1
|
Abstract
Cystic fibrosis (CF) is a rare autosomal-recessive disorder manifested as multisystem organ dysfunction. The cystic fibrosis transmembrane conductance regulator (CFTR) protein functions as an ion transporter on the epithelium of exocrine glands, regulating secretion viscosity. The CFTR gene, encoded on chromosome 7, is required for the production and trafficking of the intact and functional CFTR protein. Literally thousands of human CFTR allelic mutations have been identified, each with varying impact on protein quality and quantity. As a result, individuals harboring CFTR mutations present with a spectrum of symptoms ranging from CF to normal phenotypes. Those with loss of function but without full CF may present with CFTR-related disorders (CFTR-RDs) including male infertility, sinusitis, pancreatitis, atypical asthma and bronchitis. Studies have demonstrated associations between higher rates of CFTR mutations and oligospermia, epididymal obstruction, congenital bilateral absence of the vas deferens (CBAVD), and idiopathic ejaculatory duct obstruction (EDO). Genetic variants are detected in over three-quarters of men with CBAVD, the reproductive abnormality most classically associated with CFTR aberrations. Likewise, nearly all men with clinical CF will have CBAVD. Current guidelines from multiple groups recommend CFTR screening in all men with clinical CF or CBAVD though a consensus on the minimum number of variants for which to test is lacking. CFTR testing is not recommended as routine screening for men with other categories of infertility. While available CFTR panels include 30 to 96 of the most common variants, complete gene sequencing should be considered if there is a high index of suspicion in a high-risk couple (e.g., partner is CFTR mutation carrier). CF treatments to date have largely targeted end-organ complications. Novel CFTR-modulator treatments aim to directly target CFTR protein dysfunction, effectively circumventing downstream complications, and possibly preventing symptoms like vasal atresia at a young age. Future gene therapies may also hold promise in preventing or reversing genetic changes that lead to CF and CFTR-RD.
Collapse
Affiliation(s)
- Jared M Bieniek
- Tallwood Urology & Kidney Institute, Hartford HealthCare, Hartford, CT, USA
| | - Craig D Lapin
- Division of Pediatric Pulmonology, Connecticut Children's Medical Center, Hartford, CT, USA.,Department of Pediatrics, University of Connecticut, Farmington, CT, USA
| | - Keith A Jarvi
- Division of Urology, Department of Surgery, Mount Sinai Hospital and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Majumder J, Minko T. Targeted Nanotherapeutics for Respiratory Diseases: Cancer, Fibrosis, and Coronavirus. ADVANCED THERAPEUTICS 2021; 4:2000203. [PMID: 33173809 PMCID: PMC7646027 DOI: 10.1002/adtp.202000203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/27/2020] [Indexed: 12/13/2022]
Abstract
Systemic delivery of therapeutics for treatment of lung diseases has several limitations including poor organ distribution of delivered payload with relatively low accumulation of active substances in the lungs and severe adverse side effects. In contrast, nanocarrier based therapeutics provide a broad range of opportunities due to their ability to encapsulate substances with different aqueous solubility, transport distinct types of cargo, target therapeutics specifically to the deceased organ, cell, or cellular organelle limiting adverse side effects and increasing the efficacy of therapy. Moreover, many nanotherapeutics can be delivered by inhalation locally to the lungs avoiding systemic circulation. In addition, nanoscale based delivery systems can be multifunctional, simultaneously carrying out several tasks including diagnostics, treatment and suppression of cellular resistance to the treatment. Nanoscale delivery systems improve the clinical efficacy of conventional therapeutics allowing new approaches for the treatment of respiratory diseases which are difficult to treat or possess intrinsic or acquired resistance to treatment. The present review summarizes recent advances in the development of nanocarrier based therapeutics for local and targeted delivery of drugs, nucleic acids and imaging agents for diagnostics and treatment of various diseases such as cancer, cystic fibrosis, and coronavirus.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Tamara Minko
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| |
Collapse
|
3
|
