1
|
Sun DZ, Yang XR, Huang CS, Bai ZJ, Shen P, Ni ZX, Huang-Fu CJ, Hu YY, Wang NN, Tang XL, Li YF, Gao Y, Zhou W. CPHNet: a novel pipeline for anti-HAPE drug screening via deep learning-based Cell Painting scoring. Respir Res 2025; 26:91. [PMID: 40057746 PMCID: PMC11890554 DOI: 10.1186/s12931-025-03173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND High altitude pulmonary edema (HAPE) poses a significant medical challenge to individuals ascending rapidly to high altitudes. Hypoxia-induced cellular morphological changes in the alveolar-capillary barrier such as mitochondrial structural alterations and cytoskeletal reorganization, play a crucial role in the pathogenesis of HAPE. These morphological changes are critical in understanding the cellular response to hypoxia and represent potential therapeutic targets. However, there is still a lack of effective and valid drug discovery strategies for anti-HAPE treatments based on these cellular morphological features. This study aims to develop a pipeline that focuses on morphological alterations in Cell Painting images to identify potential therapeutic agents for HAPE interventions. METHODS We generated over 100,000 full-field Cell Painting images of human alveolar adenocarcinoma basal epithelial cells (A549s) and human pulmonary microvascular endothelial cells (HPMECs) under different hypoxic conditions (1%~5% of oxygen content). These images were then submitted to our newly developed segmentation network (SegNet), which exhibited superior performance than traditional methods, to proceed to subcellular structure detection and segmentation. Subsequently, we created a hypoxia scoring network (HypoNet) using over 200,000 images of subcellular structures from A549s and HPMECs, demonstrating outstanding capacity in identifying cellular hypoxia status. RESULTS We proposed a deep neural network-based drug screening pipeline (CPHNet), which facilitated the identification of two promising natural products, ferulic acid (FA) and resveratrol (RES). Both compounds demonstrated satisfactory anti-HAPE effects in a 3D-alveolus chip model (ex vivo) and a mouse model (in vivo). CONCLUSION This work provides a brand-new and effective pipeline for screening anti-HAPE agents by integrating artificial intelligence (AI) tools and Cell Painting, offering a novel perspective for AI-driven phenotypic drug discovery.
Collapse
Affiliation(s)
- De-Zhi Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Xi-Ru Yang
- Department of Pharmacy, Medical College of Qinghai University, Xining, Qinghai, 810001, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Cong-Shu Huang
- Traditional Chinese Medicine School, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Zhi-Jie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Zhe-Xin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Chao-Ji Huang-Fu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Yang-Yi Hu
- Department of Pharmacy, Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Ning-Ning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiang-Lin Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Yong-Fang Li
- Department of Pharmacy, Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Yue Gao
- Department of Pharmacy, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Wei Zhou
- Department of Pharmacy, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
2
|
Talati M, Brittain E, Agrawal V, Fortune N, Simon K, Shay S, Zeng X, Freeman ML, West J, Hemnes A. A potential adverse role for leptin and cardiac leptin receptor in the right ventricle in pulmonary arterial hypertension: effect of metformin is BMPR2 mutation-specific. Front Med (Lausanne) 2023; 10:1276422. [PMID: 37869164 PMCID: PMC10586504 DOI: 10.3389/fmed.2023.1276422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Pulmonary arterial hypertension is a fatal cardiopulmonary disease. Leptin, a neuroendocrine hormone released by adipose tissue, has a complex relationship with cardiovascular diseases, including PAH. Leptin is thought to be an important factor linking metabolic syndrome and cardiovascular disorders. Given the published association between metabolic syndrome and RV dysfunction in PAH, we sought to determine the association between leptin and RV dysfunction. We hypothesized that in PAH-RV, leptin influences metabolic changes via leptin receptors, which can be manipulated by metformin. Methods Plasma leptin was measured in PAH patients and healthy controls from a published trial of metformin in PAH. Leptin receptor localization was detected in RV from PAH patients, healthy controls, animal models of PH with RV dysfunction before and after metformin treatment, and cultured cardiomyocytes with two different BMPR2 mutants by performing immunohistochemical and cell fractionation studies. Functional studies were conducted in cultured cardiomyocytes to examine the role of leptin and metformin in lipid-driven mitochondrial respiration. Results In human studies, we found that plasma leptin levels were higher in PAH patients and moderately correlated with higher BMI, but not in healthy controls. Circulating leptin levels were reduced by metformin treatment, and these findings were confirmed in an animal model of RV dysfunction. Leptin receptor expression was increased in PAH-RV cardiomyocytes. In animal models of RV dysfunction and cultured cardiomyocytes with BMPR2 mutation, we found increased expression and membrane localization of the leptin receptor. In cultured cardiomyocytes with BMPR2 mutation, leptin moderately influences palmitate uptake, possibly via CD36, in a mutation-specific manner. Furthermore, in cultured cardiomyocytes, the Seahorse XFe96 Extracellular Flux Analyzer and gene expression data indicate that leptin may not directly influence lipid-driven mitochondrial respiration in BMPR2 mutant cardiomyocytes. However, metformin alone or when supplemented with leptin can improve lipid-driven mitochondrial respiration in BMPR2 mutant cardiomyocytes. The effect of metformin on lipid-driven mitochondrial respiration in cardiomyocytes is BMPR2 mutation-specific. Conclusion In PAH, increased circulating leptin can influence metabolic signaling in RV cardiomyocytes via the leptin receptor; in particular, it may alter lipid-dependent RV metabolism in combination with metformin in a mutation-specific manner and warrants further investigation.
