a disease biomarker. This pilot study aimed to investigate the association of the MIR-196a2 rs11614913 (C/T) polymorphism with COPD susceptibility, the clinical outcome and bronchodilator response to short-acting β2-agonist. Genotyping of rs11614913 polymorphism was determined in 108 COPD male patients and 116 unrelated controls using real-time polymerase chain reaction technology. In silico target prediction and network core analysis were performed. COPD patients did not show significant differences in the genotype distribution (p = 0.415) and allele frequencies (p = 0.306) of the studied miRNA when compared with controls. There were also no associations with GOLD stage, dyspnea grade, disease exacerbations, COPD assessment test for estimating impact on health status score, or the frequency of intensive care unit admission. However, COPD patients with CC genotype corresponded to the smallest bronchodilator response after Salbutamol inhalation, the heterozygotes (CT) had an intermediate response, while those with the TT genotype showed the highest response (p < 0.001). In conclusion MIR-196a2 rs11614913 polymorphism is associated with the bronchodilator response of COPD in our sample of the Egyptian population, generating hypothesis of the potential use of MIR-196a2 variant as a pharmacogenetic marker for COPD.
Collapse
Affiliation(s)
- Manal S. Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohammad H. Hussein
- Department of Chest Diseases, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Eman Z. Abdelaziz
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hussain A. Yamany
- Department of Medicine, College of Medicine, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| | - Hussein M. Ismail
- Department of Medicine, College of Medicine, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A. Toraih
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Sempere LF. Fully automated fluorescence-based four-color multiplex assay for co-detection of microRNA and protein biomarkers in clinical tissue specimens. Methods Mol Biol 2015; 1211:151-70. [PMID: 25218384 DOI: 10.1007/978-1-4939-1459-3_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The application of locked nucleic acid chemistry for microRNA detection by in situ hybridization, and thereby visualization of microRNA expression at single-cell resolution, has contributed to our understanding of the roles that these short noncoding regulatory RNAs play during development, physiology, and disease. Several groups have implemented chromogenic-based and fluorescence-based protocols to detect microRNA expression in formalin-fixed paraffin-embedded clinical tissue specimens. These emerging robust and reproducible tissue slide-based assays are valid tools to bring about the clinical application of in situ microRNA detection for routine diagnostics. Here, I describe a fully automated fluorescence-based four-color multiplex assay for co-detection of a microRNA (e.g., let-7a, miR-10b, miR-21, miR-34a, miR-126, miR-145, miR-155, miR-205, miR-210), reference RNA (e.g., U6 snRNA, 18S rRNA), and protein markers (e.g., CD11b, CD20, CD45, collagen I, cytokeratin 7, cytokeratin 19, smooth muscle actin, tubulin, vimentin) in FDA-approved Leica Bond-MAX staining station.
Collapse
Affiliation(s)
- Lorenzo F Sempere
- Program in Skeletal Disease and Tumor Microenvironment, Laboratory of microRNA Diagnostics and Therapeutics, Center for Cancer and Cell Biology, Van Andel Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI, 49503, USA,
| |
Collapse
|
9
|
Wang Y, Xu L, Jiang L. miR-1271 promotes non-small-cell lung cancer cell proliferation and invasion via targeting HOXA5. Biochem Biophys Res Commun 2015; 458:714-719. [PMID: 25686496 DOI: 10.1016/j.bbrc.2015.02.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 02/05/2015] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs (∼ 22 nt) that play important roles in the pathogenesis of human diseases by negatively regulating numerous target genes at posttranscriptional level. However, the role of microRNAs in lung cancer, particularly non-small-cell lung cancer (NSCLC), has remained elusive. In this study, two microRNAs, miR-1271 and miR-628, and their predicted target genes were identified differentially expressed in NSCLC by analyzing the miRNA and mRNA expression data from NSCLC tissues and their matching normal controls. miR-1271 and its target gene HOXA5 were selected for further investigation. CCK-8 proliferation assay showed that the cell proliferation was promoted by miR-1271 in NSCLC cells, while miR-1271 inhibitor could significantly inhibited the proliferation of NSCLC cells. Interestingly, migration and invasion assay indicated that overexpression of miR-1271 could significantly promoted the migration and invasion of NSCLC cells, whereas miR-1271 inhibitor could inhibited both cell migration and invasion of NSCLC cells. Western blot showed that miR-1271 suppressed the protein level of HOXA5, and luciferase assays confirmed that miR-1271 directly bound to the 3'untranslated region of HOXA5. This study indicated indicate that miR-1271 regulates NSCLC cell proliferation and invasion, via the down-regulation of HOXA5. Thus, miR-1271 may represent a potential therapeutic target for NSCLC intervention.