Delivery of genome-editing biomacromolecules for treatment of lung genetic disorders. Adv Drug Deliv Rev 2021; 168:196-216. [PMID: 32416111 DOI: 10.1016/j.addr.2020.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Genome-editing systems based on clustered, regularly interspaced, short palindromic repeat (CRISPR)/associated protein (CRISPR/Cas), are emerging as a revolutionary technology for the treatment of various genetic diseases. To date, the delivery of genome-editing biomacromolecules by viral or non-viral vectors have been proposed as new therapeutic options for lung genetic disorders, such as cystic fibrosis (CF) and α-1 antitrypsin deficiency (AATD), and it has been accepted that these delivery vectors can introduce CRISPR/Cas9 machineries into target cells or tissues in vitro, ex vivo and in vivo. However, the efficient local or systemic delivery of CRISPR/Cas9 elements to the lung, enabled by either viral or by non-viral carriers, still remains elusive. Herein, we first introduce lung genetic disorders and their current treatment options, and then summarize CRISPR/Cas9-based strategies for the therapeutic genome editing of these disorders. We further summarize the pros and cons of different routes of administration for lung genetic disorders. In particular, the potentials of aerosol delivery for therapeutic CRISPR/Cas9 biomacromolecules for lung genome editing are discussed and highlighted. Finally, current challenges and future outlooks in this emerging area are briefly discussed.
Collapse
|
4
|
Abstract
Cystic fibrosis (CF) is a hereditary, multisystemic disease caused by different mutations in the CFTR gene encoding CF transmembrane conductance regulator. CF is mainly characterized by pulmonary dysfunction as a result of deterioration in the mucociliary clearance and anion transport of airways. Mortality is mostly caused by bronchiectasis, bronchiole obstruction, and progressive respiratory dysfunction in the early years of life. Over the last decade, new therapeutic strategies rather than symptomatic treatment have been proposed, such as the small molecule approach, ion channel therapy, and pulmonary gene therapy. Due to considerable progress in the treatment options, CF has become an adult disease rather than a pediatric disease in recent years. Pulmonary gene therapy has gained special attention due to its mutation type independent aspect, therefore being applicable to all CF patients. On the other hand, the major obstacle for CF treatment is to predict the drug response of patients due to genetic complexity and heterogeneity. The advancement of 3D culture systems has made it possible to extrapolate the disease modeling and individual drug response in vitro by producing mini adult organs called "organoids" obtained from rectal cell biopsies. In this review, we summarize the advances in the novel therapeutic approaches, clinical interventions, and precision medicine concept for CF.
Collapse
|
5
|
Han ST, Cutting GR. Molecular Genetics of Cystic Fibrosis. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Yan Z, Zou W, Feng Z, Shen W, Park SY, Deng X, Qiu J, Engelhardt JF. Establishment of a High-Yield Recombinant Adeno-Associated Virus/Human Bocavirus Vector Production System Independent of Bocavirus Nonstructural Proteins. Hum Gene Ther 2019; 30:556-570. [PMID: 30398383 DOI: 10.1089/hum.2018.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genome of recombinant adeno-associated virus 2 (rAAV2) remains a promising candidate for gene therapy for cystic fibrosis (CF) lung disease, but due to limitations in the packaging capacity and the tropism of this virus with respect to the airways, strategies have evolved for packaging an rAAV2 genome (up to 5.8 kb) into the capsid of human bocavirus 1 (HBoV1) to produce a chimeric rAAV2/HBoV1 vector. Although a replication-incompetent HBoV1 genome has been established as a trans helper for capsid complementation, this system remains suboptimal with respect to virion yield. Here, a streamlined production system is described based on knowledge of the involvement of HBoV1 nonstructural (NS) proteins NS1, NS2, NS3, NS4, and NP1 in the process of virion production. The analyses reveal that NS1 and NS2 negatively impact virion production, NP1 is required to prevent premature termination of transcription of the cap mRNA from the native genome, and silent mutations within the polyadenylation sites of the cap coding sequence can eliminate this requirement for NP1. It is further shown that preventing the expression of all NS proteins significantly increases virion yield. Whereas the expression of capsid proteins VP1, VP2, and VP3 from a codon-optimized cap mRNA was highly efficient, optimal virion assembly, and thus potency, required enhanced VP1 expression, entailing a separate VP1 expression cassette. The final NS protein-free production system uses three-plasmid co-transfection of HEK293 cells, with one trans helper plasmid encoding VP1 and the AAV2 Rep proteins, and another encoding VP2-3 and components from adenovirus. This system yielded >16-fold more virions than the prototypic system, without reducing transduction potency. This increase in virion production is expected to facilitate greatly both research on the biology of rAAV2/HBoV1 and preclinical studies testing the effectiveness of this vector for gene therapy of CF lung disease in large animal models.