Collapse
Affiliation(s)
- Megha Talati
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Evan Brittain
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Vineet Agrawal
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Niki Fortune
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katie Simon
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sheila Shay
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiaofang Zeng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Michael L. Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James West
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Anna Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Yamaguchi Y, Hosokawa S, Haraguchi G, Kajikawa Y, Sakurai M, Ishii T, Ando N, Morio T, Doi S, Furukawa T. The Anti-Inflammatory Effects and Clinical Potential of Dexmedetomidine in Pulmonary Arterial Hypertension. J Pharmacol Exp Ther 2023; 385:88-94. [PMID: 36849413 DOI: 10.1124/jpet.122.001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
A pathogenic aspect of pulmonary arterial hypertension (PAH) is the aberrant pulmonary arterial smooth muscle cell (PASMC) proliferation. PASMC proliferation is significantly affected by inflammation. A selective α-2 adrenergic receptor agonist called dexmedetomidine (DEX) modulates specific inflammatory reactions. We investigated the hypothesis that anti-inflammatory characteristics of DEX could lessen PAH that monocrotaline (MCT) causes in rats. In vivo, male Sprague-Dawley rats aged 6 weeks were subcutaneously injected with MCT at a dose of 60 mg/kg. Continuous infusions of DEX (2 µg/kg per hour) were started via osmotic pumps in one group (MCT plus DEX group) at day 14 following MCT injection but not in another group (MCT group). Right ventricular systolic pressure (RVSP), right ventricular end-diastolic pressure (RVEDP), and survival rate significantly improved in the MCT plus DEX group compared with the MCT group [RVSP, 34 mmHg ± 4 mmHg versus 70 mmHg ± 10 mmHg; RVEDP, 2.6 mmHg ± 0.1 mmHg versus 4.3 mmHg ± 0.6 mmHg; survival rate, 42% versus 0% at day 29 (P < 0.01)]. In the histologic study, the MCT plus DEX group showed fewer phosphorylated p65-positive PASMCs and less medial hypertrophy of the pulmonary arterioles. In vitro, DEX dose-dependently inhibited human PASMC proliferation. Furthermore, DEX decreased the expression of interleukin-6 mRNA in human PASMCs treated with fibroblast growth factor 2 (FGF2). These consequences suggest that DEX improves PAH by inhibiting PASMC proliferation through its anti-inflammatory properties. Additionally, DEX may exert anti-inflammatory effects via blocking FGF2-induced nuclear factor κ B activation. SIGNIFICANCE STATEMENT: Dexmedetomidine, a selective α-2 adrenergic receptor agonist utilized as a sedative in the clinical setting, improves pulmonary arterial hypertension (PAH) by inhibiting pulmonary arterial smooth muscle cell proliferation through its anti-inflammatory effect. Dexmedetomidine may be a new PAH therapeutic agent with vascular reverse remodeling effect.