Collapse
Affiliation(s)
- Yongfang Wang
- Department of Clinical Laboratory, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213002, China
| | - Lianhong Xu
- Department of Clinical Laboratory, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213002, China
| | - Lixin Jiang
- Department of Clinical Laboratory, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213002, China
| |
Collapse
|
10
|
Borgie M, Ledoux F, Verdin A, Cazier F, Greige H, Shirali P, Courcot D, Dagher Z. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. ENVIRONMENTAL RESEARCH 2015; 136:352-362. [PMID: 25460656 DOI: 10.1016/j.envres.2014.10.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/21/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Assessment of air pollution by particulate matter (PM) is strongly required in Lebanon in the absence of an air quality law including updated air quality standards. Using two different PM2.5-0.3 samples collected at an urban and a rural site, we examined genotoxic/epigenotoxic effects of PM exposure within a human bronchial epithelial cell line (BEAS-2B). Inorganic and organic contents evidence the major contribution of traffic and generating sets in the PM2.5-0.3 composition. Urban PM2.5-0.3 sample increased the phosphorylation of H2AX, the telomerase activity and the miR-21 up-regulation in BEAS-2B cells in a dose-dependent manner. Furthermore, urban PM2.5-0.3 induced a significant increase in CYP1A1, CYP1B1 and AhRR genes expression. The variable concentrations of transition metals and organic compounds detected in the collected PM2.5-0.3 samples might be the active agents leading to a cumulative DNA damage, critical for carcinogenesis.
Collapse
Affiliation(s)
- Mireille Borgie
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Groupe de Recherche Molécules Bioactives, Ecole Doctorale des Sciences et Technologies, Université Libanaise, Liban; Université Lille Nord de France, Lille, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel 1, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Hélène Greige
- Groupe de Recherche Molécules Bioactives, Ecole Doctorale des Sciences et Technologies, Université Libanaise, Liban; Département de Chimie et de Biochimie, Faculté des Sciences, Université Libanaise, Liban
| | - Pirouz Shirali
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Université Lille Nord de France, Lille, France.
| | - Zeina Dagher
- Groupe de Recherche Molécules Bioactives, Ecole Doctorale des Sciences et Technologies, Université Libanaise, Liban; Département de Biologie, Faculté des Sciences, Université Libanaise, Liban
| |
Collapse
|
11
|
Zhong K, Chen K, Han L, Li B. MicroRNA-30b/c inhibits non-small cell lung cancer cell proliferation by targeting Rab18. BMC Cancer 2014; 14:703. [PMID: 25249344 PMCID: PMC4180967 DOI: 10.1186/1471-2407-14-703] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/17/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptional regulate gene expression in a variety of cancers. Increasing evidences indicate that miR-30 expression is down-regulated in numerous human cancers including non-small cell lung cancer (NSCLC) which hypothesizes that miR-30 may play an important role in tumorigenesis. The aim of this study was to investigate the target gene of miR-30 and its roles in tumor growth of NSCLC. METHODS Luciferase reporter assays were employed to validate regulation of a putative target of miR-30. The effect of miR-30 on endogenous levels of this target were subsequently confirmed via Western blot (WB). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to determine the expression level of miR-30 in NSCLC specimens and adjacent non-tumor tissues. MTT assays were conducted to explore the impact of miR-30 overexpression on the proliferation of human NSCLC cells. RESULTS Both miR-30b and miR-30c (miR-30b/c) were found having target site in same region of Rab18 mRNA. Luciferase assays using a reporter carrying a putative miR-30b/c target site in the coding DNA sequence (CDS) region of Rab18 revealed that miR-30b/c directly targeted Rab18. Overexpression of miR-30b/c led to down-regulation of Rab18 in A549 and H23 cells at protein levels but not mRNA levels. Down-regulation of miR-30b/c and up-regulation of Rab18 protein levels were detected in NSCLC specimens compared with adjacent non-tumor tissues. Overexpression of miR-30b/c suppressed NSCLC cells growth. Knockdown of Rab18 by siRNA significantly inhibited the proliferation of NSCLC cells. CONCLUSIONS We demonstrated that miR-30b/c was down-regulated in NSCLC specimens compared with adjacent non-tumor tissues. miR-30b/c directly targeted and down-regulated Rab18 expression and inhibited NSCLC cells proliferation. These data indicated that miR-30b/c could serve as a tumor suppressor gene involved in NSCLC pathogenesis.