Collapse
Affiliation(s)
- Ziying Yan
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa, Iowa City, Iowa
| | - Wei Zou
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Zehua Feng
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Weiran Shen
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Soo Yeun Park
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Xuefeng Deng
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jianming Qiu
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa, Iowa City, Iowa
| |
Collapse
|
7
|
Arjmand B, Larijani B, Sheikh Hosseini M, Payab M, Gilany K, Goodarzi P, Parhizkar Roudsari P, Amanollahi Baharvand M, Hoseini Mohammadi NS. The Horizon of Gene Therapy in Modern Medicine: Advances and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1247:33-64. [PMID: 31845133 DOI: 10.1007/5584_2019_463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene therapy as a novel study in molecular medicine will have a significant impact on human health in the near future. In recent years, the scope of gene therapy has been developed and is now beginning to revolutionize therapeutic approaches. Accordingly, many types of diseases are now being studied and treated in clinical trials through various gene delivery vectors. The emergence of recombinant DNA technology which provides the possibility of fetal genetic screening and genetic counseling is a good case in point. Therefore, gene therapy advances are being applied to correct inherited genetic disorders such as hemophilia, cystic fibrosis, and familial hypercholesterolemia as well as acquired diseases like cancer, AIDS, Alzheimer's disease, Parkinson's disease, and infectious diseases like HIV. As a result, gene therapy approaches have the ability to help the vast majority of newborns with different diseases. Since these ongoing treatments and clinical trials are being developed, many more barriers and challenges have been created. In order to continue this positive growth, these challenges need to be recognized and addressed. Accordingly, safety, efficiency and also risks and benefits of gene therapy trials for each disease should be considered. As a result, sustained manufacturing of the therapeutic gene product without any harmful side effects is the least requirement for gene therapy. Herein, different aspects of gene therapy, an overview of the progress, and also the prospects for the future have been discussed for the successful practice of gene therapy.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Motahareh Sheikh Hosseini
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Amanollahi Baharvand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Sadat Hoseini Mohammadi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Santos-Carballal B, Fernández Fernández E, Goycoolea FM. Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies. Polymers (Basel) 2018; 10:E444. [PMID: 30966479 PMCID: PMC6415274 DOI: 10.3390/polym10040444] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022] Open
Abstract
Non-viral gene delivery vectors have lagged far behind viral ones in the current pipeline of clinical trials of gene therapy nanomedicines. Even when non-viral nanovectors pose less safety risks than do viruses, their efficacy is much lower. Since the early studies to deliver pDNA, chitosan has been regarded as a highly attractive biopolymer to deliver nucleic acids intracellularly and induce a transgenic response resulting in either upregulation of protein expression (for pDNA, mRNA) or its downregulation (for siRNA or microRNA). This is explained as the consequence of a multi-step process involving condensation of nucleic acids, protection against degradation, stabilization in physiological conditions, cellular internalization, release from the endolysosome ("proton sponge" effect), unpacking and enabling the trafficking of pDNA to the nucleus or the siRNA to the RNA interference silencing complex (RISC). Given the multiple steps and complexity involved in the gene transfection process, there is a dearth of understanding of the role of chitosan's structural features (Mw and degree of acetylation, DA%) on each step that dictates the net transfection efficiency and its kinetics. The use of fully characterized chitosan samples along with the utilization of complementary biophysical and biological techniques is key to bridging this gap of knowledge and identifying the optimal chitosans for delivering a specific gene. Other aspects such as cell type and administration route are also at play. At the same time, the role of chitosan structural features on the morphology, size and surface composition of synthetic virus-like particles has barely been addressed. The ongoing revolution brought about by the recent discovery of CRISPR-Cas9 technology will undoubtedly be a game changer in this field in the short term. In the field of rare diseases, gene therapy is perhaps where the greatest potential lies and we anticipate that chitosans will be key players in the translation of research to the clinic.