Collapse
Affiliation(s)
- Yohei Yamaguchi
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Susumu Hosokawa
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Go Haraguchi
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Yusuke Kajikawa
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Makito Sakurai
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Taku Ishii
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Noboru Ando
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Tomohiro Morio
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Shozaburo Doi
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| | - Tetsushi Furukawa
- Departments of Pediatrics (Y.Y., S.H., M.S., T.I., T.M.) and Bio-Informational Pharmacology (T.F.), Tokyo Medical and Dental University, Tokyo, Japan; Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan (G.H.); Department of Emergency, Saitama Children's Medical Center, Saitama, Japan (Y.K.); Division of Pathology, Tokyo Medical and Dental University, Tokyo, Japan (N.A.); and Department of Pediatrics, National Hospital Organization Disaster Medical Center, Tokyo, Japan (S.D.)
| |
Collapse
|
4
|
Chen J, Lockett A, Zhao S, Huang LS, Wang Y, Wu W, Tang M, Haider S, Velez Rendon D, Khan R, Liu B, Felesena N, Sysol JR, Valdez-Jasso D, Tang H, Bai Y, Natarajan V, Machado RF. Sphingosine Kinase 1 Deficiency in Smooth Muscle Cells Protects against Hypoxia-Mediated Pulmonary Hypertension via YAP1 Signaling. Int J Mol Sci 2022; 23:14516. [PMID: 36498853 PMCID: PMC9736859 DOI: 10.3390/ijms232314516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Sphingosine kinase 1 (SPHK1) and the sphingosine-1-phosphate (S1P) signaling pathway have been shown to play a role in pulmonary arterial hypertension (PAH). S1P is an important stimulus for pulmonary artery smooth muscle cell (PASMC) proliferation and pulmonary vascular remodeling. We aimed to examine the specific roles of SPHK1 in PASMCs during pulmonary hypertension (PH) progression. We generated smooth muscle cell-specific, Sphk1-deficient (Sphk1f/f TaglnCre+) mice and isolated Sphk1-deficient PASMCs from SPHK1 knockout mice. We demonstrated that Sphk1f/f TaglnCre+ mice are protected from hypoxia or hypoxia/Sugen-mediated PH, and pulmonary vascular remodeling and that Sphk1-deficient PASMCs are less proliferative compared with ones isolated from wild-type (WT) siblings. S1P or hypoxia activated yes-associated protein 1 (YAP1) signaling by enhancing its translocation to the nucleus, which was dependent on SPHK1 enzymatic activity. Further, verteporfin, a pharmacologic YAP1 inhibitor, attenuated the S1P-mediated proliferation of hPASMCs, hypoxia-mediated PH, and pulmonary vascular remodeling in mice and hypoxia/Sugen-mediated severe PH in rats. Smooth muscle cell-specific SPHK1 plays an essential role in PH via YAP1 signaling, and YAP1 inhibition may have therapeutic potential in treating PH.
Collapse
Affiliation(s)
- Jiwang Chen
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Angelia Lockett
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shuangping Zhao
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Long Shuang Huang
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yifan Wang
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Weiwen Wu
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ming Tang
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shahzaib Haider
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniela Velez Rendon
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raheel Khan
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Bing Liu
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nicholas Felesena
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Justin R. Sysol
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Viswanathan Natarajan
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Abstract
The development of pulmonary hypertension (PH) is common and has adverse prognostic implications in patients with heart failure due to left heart disease (LHD), and thus far, there are no known treatments specifically for PH-LHD, also known as group 2 PH. Diagnostic thresholds for PH-LHD, and clinical classification of PH-LHD phenotypes, continue to evolve and, therefore, present a challenge for basic and translational scientists actively investigating PH-LHD in the preclinical setting. Furthermore, the pathobiology of PH-LHD is not well understood, although pulmonary vascular remodeling is thought to result from (1) increased wall stress due to increased left atrial pressures; (2) hemodynamic congestion-induced decreased shear stress in the pulmonary vascular bed; (3) comorbidity-induced endothelial dysfunction with direct injury to the pulmonary microvasculature; and (4) superimposed pulmonary arterial hypertension risk factors. To ultimately be able to modify disease, either by prevention or treatment, a better understanding of the various drivers of PH-LHD, including endothelial dysfunction, abnormalities in vascular tone, platelet aggregation, inflammation, adipocytokines, and systemic complications (including splanchnic congestion and lymphatic dysfunction) must be further investigated. Here, we review the diagnostic criteria and various hemodynamic phenotypes of PH-LHD, the potential biological mechanisms underlying this disorder, and pressing questions yet to be answered about the pathobiology of PH-LHD.
Collapse
Affiliation(s)
- Jessica H Huston
- Division of Cardiology, Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (J.H.H.)