Collapse
Affiliation(s)
| | | | - Lin Han
- Department of Cardiothoracic Surgery, Changhai Hospital affiliated to Second Military Medical University, Shanghai 200433, China.
| | | |
Collapse
|
12
|
Sempere LF. Tissue slide-based microRNA characterization of tumors: how detailed could diagnosis become for cancer medicine? Expert Rev Mol Diagn 2014; 14:853-69. [PMID: 25090088 PMCID: PMC4364265 DOI: 10.1586/14737159.2014.944507] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
miRNAs are short, non-coding, regulatory RNAs that exert cell type-dependent, context-dependent, transcriptome-wide gene expression control under physiological and pathological conditions. Tissue slide-based assays provide qualitative (tumor compartment) and semi-quantitative (expression levels) information about altered miRNA expression at single-cell resolution in clinical tumor specimens. Reviewed here are key technological advances in the last 5 years that have led to implementation of fully automated, robust and reproducible tissue slide-based assays for in situ miRNA detection on US FDA-approved instruments; recent tissue slide-based discovery studies that suggest potential clinical applications of specific miRNAs in cancer medicine are highlighted; and the challenges in bringing tissue slide-based miRNA assays into the clinic are discussed, including clinical validation, biomarker performance, biomarker space and integration with other biomarkers.
Collapse
Affiliation(s)
- Lorenzo F Sempere
- Laboratory of microRNA Diagnostics and Therapeutics, Van Andel Research Institute, 333 Bostwick Ave, N.E, Grand Rapids, MI 49503, USA
| |
Collapse
|
13
|
Zhang C, Chen Y, Wang M, Chen X, Li Y, Song E, Liu X, Kim S, Peng H. PPM1D silencing by RNA interference inhibits the proliferation of lung cancer cells. World J Surg Oncol 2014; 12:258. [PMID: 25123458 PMCID: PMC4155113 DOI: 10.1186/1477-7819-12-258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/20/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND PPM1D (protein phosphatase, Mg2+/Mn2+ dependent, 1D) has been reported to be involved in multiple human tumors. This study was designed to investigate the functional role of PPM1D in lung cancer cells. METHODS Expression levels of PPM1D were analyzed in A549 and H1299 cells by real-time PCR and Western blotting. Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down PPM1D expression in both cell lines. The effects of PPM1D on lung cancer cell growth were investigated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), colony formation and flow cytometry assays. RESULTS Knockdown of PPM1D in lung cancer cells resulted in decreased cell proliferation and impaired colony formation ability. Moreover, flow cytometry analysis showed that knockdown of PPM1D arrested cell cycle at the G0/G1 phase. Furthermore, PPM1D silencing downregulated the expression of cyclin B1 in H1299 cells. Therefore, it is reasonable to speculate that the mechanisms by which PPM1D knockdown alleviates cell growth may be partly via the induction of cell cycle arrest due to the suppression of cyclin B1. CONCLUSIONS These results suggest that PPM1D silencing by RNA interference (RNAi) may be a potential therapeutic approach for the treatment of lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sekwon Kim
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | | |
Collapse
|
14
|
Chemonges S, Tung JP, Fraser JF. Proteogenomics of selective susceptibility to endotoxin using circulating acute phase biomarkers and bioassay development in sheep: a review. Proteome Sci 2014; 12:12. [PMID: 24580811 PMCID: PMC3946179 DOI: 10.1186/1477-5956-12-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/24/2014] [Indexed: 02/06/2023] Open
Abstract