Collapse
Affiliation(s)
| | - Elena Fernández Fernández
- Lung Biology Group, Department Clinical Microbiology, RCSI, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | |
Collapse
|
9
|
Yan Z, Feng Z, Sun X, Zhang Y, Zou W, Wang Z, Jensen-Cody C, Liang B, Park SY, Qiu J, Engelhardt JF. Human Bocavirus Type-1 Capsid Facilitates the Transduction of Ferret Airways by Adeno-Associated Virus Genomes. Hum Gene Ther 2017; 28:612-625. [PMID: 28490200 DOI: 10.1089/hum.2017.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human bocavirus type-1 (HBoV1) has a high tropism for the apical membrane of human airway epithelia. The packaging of a recombinant adeno-associated virus 2 (rAAV2) genome into HBoV1 capsid produces a chimeric vector (rAAV2/HBoV1) that also efficiently transduces human airway epithelia. As such, this vector is attractive for use in gene therapies to treat lung diseases such as cystic fibrosis. However, preclinical development of rAAV2/HBoV1 vectors has been hindered by the fact that humans are the only known host for HBoV1 infection. This study reports that rAAV2/HBoV1 vector is capable of efficiently transducing the lungs of both newborn (3- to 7-day-old) and juvenile (29-day-old) ferrets, predominantly in the distal airways. Analyses of in vivo, ex vivo, and in vitro models of the ferret proximal airway demonstrate that infection of this particular region is less effective than it is in humans. Studies of vector binding and endocytosis in polarized ferret proximal airway epithelial cultures revealed that a lack of effective vector endocytosis is the main cause of inefficient transduction in vitro. While transgene expression declined proportionally with growth of the ferrets following infection at 7 days of age, reinfection of ferrets with rAAV2/HBoV1 at 29 days gave rise to approximately 5-fold higher levels of transduction than observed in naive infected 29-day-old animals. The findings presented here lay the foundation for clinical development of HBoV1 capsid-based vectors for lung gene therapy in cystic fibrosis using ferret models.
Collapse
Affiliation(s)
- Ziying Yan
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa , Iowa City, Iowa
| | - Zehua Feng
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Xingshen Sun
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Yulong Zhang
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Wei Zou
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | - Zekun Wang
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | | | - Bo Liang
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Soo-Yeun Park
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Jianming Qiu
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa , Iowa City, Iowa
| |
Collapse
|
10
|
Abstract
Cystic fibrosis (CF) is genetic autosomal recessive disease caused by reduced or absent function of CFTR protein. Treatments for patients with CF have primarily focused on the downstream end-organ consequences of defective CFTR. Since the discovery of the CFTR gene that causes CF in 1989 there have been tremendous advances in our understanding of the genetics and pathophysiology of CF. This has recently led to the development of new CFTR mutation-specific targeted therapies for select patients with CF. This review will discuss the characteristics of the CFTR gene, the CFTR mutations that cause CF and the new mutation specific pharmacological treatments including gene therapy that are contributing to the dawning of a new era in cystic fibrosis care.