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.)
| |
Collapse
|
6
|
Peng H, Zhou L, Li H, Zhang Y, Cheng S, Chen Z, Yu S, Hu S, Chen W, Ouyang M, Xue J, Zeng W. The therapeutic effect and mechanism of Rapamycin combined with HO-3867 on monocrotaline-induced pulmonary hypertension in rats. Eur J Pharm Sci 2021; 170:106102. [PMID: 34958883 DOI: 10.1016/j.ejps.2021.106102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 01/11/2023]
Abstract
This study test was designed to investigate the possible modulatory effect of rapamycin combined with HO-3867 in monocrotaline(MCT)-induced pulmonary arterial hypertension in rats. We hypothesized that combined treatment with rapamycin and HO-3867 is superior to either alone in attenuating MCT-induced rat pulmonary arterial hypertension (PAH). Pulmonary arterial hypertension was induced by a single intraperitoneal injection of monocrotaline (60 mg/kg). 2 weeks later, rapamycin (2 mg/kg i.p.) and HO3867 (10 mg/kg i.h.) were administered daily, alone and in combination, for 2 weeks. Right ventricular systolic pressure, echocardiography were recorded and then rats were sacrificed. Histological analysis of pulmonary arteries medial wall thickness, right ventricular hypertrophy index (RVHI), the ratio of right ventricular to body weight, and collagen volume fraction (CVF) of right ventricular were performed. Moreover, the expression of t-STAT3, p-STAT3, t-Akt, p-Akt in lung and t-STAT3, p-STAT3, t-S6, p-S6 in right ventricular were examined. The result showed that combined treatment provided a considerable improvement toward maintaining hemodynamic changes, lung vascular remodeling as well as amending RV remodeling and function. Furthermore, Combined treatment can normalize the protein levels of two signal pathways in lung and heart tissue, where p-S6 or p-Akt significantly decreased compared to HO-3867 alone, or p-STAT3 significantly reduced compared to rapamycin alone. In conclusion, combined treatment with rapamycin and HO-3867 is superior to either alone in attenuating MCT-induced PAH in rats.
Collapse
Affiliation(s)
- Huajing Peng
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Ling Zhou
- Ultrasonic Department, Hospital of South China University of Technology, 510000, Guangzhou, China
| | - Huayang Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 510000, Guangzhou, Guangdong Province, China
| | - Yitao Zhang
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Shiyao Cheng
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Zhichong Chen
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Shuqi Yu
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Sutian Hu
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Wenzeng Chen
- Department of Cardiac Surgery, Sun Yet-sen Memorial Hospital, 510000, Guangzhou, China
| | - Mao Ouyang
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Jiaojie Xue
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China.
| | - Weijie Zeng
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Jasińska-Stroschein M. A review of rodent models for metabolic syndromes and pulmonary hypertension. Toxicol Appl Pharmacol 2021; 425:115599. [PMID: 34081939 DOI: 10.1016/j.taap.2021.115599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Emerging evidence suggests that metabolic disorders, such as diabetes and obesity, may affect the pathogenesis and development of pulmonary hypertension (PH), and therefore some treatments could be beneficial for both disorders. The present study investigates whether such metabolic diseases increase susceptibility to PH in rodent models, and identifies which models are suitable for research on PH and its potential therapeutic candidates. It also explores whether particular PH model can worsen the metabolic parameters. RESULTS A review of 200 interventions on a variety of animal models was performed. The advantages of various diabetes (obesity)-related procedures, including dietary and genetic modifications, intended to provoke 'spontaneous' PH were reviewed, as well as the effects of combinations of such procedures with common PH models, with the aim of exacerbating pulmonary artery remodeling, right ventricle hypertrophy and hemodynamics. The paper describes the efficacy of particular agents toward PH-related lesions, according to particular study protocols (animal model, dosage schedule). CONCLUSIONS A wide range of diabetes (obesity)-related animal models are used for pre-clinical studies on PH and several factors should be considered when planning research; special attention should be paid to the linkage between the molecular background of the disease, the rationale for a particular animal model and the molecular activity of the tested agent.