Scientists have injected endotoxin into animals to investigate and understand various pathologies and novel therapies for several decades. Recent observations have shown that there is selective susceptibility to Escherichia coli lipopolysaccharide (LPS) endotoxin in sheep, despite having similar breed characteristics. The reason behind this difference is unknown, and has prompted studies aiming to explain the variation by proteogenomic characterisation of circulating acute phase biomarkers. It is hypothesised that genetic trait, biochemical, immunological and inflammation marker patterns contribute in defining and predicting mammalian response to LPS. This review discusses the effects of endotoxin and host responses, genetic basis of innate defences, activation of the acute phase response (APR) following experimental LPS challenge, and the current approaches employed in detecting novel biomarkers including acute phase proteins (APP) and micro-ribonucleic acids (miRNAs) in serum or plasma. miRNAs are novel targets for elucidating molecular mechanisms of disease because of their differential expression during pathological, and in healthy states. Changes in miRNA profiles during a disease challenge may be reflected in plasma. Studies show that gel-based two-dimensional electrophoresis (2-DE) coupled with either matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) or liquid chromatography–mass spectrometry (LC-MS/MS) are currently the most used methods for proteome characterisation. Further evidence suggests that proteomic investigations are preferentially shifting from 2-DE to non-gel based LC-MS/MS coupled with data extraction by sequential window acquisition of all theoretical fragment-ion spectra (SWATH) approaches that are able to identify a wider range of proteins. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and most recently proteomic methods have been used to quantify low abundance proteins such as cytokines. qRT-PCR and next generation sequencing (NGS) are used for the characterisation of miRNA. Proteogenomic approaches for detecting APP and novel miRNA profiling are essential in understanding the selective resistance to endotoxin in sheep. The results of these methods could help in understanding similar pathology in humans. It might also be helpful in the development of physiological and diagnostic screening assays for determining experimental inclusion and endpoints, and in clinical trials in future.
Collapse
Affiliation(s)
- Saul Chemonges
- The Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia.
| | | | | |
Collapse
|
15
|
Jin H, Liu L, Deng W, Lu Y, Tian J, Li H, Liu J. HDAC inhibitor DWP0016 suppresses miR-22 to induce growth inhibition and apoptosis via p53-independent PTEN activation in neuroblastoma SH-SY5Y cells. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Sempere LF, Korc M. A method for conducting highly sensitive microRNA in situ hybridization and immunohistochemical analysis in pancreatic cancer. Methods Mol Biol 2013; 980:43-59. [PMID: 23359149 DOI: 10.1007/978-1-62703-287-2_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Profiling experiments in whole tissue biopsies have linked altered expression of microRNAs (miRNAs) to different types of cancer, including pancreatic ductal adenocarcinoma (PDAC). Emerging evidence indicates that altered miRNA expression can occur in different cellular compartments (cancer and non-cancer cells) in tumor lesions, and thus it is important to ascertain which specific cell type expresses a particulars miRNA in PDAC tissues. Here, we describe a highly sensitive fluorescence-based ISH method to visualize miRNA accumulation within individual cells in formalin-fixed paraffin-embedded (FFPE) tissue sections using 5' and 3' terminally fluorescein-labeled locked nucleic acid (LNA)-modified probes. We describe a multicolor ISH/IHC method based on sequential rounds of horseradish peroxidase (HRP)-mediated tyramide signal amplification (TSA) reactions with different in-house synthesized fluorochrome-conjugated substrates that enable co-detection of miRNAs, abundant noncoding RNAs and protein markers for signal quantification, and cell type co-localization studies in FFPE pancreatic tissue sections from clinical specimens and mouse models of PDAC.