Collapse
Affiliation(s)
- Suzanne C Carter
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Edward F McKone
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
11
|
Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016; 240:465-488. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an attractive alternative to the current standards of care that are limited to managing disease symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. However, despite over two decades of intensive effort, gene therapy has yet to help patients with CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by patients, and continued research has provided valuable lessons and resources that may lead to future success of this therapeutic strategy. In this review, we first introduce representative obstructive lung diseases and examine limitations of currently available therapeutic options. We then review key components for successful execution of inhaled gene therapy, including gene delivery systems, primary physiological barriers and strategies to overcome them, and advances in preclinical disease models with which the most promising systems may be identified for human clinical trials.
Collapse
Affiliation(s)
- Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg A Duncan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental and Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
12
|
Antony JS, Dewerth A, Haque A, Handgretinger R, Kormann MSD. Modified mRNA as a new therapeutic option for pediatric respiratory diseases and hemoglobinopathies. Mol Cell Pediatr 2015; 2:11. [PMID: 26589812 PMCID: PMC4654728 DOI: 10.1186/s40348-015-0022-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/16/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The immunogenicity and limited stability of conventional messenger RNA (mRNA) has traditionally restricted its potential therapeutic use. In 1992, the first clinical application of mRNA was reported as a potential protein-replacement therapy; however, subsequent investigations have not been made for almost two decades. Recent developments, including increased stability, controlling immunogenicity, as well as utilization of mRNA encoding zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-Cas9, have implicated modified mRNA as a very promising option for cancer immunotherapy, vaccines, protein expression replacement, and genome editing. This review aims to offer a summary of our present understanding of and improvements in mRNA-based drug technologies, along with a focus on the role in therapeutic options for pediatric respiratory diseases and hemoglobinopathies. CONCLUSIONS This mini review summarizes the recent advances in modified mRNA-based therapy and its potential therapeutic effect in treating major pediatric diseases.
Collapse
Affiliation(s)
- Justin S Antony
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tübingen, Tübingen, Germany
| | - Alexander Dewerth
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tübingen, Tübingen, Germany
| | - Ashiqul Haque
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tübingen, Tübingen, Germany
| | - Michael S D Kormann
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Klymiuk N, Seeliger F, Bohlooly-Y M, Blutke A, Rudmann DG, Wolf E. Tailored Pig Models for Preclinical Efficacy and Safety Testing of Targeted Therapies. Toxicol Pathol 2015; 44:346-57. [PMID: 26511847 DOI: 10.1177/0192623315609688] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite enormous advances in translational biomedical research, there remains a growing demand for improved animal models of human disease. This is particularly true for diseases where rodent models do not reflect the human disease phenotype. Compared to rodents, pig anatomy and physiology are more similar to humans in cardiovascular, immune, respiratory, skeletal muscle, and metabolic systems. Importantly, efficient and precise techniques for genetic engineering of pigs are now available, facilitating the creation of tailored large animal models that mimic human disease mechanisms at the molecular level. In this article, the benefits of genetically engineered pigs for basic and translational research are exemplified by a novel pig model of Duchenne muscular dystrophy and by porcine models of cystic fibrosis. Particular emphasis is given to potential advantages of using these models for efficacy and safety testing of targeted therapies, such as exon skipping and gene editing, for example, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system. In general, genetically tailored pig models have the potential to bridge the gap between proof-of-concept studies in rodents and clinical trials in patients, thus supporting translational medicine.