Collapse
|
8
|
LincRNA-Cox2 promotes pulmonary arterial hypertension by regulating the let-7a-mediated STAT3 signaling pathway. Mol Cell Biochem 2020; 475:239-247. [PMID: 32803651 DOI: 10.1007/s11010-020-03877-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
It is well supported by the literature that the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are critical for the development of pulmonary arterial hypertension (PAH). Long intergenic noncoding RNA COX2 (lincRNA-COX2) is a regulator of inflammation and might be conducive to the progression of atherosclerosis, while its role in PAH is still unclear. This study was performed to explore the role and mechanism of lincRNA-COX2 in PASMCs proliferation and migration in an anaerobic environment. PASMCs were treated by hypoxia to construct PAH cell models. RT-PCR and western blot were recruited to evaluate the expression levels of lincRNA-COX2, miR-let-7a and STAT3. Their roles in proliferation and cell and migration of PASMCs were determined by the CCK-8 assay, wound-healing assay, and flow cytometry. In peripheral blood samples from PAH patients and hypoxic PASMCs, lincRNA-COX2 expression was enhanced. Silencing lincRNA-COX2 inhibited hypoxia-induced PASMCs proliferation by influencing the G2/M phase of the cell cycle. Meanwhile, lincRNA-COX2 regulated STAT3 through miR-let-7a and its effects on hypoxic PASMCs worked through miR-let-7a/STAT3 axis. To conclude, silencing lincRNA-COX2 attenuated the development of hypoxic PASMCs. LincRNA-COX2/miR-let-7a/STAT3 axis might be considered as a novel target to treat PAH.
Collapse
|
9
|
Shi XF, Su YC. Vascular Metabolic Mechanisms of Pulmonary Hypertension. Curr Med Sci 2020; 40:444-454. [PMID: 32681249 DOI: 10.1007/s11596-020-2198-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension (PH) is a severe and progressive disease characterized by increased pulmonary vascular resistance leading to right heart failure and death. In PH, the cellular metabolisms including those of the three major nutrients (carbohydrate, lipid and protein) are aberrant in pulmonary vascular cells. Glucose uptake, glycolysis, insulin resistance, sphingolipid S1P, PGE2, TXA2, leukotrienes and glutaminolysis are upregulated, and phospholipid-prostacyclin and L-arginine-nitric oxide pathway are compromised in lung vascular cells. Fatty acid metabolism is disordered in lung endothelial cells and smooth muscle cells. These molecular mechanisms are integrated to promote PH-specific abnormal vascular cell proliferation and vascular remodeling. This review summarizes the recent advances in the metabolic reprogramming of glucose, fatty acid, and amino acid metabolism in pulmonary vascular remodeling in PH and the mechanisms for how these alterations affect vascular cell fate and impact the course of PH.
Collapse
Affiliation(s)
- Xiao-Fan Shi
- Department of Pharmacology & Toxicology, Augusta University, Augusta, GA, 30912, USA
| | - Yun-Chao Su
- Department of Pharmacology & Toxicology, Augusta University, Augusta, GA, 30912, USA. .,Department of Medicine, Augusta University, Augusta, GA, 30912, USA. .,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
10
|
Mair KM, Gaw R, MacLean MR. Obesity, estrogens and adipose tissue dysfunction - implications for pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020952019. [PMID: 32999709 PMCID: PMC7506791 DOI: 10.1177/2045894020952023] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a prevalent global public health issue characterized by excess body fat. Adipose tissue is now recognized as an important endocrine organ releasing an abundance of bioactive adipokines including, but not limited to, leptin, adiponectin and resistin. Obesity is a common comorbidity amongst pulmonary arterial hypertension patients, with 30% to 40% reported as obese, independent of other comorbidities associated with pulmonary arterial hypertension (e.g. obstructive sleep apnoea). An 'obesity paradox' has been observed, where obesity has been associated with subclinical right ventricular dysfunction but paradoxically may confer a protective effect on right ventricular function once pulmonary hypertension develops. Obesity and pulmonary arterial hypertension share multiple pathophysiological mechanisms including inflammation, oxidative stress, elevated leptin (proinflammatory) and reduced adiponectin (anti-inflammatory). The female prevalence of pulmonary arterial hypertension has instigated the hypothesis that estrogens may play a causative role in its development. Adipose tissue, a major site for storage and metabolism of sex steroids, is the primary source of estrogens and circulating estrogens levels which are elevated in postmenopausal women and men with pulmonary arterial hypertension. This review discusses the functions of adipose tissue in both health and obesity and the links between obesity and pulmonary arterial hypertension. Shared pathophysiological mechanisms and the contribution of specific fat depots, metabolic and sex-dependent differences are discussed.