Collapse
Affiliation(s)
- Lorenzo F Sempere
- Department of Medicine, Dartmouth Hitchcock Medical Center, Hanover, NH, USA
| | | |
Collapse
|
17
|
He J, Qian X, Carpenter R, Xu Q, Wang L, Qi Y, Wang ZX, Liu LZ, Jiang BH. Repression of miR-143 mediates Cr (VI)-induced tumor angiogenesis via IGF-IR/IRS1/ERK/IL-8 pathway. Toxicol Sci 2013; 134:26-38. [PMID: 23748240 DOI: 10.1093/toxsci/kft101] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hexavalent chromium [Cr (VI)] is a well-known human carcinogen associated with the increased risk of lung cancer. However, the mechanism underlying the Cr (VI)-induced carcinogenesis remains unclear due to the lack of suitable experimental models. In this study, we developed an in vitro model by transforming nontumorigenic human lung epithelial BEAS-2B cells through long-term exposure to Cr (VI). By utilizing this model, we found that miR-143 expression levels were dramatically repressed in Cr (VI)-transformed cells. The repression of miR-143 led to Cr (VI)-induced cell malignant transformation and angiogenesis via upregulation of insulin-like growth factor-1 receptor (IGF-IR) and insulin receptor substrate-1 (IRS1) expression. Moreover, we found that interleukin-8 is the major upregulated angiogenesis factor induced by Cr (VI) through activation of IGF-IR/IRS1 axis followed by activation of downstream ERK/hypoxia-induced factor-1α/NF-κB signaling pathway. These findings establish a causal role and mechanism of miR-143 in regulating Cr (VI)-induced malignant transformation and tumor angiogenesis.
Collapse
Affiliation(s)
- Jun He
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Díaz-García CV, Agudo-López A, Pérez C, López-Martín JA, Rodríguez-Peralto JL, de Castro J, Cortijo A, Martínez-Villanueva M, Iglesias L, García-Carbonero R, Fresno Vara JA, Gámez-Pozo A, Palacios J, Cortés-Funes H, Paz-Ares L, Agulló-Ortuño MT. DICER1, DROSHA and miRNAs in patients with non-small cell lung cancer: implications for outcomes and histologic classification. Carcinogenesis 2013; 34:1031-8. [PMID: 23349018 DOI: 10.1093/carcin/bgt022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The clinical and functional significance of RNA-interference machinery in lung cancer is poorly understood. Besides, microRNAs (miRNA) have the potential to serve both as biomarkers and therapeutic agents, by personalizing diagnosis and therapy. In this study, we investigated whether the expression levels of DICER1 and DROSHA, components of the RNA-interference machinery, can predict survival, and whether the miRNA expression profiles can differentiate histologic subtypes in non-small cell lung cancer (NSCLC). Levels of DICER1, DROSHA and five different miRNAs were measured in NSCLC specimens (N = 115) by qRT-PCR assay and correlated with clinical outcomes. Low expression of DROSHA was associated with an increased median survival (154.2 versus 39.8 months, P = 0.016). Also, high DROSHA expression was associated with decreased median survival in the following subgroups: adenocarcinoma (P = 0.011), grade III tumors (P = 0.038) and low-stage patients (P = 0.014). In multivariate analyses, we found two independent predictors of reduced disease-specific survival: high DROSHA expression [hazards ratio = 2.24; P = 0.04] and advanced tumor stage (hazards ratio = 1.29, P = 0.02). In general, the overall tumor miRNA expression was downregulated in our cohort compared with normal tissues. Expression levels of hsa-let-7a (P = 0.005) and miR-16 (P = 0.003) miRNA were significantly higher in squamous cell carcinoma than in adenocarcinoma samples. This study supports the value of the expression profiling of the components of the miRNA-processing machinery in the prognosis of NSCLC patients, especially DROSHA expression levels. In addition, differential expression of miRNAs, such as hsa-let-7a and miR-16 may be helpful tools in the histologic subclassification of NSCLC.
Collapse
|
19
|
Huang Y, Yang YB, Zhang XH, Yu XL, Wang ZB, Cheng XC. MicroRNA-21 gene and cancer. Med Oncol 2013; 30:376. [PMID: 23277281 DOI: 10.1007/s12032-012-0376-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/14/2012] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of 18-27-nucleotides single-stranded RNA molecules that regulate gene expression at the post-transcriptional level. It has been demonstrated that miRNAs regulate a variety of physiological functions, including development, cell differentiation, proliferation, and apoptosis. There are growing evidence showed that miRNAs can affect the genesis and development of tumor and play a kind of tumor suppressor or oncogenic function by regulating its targetted gene-related signal pathway. miRNA-21 is one of the early discovered miRNAs in human cells, and the expression of miRNA-21 is significantly upregulated in different kinds of solid tumors. Its abnormal expression levels are closely associated with pathogenesis of cancers. This review summarizes the recent study on the field of miRNA-21 and its association with cancer.