Collapse
Affiliation(s)
- Nikolai Klymiuk
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Frank Seeliger
- Pathology Science, DSM, Transgenic, AstraZeneca RD, Mölndal, Sweden
| | | | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel G Rudmann
- Pathology Science, DSM, Transgenic, AstraZeneca RD, Mölndal, Sweden
| | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
14
|
Solomon GM, Marshall SG, Ramsey BW, Rowe SM. Breakthrough therapies: Cystic fibrosis (CF) potentiators and correctors. Pediatr Pulmonol 2015; 50 Suppl 40:S3-S13. [PMID: 26097168 PMCID: PMC4620567 DOI: 10.1002/ppul.23240] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/28/2022]
Abstract
Cystic Fibrosis is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene resulting in abnormal protein function. Recent advances of targeted molecular therapies and high throughput screening have resulted in multiple drug therapies that target many important mutations in the CFTR protein. In this review, we provide the latest results and current progress of CFTR modulators for the treatment of cystic fibrosis, focusing on potentiators of CFTR channel gating and Phe508del processing correctors for the Phe508del CFTR mutation. Special emphasis is placed on the molecular basis underlying these new therapies and emerging results from the latest clinical trials. The future directions for augmenting the rescue of Phe508del with CFTR modulators are also emphasized.
Collapse
Affiliation(s)
- George M Solomon
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, Alabama
| | - Susan G Marshall
- Division of Pulmonary Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Bonnie W Ramsey
- Division of Pulmonary Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington
| | - Steven M Rowe
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, Alabama.,Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
15
|
Yang H, Ma T. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review. Expert Opin Ther Pat 2015; 25:991-1002. [PMID: 25971311 DOI: 10.1517/13543776.2015.1045878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by malfunction of CF transmembrane regulator (CFTR). The deletion of a phenylalanine at residue 508 (F508del) is the most common mutation that causes cellular processing, chloride channel gating and protein stability defects in CFTR. Pharmacological modulators of F508del-CFTR, aimed at correcting the cellular processing defect (correctors) and the gating defect (potentiators) in CFTR protein, are regarded as promising therapeutic agents for CF disease. Endeavors in searching F508del-CFTR modulators have shown encouraging results, with several small-molecule compounds having entered clinical trials or even represented clinical options. AREAS COVERED This review covers the discovery of F508del-CFTR correctors described in both patents (2005 - present) and scientific literatures. EXPERT OPINION Cyclopropane carboxamide derivatives of CFTR correctors continue to dominate in this area, among which lumacaftor (a NBD1-MSD1/2 interface stabilizer) is the most promising compound and is now under the priority review by US FDA. However, the abrogation effect of ivacaftor (potentiator) on lumacaftor suggests the requirement of discovering new correctors and potentiators that can cooperate well. Integration screening for simultaneously identifying combinations of correctors (particularly NBD1 stabilizer) and potentiators should provide an alternative strategy. A recently reported natural product fraction library may be useful for the integration screening.
Collapse
Affiliation(s)
- Hong Yang
- a 1 School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University , Dalian 116029, P.R. China +86 411 85827085 ; +86 411 85827068 ;
| | | |
Collapse
|
16
|
Falguières T, Aït-Slimane T, Housset C, Maurice M. ABCB4: Insights from pathobiology into therapy. Clin Res Hepatol Gastroenterol 2014; 38:557-63. [PMID: 24953525 DOI: 10.1016/j.clinre.2014.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/25/2014] [Accepted: 03/05/2014] [Indexed: 02/04/2023]
Abstract
Adenosine triphosphate (ATP)-binding cassette, sub-family B, member 4 (ABCB4), also called multidrug resistance 3 (MDR3), is a member of the ATP-binding cassette transporter superfamily, which is localized at the canalicular membrane of hepatocytes, and mediates the translocation of phosphatidylcholine into bile. Phosphatidylcholine secretion is crucial to ensure solubilization of cholesterol into mixed micelles and to prevent bile acid toxicity towards hepatobiliary epithelia. Genetic defects of ABCB4 may cause progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare autosomic recessive disease occurring early in childhood that may be lethal in the absence of liver transplantation, and other cholestatic or cholelithiasic diseases in heterozygous adults. Development of therapies for these conditions requires understanding of the biology of this transporter and how gene variations may cause disease. This review focuses on our current knowledge on the regulation of ABCB4 expression, trafficking and function, and presents recent advances in fundamental research with promising therapeutic perspectives.