Collapse
Affiliation(s)
- Kirsty M. Mair
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Rosemary Gaw
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Margaret R. MacLean
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| |
Collapse
|
11
|
Khaing P, Pandit P, Awsare B, Summer R. Pulmonary Circulation in Obesity, Diabetes, and Metabolic Syndrome. Compr Physiol 2019; 10:297-316. [DOI: 10.1002/cphy.c190018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Mair KM, Harvey KY, Henry AD, Hillyard DZ, Nilsen M, MacLean MR. Obesity alters oestrogen metabolism and contributes to pulmonary arterial hypertension. Eur Respir J 2019; 53:13993003.01524-2018. [PMID: 30923189 PMCID: PMC6581204 DOI: 10.1183/13993003.01524-2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Obesity is a common comorbidity for pulmonary arterial hypertension (PAH). Additionally, oestrogen and its metabolites are risk factors for the development of PAH. Visceral adipose tissue (VAT) is a major site of oestrogen production; however, the influence of obesity-induced changes in oestrogen synthesis and metabolism on the development of PAH is unclear. To address this we investigated the effects of inhibiting oestrogen synthesis and metabolism on the development of pulmonary hypertension in male and female obese mice. We depleted endogenous oestrogen in leptin-deficient (ob/ob) mice with the oestrogen inhibitor anastrozole (ANA) and determined the effects on the development of pulmonary hypertension, plasma oestradiol and urinary 16α-hydroxyestrone (16αOHE1). Oestrogen metabolism through cytochrome P450 1B1 (CYP1B1) was inhibited with 2,2′,4,6′-tetramethoxystilbene (TMS). ob/ob mice spontaneously develop pulmonary hypertension, pulmonary vascular remodelling and increased reactive oxygen species production in the lung; these effects were attenuated by ANA. Oestradiol levels were decreased in obese male mice; however, VAT CYP1B1 and 16αOHE1 levels were increased. TMS also attenuated pulmonary hypertension in male ob/ob mice. Intra-thoracic fat from ob/ob mice and VAT conditioned media produce 16αOHE1 and can contribute to oxidative stress, effects that are attenuated by both ANA and TMS. Obesity can induce pulmonary hypertension and changes in oestrogen metabolism, resulting in increased production of 16αOHE1 from VAT that contributes to oxidative stress. Oestrogen inhibitors are now in clinical trials for PAH. This study has translational consequences as it suggests that oestrogen inhibitors may be especially beneficial in treating obese individuals with PAH. Obesity is a risk factor in patients with PAH. This study suggests that this is due to altered oestrogen metabolism in adipose tissue. Inhibition of oestrogen production or metabolism may be of benefit to obese PAH patients.http://ow.ly/2zW830of1fG
Collapse
Affiliation(s)
- Kirsty M Mair
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Katie Y Harvey
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK
| | - Alasdair D Henry
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK
| | - Dianne Z Hillyard
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK
| | - Margaret Nilsen
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Margaret R MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
13
|
Ding XF, Liang HY, Yuan B, Li LF, Wang T, Kan QC, Wang LX, Sun TW. Efficacy of stem cell therapy for pulmonary arterial hypertension: a systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther 2019; 10:55. [PMID: 30760312 PMCID: PMC6374914 DOI: 10.1186/s13287-019-1162-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/06/2019] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite significant progress in drug treatment, the prognosis of patients with advanced pulmonary arterial hypertension (PAH) remains extremely poor. Many preclinical studies have reported the efficacy of stem cell (SC) therapy for PAH; however, this approach remains controversial. The aim of this systematic review and meta-analysis is to assess the potential efficacy of SC therapy for PAH. METHODS The Medline, EMBASE, Cochrane Library, and Web of Science databases were searched from inception to August 12, 2018. Preclinical studies that evaluated the use of SC therapy for PAH were included. The primary outcome was pulmonary haemodynamics, as assessed by measurement of the right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and/or mean right ventricle pressure (mRVP). The secondary outcomes included the weight ratio of the right ventricle to the left ventricle plus septum (RV/LV+S), the right ventricle to body weight ratio (RV/BW), the percentage of pulmonary arteriole area index (WA), and/or the percentage of medial wall thickness of the pulmonary arteriole (WT). The quality of outcomes was evaluated using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) bias risk tool. The inverse-variance method with random-effects modelling was used to calculate pooled weighted mean differences (WMDs) and 95% CIs. Statistical analysis was performed with STATA 14.0. RESULTS Twenty-eight eligible articles (722 animals) were included. SC therapy reduced the pooled WMDs (95% CIs) of RVSP, mPAP, mRVP, RV/LV+S, RV/BW, WA, and WT for animals with PAH, with values of - 14.12 (- 14.63, - 13.61), - 11.86 (- 12.35, - 11.36), - 17.33 (- 18.10, - 16.56), - 0.10 (- 0.10, - 0.09), 0.23 (0.21, 0.24), - 13.66 (- 15.71, - 11.62), and - 7.96 (- 7.99, - 7.93), respectively. CONCLUSIONS SC therapy is effective for PAH in preclinical studies. These results may help to standardise preclinical animal studies and provide a theoretical basis for clinical trial design in the future. SYSTEMATIC REVIEW REGISTRATION PROSPERO ( http://www.crd.york.ac.uk/PROSPERO ).