Collapse
Affiliation(s)
- Yong Huang
- Animal Science and Technology College, He Nan University of Science and Technology, Luoyang City 471003, Henan Province, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
20
|
Blair LP, Yan Q. Epigenetic mechanisms in commonly occurring cancers. DNA Cell Biol 2012; 31 Suppl 1:S49-61. [PMID: 22519822 PMCID: PMC3460614 DOI: 10.1089/dna.2012.1654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 12/11/2022] Open
Abstract
Cancer is a collection of very complex diseases that share many traits while differing in many ways as well. This makes a universal cure difficult to attain, and it highlights the importance of understanding each type of cancer at a molecular level. Although many strides have been made in identifying the genetic causes for some cancers, we now understand that simple changes in the primary DNA sequence cannot explain the many steps that are necessary to turn a normal cell into a rouge cancer cell. In recent years, some research has shifted to focusing on detailing epigenetic contributions to the development and progression of cancer. These changes occur apart from primary genomic sequences and include DNA methylation, histone modifications, and miRNA expression. Since these epigenetic modifications are reversible, drugs targeting epigenetic changes are becoming more common in clinical settings. Daily discoveries elucidating these complex epigenetic processes are leading to advances in the field of cancer research. These advances, however, come at a rapid and often overwhelming pace. This review specifically summarizes the main epigenetic mechanisms currently documented in solid tumors common in the United States and Europe.
Collapse
Affiliation(s)
- Lauren P Blair
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520-8023, USA.
| | | |
Collapse
|
21
|
Yang LH, Dong Z, Gong ZH. [Extracellular miRNA: a novel molecular biomarker for lung cancer]. YI CHUAN = HEREDITAS 2012; 34:651-8. [PMID: 22698734 DOI: 10.3724/sp.j.1005.2012.00651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Though continuous development and progress have been made in the early diagnosis and treatment of cancer, it is still difficult to find a sensitive, accurate and minimally invasive biomarker for cancer diagnosis and treatment. MicroRNA (miRNA) is a class of non-coding small endogenous RNAs of 21-24 nucleotides in length. As a novel molecular biomarker, extracellular miRNA (ec-miRNA) has the potential to be a minimally invasive, highly sensitive and highly specific marker in cancer diagnosis. Many research achievements of ec-miRNA have been accumulated in recent years. In this paper, the origin, function and detection of ec-miRNA, its role in lung cancer diagnosis as a novel molecular biomarker, and some issues are reviewed.
Collapse
Affiliation(s)
- Li-Hua Yang
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211, China.
| | | | | |
Collapse
|
22
|
Roth C, Stückrath I, Pantel K, Izbicki JR, Tachezy M, Schwarzenbach H. Low levels of cell-free circulating miR-361-3p and miR-625* as blood-based markers for discriminating malignant from benign lung tumors. PLoS One 2012; 7:e38248. [PMID: 22675530 PMCID: PMC3366929 DOI: 10.1371/journal.pone.0038248] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/02/2012] [Indexed: 01/09/2023] Open
Abstract
The high mortality rate of lung cancer patients is mainly due to the late stage at which lung cancer is diagnosed. For effective cancer prevention programs and early diagnosis, better blood-based markers are needed. Hence, blood-based microarray profiling of microRNA (miR) expression was performed in preoperative serum of 21 non-small cell lung cancer (NSCLC) patients and 11 healthy individuals by microfluid biochips containing 1158 different miRs. Two out of the 30 most dysregulated miRs were further validated in serum of 97 NSCLC patients, 20 patients with benign lung diseases and 30 healthy individuals by TaqMan MicroRNA Assays. Microarray profiling showed that miR-361-3p and miR-625* were significantly down-regulated in serum of lung cancer patients. Their further evaluation by quantitative RT-PCR showed that the levels of miR-361-3p and miR-625* were lower in NSCLC than in benign disease (p = 0.0001) and healthy individuals (p = 0.0001, p = 0.0005, respectively). Moreover, the levels of miR-625* were significantly lower in patients with large cell lung cancer (LCLC, p = 0.014) and smoking patients (p = 0.030) than in patients with adenocarcinoma and non-smoking patients, respectively. A rise in the levels of both miRs was observed in the postoperative samples compared with the preoperative levels (p = 0.0001). Functional analyses showed that Smad2 and TGFß1 are not dysregulated by miR-361-3p and miR-625* in the lung cell line A549, respectively. Our present pilot study suggests that miR-361-3p and miR-625* might have a protective influence on the development of NSCLC, and the quantitative assessment of these miRs in blood serum might have diagnostic potential to detect NSCLC, in particular in smokers.