Collapse
Affiliation(s)
- Thomas Falguières
- INSERM, UMR_S 938, CDR Saint-Antoine, 75012 Paris, France; UMR_S 938, CDR Saint-Antoine, Sorbonne Universités, UPMC - Université Paris-06, 75012 Paris, France
| | - Tounsia Aït-Slimane
- INSERM, UMR_S 938, CDR Saint-Antoine, 75012 Paris, France; UMR_S 938, CDR Saint-Antoine, Sorbonne Universités, UPMC - Université Paris-06, 75012 Paris, France
| | - Chantal Housset
- INSERM, UMR_S 938, CDR Saint-Antoine, 75012 Paris, France; UMR_S 938, CDR Saint-Antoine, Sorbonne Universités, UPMC - Université Paris-06, 75012 Paris, France; Service d'hépatologie, Centre Maladies Rares (CMR) Maladies Inflammatoires des Voies Biliaires, Hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France
| | - Michèle Maurice
- INSERM, UMR_S 938, CDR Saint-Antoine, 75012 Paris, France; UMR_S 938, CDR Saint-Antoine, Sorbonne Universités, UPMC - Université Paris-06, 75012 Paris, France.
| |
Collapse
|
17
|
Pensado A, Fernandez-Piñeiro I, Seijo B, Sanchez A. Anionic nanoparticles based on Span 80 as low-cost, simple and efficient non-viral gene-transfection systems. Int J Pharm 2014; 476:23-30. [PMID: 25261708 DOI: 10.1016/j.ijpharm.2014.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
The existing strategies in the design of non-viral vectors for gene therapy are primarily conceived for cationic systems. However, the safety concerns associated with the use of positively charged systems for nucleic acid delivery and several reports regarding the efficacy of negatively charged systems highlights the need for improved gene-delivery vectors. With these premises in mind, we investigated the development of new negatively charged nanoparticles based on Sorbitan esters (Span(®)) – extremely cheap excipients broadly used in the pharmaceutical industry – on the basis of a simple, one-step and easily scalable procedure. For their specific use in gene therapy, we have incorporated oleylamine (OA) or poly-L-arginine (PA) into these nanosystems. Thus, we used Sorbitan monooleate (Span(®) 80) to design Span(®) 80-oleylamine and Span(®) 80-poly-L-arginine nanosystems (SP-OA and SP-PA, respectively). These systems can associate with the model plasmid pEGFP-C3 and show mean particle sizes of 304 nm and 247 nm and surface charges of -13 mV and -17 mV, respectively. The nanoparticles developed were evaluated in terms of in vitro cell viability and transfection ability. Both systems exhibited an appropriate cell-toxicity profile and are able to transfect the plasmid effectively. Specifically, the nanosystems including OA among their components provided higher transfection levels than the SP-PA nanoparticles. In conclusion, anionic nanoparticles based on Span(®) 80 can be considered low-cost, simple and efficient non-viral anionic gene-transfection systems.
Collapse
Affiliation(s)
- A Pensado
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain
| | - I Fernandez-Piñeiro
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain
| | - B Seijo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain; Molecular Image Group, Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), A Choupana, Santiago de Compostela 15706, Spain
| | - A Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain; Molecular Image Group, Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), A Choupana, Santiago de Compostela 15706, Spain.
| |
Collapse
|
18
|
Abstract
Gene therapy has been considered as the most ideal medical intervention for genetic diseases because it is intended to target the cause of diseases instead of disease symptoms. Availability of techniques for identification of genetic mutations and for in vitro manipulation of genes makes it practical and attractive. After the initial hype in 1990s and later disappointments in clinical trials for more than a decade, light has finally come into the tunnel in recent years, especially in the field of eye gene therapy where it has taken big strides. Clinical trials in gene therapy for retinal degenerative diseases such as Leber's congenital amaurosis (LCA) and choroideremia demonstrated clear therapeutic efficacies without apparent side effects. Although these successful examples are still rare and sporadic in the field, they provide the proof of concept for harnessing the power of gene therapy to treat genetic diseases and to modernize our medication. In addition, those success stories illuminate the path for the development of gene therapy treating other genetic diseases. Because of the differences in target organs and cells, distinct barriers to gene delivery exist in gene therapy for each genetic disease. It is not feasible for authors to review the current development in the entire field. Thus, in this article, we will focus on what we can learn from the current success in gene therapy for retinal degenerative diseases to speed up the gene therapy development for lung diseases, such as cystic fibrosis.