Collapse
Affiliation(s)
- Xian-Fei Ding
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Huo-Yan Liang
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Bo Yuan
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Li-Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Tian Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Quan-Cheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650 Australia
| | - Tong-Wen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
14
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
15
|
Willson C, Watanabe M, Tsuji-Hosokawa A, Makino A. Pulmonary vascular dysfunction in metabolic syndrome. J Physiol 2018; 597:1121-1141. [PMID: 30125956 DOI: 10.1113/jp275856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a critically important precursor to the onset of many diseases, such as cardiovascular disease, and cardiovascular disease is the leading cause of death worldwide. The primary risk factors of metabolic syndrome include hyperglycaemia, abdominal obesity, dyslipidaemia, and high blood pressure. It has been well documented that metabolic syndrome alters vascular endothelial and smooth muscle cell functions in the heart, brain, kidney and peripheral vessels. However, there is less information available regarding how metabolic syndrome can affect pulmonary vascular function and ultimately increase an individual's risk of developing various pulmonary vascular diseases, such as pulmonary hypertension. Here, we review in detail how metabolic syndrome affects pulmonary vascular function.
Collapse
Affiliation(s)
- Conor Willson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Ayako Makino
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Xie X, Li S, Zhu Y, Liu L, Ke R, Wang J, Yan X, Yang L, Gao L, Zang W, Li M. Egr-1 mediates leptin-induced PPARγ reduction and proliferation of pulmonary artery smooth muscle cells. Mol Biol Cell 2017; 29:356-362. [PMID: 29212876 PMCID: PMC5996952 DOI: 10.1091/mbc.e17-03-0141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 01/14/2023] Open
Abstract
Loss of peroxisome proliferator-activated receptor γ (PPARγ) has been found to contribute to pulmonary artery smooth muscle cell (PASMC) proliferation and pulmonary arterial remodeling therefore the development of pulmonary hypertension (PH). Yet, the molecular mechanisms underlying PPARγ reduction in PASMC remain poorly understood. Here, we demonstrated that leptin dose- and time-dependently inducued PPARγ down-regulation and proliferation of primary cultured rat PASMC, this was accompanied with the activation of extracellular regulated kinase1/2 (ERK1/2) signaling pathway and subsequent induction of early growth response-1 (Egr-1) expression. The presence of MEK inhibitors U0126 or PD98059, or prior silencing Egr-1 with small interfering RNA suppressed leptin-induced PPARγ reduction. In addition, activation of PPARγ by pioglitazone or targeting ERK1/2/Egr-1 suppressed leptin-induced PASMC proliferation. Taken together, our study indicates that ERK1/2 signaling pathway-mediated leptin-induced PPARγ reduction and PASMC proliferation through up-regulation of Egr-1 and suggests that targeting leptin/ERK1/2/Egr-1 pathway might have potential value in ameliorating vascular remodeling and benefit PH.