Collapse
Affiliation(s)
- Carina Roth
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabel Stückrath
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R. Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate gene expression. They actively participate in the modulation of important cell physiological processes and are involved in the pathogenesis of lung diseases such as lung cancer, pulmonary fibrosis, asthma and chronic obstructive pulmonary disease. A better understanding of the role that miRNAs play in these diseases could lead to the development of new diagnostic and therapeutic tools. In this review, we discuss the role of some miRNAs in different lung diseases as well as the possible future of these discoveries in clinical applications.
Collapse
|
24
|
Angulo M, Lecuona E, Sznajder JI. Role of MicroRNAs in lung disease. Arch Bronconeumol 2012; 48:325-30. [PMID: 22607962 DOI: 10.1016/j.arbres.2012.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate gene expression. They actively participate in the modulation of important cell physiological processes and are involved in the pathogenesis of lung diseases such as lung cancer, pulmonary fibrosis, asthma and chronic obstructive pulmonary disease. A better understanding of the role that miRNAs play in these diseases could lead to the development of new diagnostic and therapeutic tools. In this review, we discuss the role of some miRNAs in different lung diseases as well as the possible future of these discoveries in clinical applications.
Collapse
Affiliation(s)
- Martín Angulo
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
25
|
Knock-down of core proteins regulating microRNA biogenesis has no effect on sensitivity of lung cancer cells to ionizing radiation. PLoS One 2012; 7:e33134. [PMID: 22479364 PMCID: PMC3316564 DOI: 10.1371/journal.pone.0033134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/05/2012] [Indexed: 12/27/2022] Open
Abstract
Recent studies underline the important role of microRNAs (miRNA) in the development of lung cancer. The main regulators of miRNA biogenesis are the ribonucleases Drosha, Dicer and Ago2. Here the role of core proteins of miRNA biogenesis machinery in the response of human non-small and small cell lung carcinoma cell lines to treatment with ionizing radiation was assessed. We found that Drosha and Dicer were expressed at higher levels in radioresistant but not in sensitive cell lines. However, down-regulation of either Dicer or Drosha had no effect on the sensitivity of cells to irradiation. Elimination of components of the RNA-induced silencing complex Ago2 and Tudor staphylococcal nuclease also did not sensitize cells to the same treatment. Thus, modulation of miRNA biogenesis machinery is not sufficient to increase the radiosensitivity of lung tumors and other strategies are required to combat lung cancer.
Collapse
|
26
|
Montano M. MicroRNAs: miRRORS of health and disease. Transl Res 2011; 157:157-62. [PMID: 21420026 PMCID: PMC3073773 DOI: 10.1016/j.trsl.2011.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 01/08/2023]
Abstract
The review articles in this issue provide an improved appreciation for microRNA (miRNA) as an essential feature of lineage commitment and regulatory guidance during tissue development that, when absent or hampered, often lead to disease states. In the coming years, there is much to be learned about adaptive (and maladaptive) states by examining how the expression of miRNAs is influenced by the genetic architecture of miR genes, clusters, and mirtrons, as well as miRNA polymorphism and polymorphism in their mRNA targets. We are also introduced to several modes of miRNA regulation (negative feedback, positive feedback, and cross regulatory) that monitor, modulate, or resolve signaling pathways in a variety of biologic processes that include sepsis response, fibrosis, acute exercise, and steroid biology. Perhaps the homeostasis or micromanagement of these miRNA regulatory systems, when perturbed, arrive at new stable networked interactions that have an undesired effect of promoting or antagonizing disease severity and cancer progression. Clearly, a better understanding of these miRNA regulatory networks, as well as improved therapeutic tools for guiding miRNA expression and their targets toward desired outcomes, will be the subject of many advances in miRNA biology over the coming years.
Collapse
Affiliation(s)
- Monty Montano
- Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA.
| |
Collapse
|