Collapse
|
19
|
|
20
|
CFTR structure and cystic fibrosis. Int J Biochem Cell Biol 2014; 52:15-25. [PMID: 24534272 DOI: 10.1016/j.biocel.2014.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/31/2022]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a member of the ATP-binding cassette family of membrane proteins. Although almost all members of this family are transporters, CFTR functions as a channel with specificity for anions, in particular chloride and bicarbonate. In this review we look at what is known about CFTR structure and function within the context of the ATP-binding cassette family. We also review current strategies aimed at obtaining the high resolution structure of the protein.
Collapse
|
21
|
Lerchner W, Corgiat B, Der Minassian V, Saunders RC, Richmond BJ. Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain. Gene Ther 2014; 21:233-41. [PMID: 24401836 DOI: 10.1038/gt.2013.75] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/01/2013] [Accepted: 11/04/2013] [Indexed: 01/06/2023]
Abstract
We, like many others, wish to use modern molecular methods to alter neuronal functionality in primates. For us, this requires expression in a large proportion of the targeted cell population. Long generation times make germline modification of limited use. The size and intricate primate brain anatomy poses additional challenges. We surved methods using lentiviruses and serotypes of adeno-associated viruses (AAVs) to introduce active molecular material into cortical and subcortical regions of old-world monkey brains. Slow injections of AAV2 give well-defined expression of neurons in the cortex surrounding the injection site. Somewhat surprisingly we find that in the monkey the use of cytomegalovirus promoter in lentivirus primarily targets glial cells but few neurons. In contrast, with a synapsin promoter fragment the lentivirus expression is neuron specific at high transduction levels in all cortical layers. We also achieve specific targeting of tyrosine hydroxlase (TH)- rich neurons in the locus coeruleus and substantia nigra with a lentvirus carrying a fragment of the TH promoter. Lentiviruses carrying neuron specific promoters are suitable for both cortical and subcortical injections even when injected quickly.
Collapse
Affiliation(s)
- W Lerchner
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - B Corgiat
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - V Der Minassian
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - R C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - B J Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| |
Collapse
|
22
|
Nagai Y, Limberis MP, Zhang H. Modulation of Treg function improves adenovirus vector-mediated gene expression in the airway. Gene Ther 2014; 21:219-24. [PMID: 24385144 PMCID: PMC3946346 DOI: 10.1038/gt.2013.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 11/01/2013] [Accepted: 11/18/2013] [Indexed: 12/22/2022]
Abstract
Virus vector-mediated gene transfer has been developed as a treatment for cystic fibrosis (CF) airway disease, a lethal inherited disorder caused by somatic mutations in the cystic fibrosis transmembrane conductance regulator gene. The pathological proinflammatory environment of CF as well as the naïve and adaptive immunity induced by the virus vector itself limits the effectiveness of gene therapy for CF airway. Here, we report the use of an HDAC inhibitor, valproic acid (VPA), to enhance the activity of the regulatory T cells (T(reg)) and to improve the expression of virus vector-mediated gene transfer to the respiratory epithelium. Our study demonstrates the potential utility of VPA, a drug used for over 50 years in humans as an anticonvulsant and mood-stabilizer, in controlling inflammation and improving the efficacy of gene transfer in CF airway.
Collapse
Affiliation(s)
- Y Nagai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - M P Limberis
- 1] Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA [2] Gene Therapy Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - H Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
23
|
|