Collapse
Affiliation(s)
- Xinming Xie
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rui Ke
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
17
|
Zhang W, Wang W, Liu J, Li J, Wang J, Zhang Y, Zhang Z, Liu Y, Jin Y, Li J, Cao J, Wang C, Ning W, Wang J. Follistatin-like 1 protects against hypoxia-induced pulmonary hypertension in mice. Sci Rep 2017; 7:45820. [PMID: 28361925 PMCID: PMC5374469 DOI: 10.1038/srep45820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/06/2017] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH) remains a life-limiting disease characterized by pulmonary vascular remodelling due to aberrant proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), thus leading to raised pulmonary arterial pressure and right ventricular hypertrophy. Secreted glycoprotein follistatin-like 1 (FSTL1) has been reported to ameliorate tissue remodelling in cardiovascular injuries. However, the role of FSTL1 in deranged pulmonary arteries remains elusive. We found that there were higher serum levels of FSTL1 in patients with PH related to chronic obstructive pulmonary diseases (COPD) and in mice model of hypoxia-induced PH (HPH). Haploinsufficiency of Fstl1 in mice contributed to an exacerbated HPH, as demonstrated by increased right ventricular systolic pressure, pulmonary arterial muscularization and right ventricular hypertrophy index. Conversely, FSTL1 administration attenuated HPH. In cultured human PASMCs, hypoxia-promoted cellular viability, DNA synthesis and migration were suppressed by exogenous FSTL1 but enhanced by small interfering RNA targeting FSTL1. Additionally, FSTL1 inhibited the proliferation and migration of PASMCs via extracellular regulated kinase (ERK) signal pathway. All these findings indicate that FSTL1 imposed a protective modulation on pulmonary vascular remodelling, thereby suggesting its role in the regulation of HPH.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Follistatin-Related Proteins/administration & dosage
- Follistatin-Related Proteins/antagonists & inhibitors
- Follistatin-Related Proteins/blood
- Follistatin-Related Proteins/genetics
- Humans
- Hypertension, Pulmonary/blood
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypoxia/blood
- Hypoxia/complications
- Hypoxia/drug therapy
- Hypoxia/pathology
- Mice
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Pulmonary Disease, Chronic Obstructive/blood
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/genetics
- RNA, Small Interfering/administration & dosage
Collapse
Affiliation(s)
- Wei Zhang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, P.R. China
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Capital Medical University, Beijing 100069, P.R. China
| | - Wang Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, P.R. China
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Capital Medical University, Beijing 100069, P.R. China
| | - Jie Liu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, P.R. China
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Capital Medical University, Beijing 100069, P.R. China
| | - Jinna Li
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Juan Wang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yunxia Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Zhifei Zhang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, P.R. China
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Capital Medical University, Beijing 100069, P.R. China
| | - Yafei Liu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, P.R. China
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Capital Medical University, Beijing 100069, P.R. China
| | - Yankun Jin
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Jifeng Li
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jie Cao
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chen Wang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Capital Medical University, Beijing 100069, P.R. China
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Jun Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, P.R. China
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
18
|
Cheng G, Wang X, Li Y, He L. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling. Stem Cell Res Ther 2017; 8:34. [PMID: 28187784 PMCID: PMC5303212 DOI: 10.1186/s13287-017-0480-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background Cell-based gene therapy has become a subject of interest for the treatment of pulmonary arterial hypertension (PAH), a devastating disease characterized by pulmonary artery smooth muscle cell (PASMC) hyperplasia. Mesenchymal stem cells (MSCs) have been recently acknowledged as a potential cell vector for gene therapy. Here, we investigated the effect of MSC-based let-7a for PAH. Methods After isolation and identification of MSCs from rat bone marrow, cells were infected with recombinant adenovirus vector Ad-let-7a. Lewis rats were subcutaneously injected with monocrotaline (MCT) to induce PAH, followed by the administration of MSCs, MSCs-NC (miR-control), or MSC-let-7a, respectively. Then, right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular remodeling were evaluated. Rat pulmonary artery smooth muscle cells (rPASMCs) under hypoxia were co-cultured with MSCs or MSC-let-7a. Cell proliferation and apoptosis were separately determined by 3H thymidine incorporation and flow cytometry analysis. The underlying mechanism was also investigated. Results MSC transplantation enhanced let-7a levels in MCT-induced PAH rats. After injection with MSC-let-7a, RVSP, right ventricular hypertrophy, and pulmonary vascular remodeling were notably ameliorated, indicating a protective effect of MSC-let-7a against PAH. When co-cultured with MSC-let-7a, hypoxia-triggered PASMC proliferation was obviously attenuated, concomitant with the decrease in cell proliferation-associated proteins. Simultaneously, the resistance of PASMCs to apoptosis was remarkably abrogated by MSC-let-7a administration. A mechanism assay revealed that MSC-let-7a restrained the activation of signal transducers and activators of transcription 3 (STAT3) and increased its downstream bone morphogenetic protein receptor 2 (BMPR2) expression. Importantly, preconditioning with BMPR2 siRNA dramatically abated the suppressive effects of MSC-let-7a on PASMC proliferation and apoptosis resistance. Conclusions Collectively, this study suggests that MSCs modified with let-7a may ameliorate the progression of PAH by inhibiting PASMC growth through the STAT3-BMPR2 signaling, supporting a promising therapeutic strategy for PAH patients.
Collapse
Affiliation(s)
- Gesheng Cheng
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xingye Wang
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Yongxin Li
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Lu He
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| |
Collapse
|