1
|
Najafipour H, Rostamzadeh F, Jafarinejad-Farsangi S, Bagheri-Hosseinabadi Z, Jafari E, Farsinejad A, Bagheri MM. Human platelet lysate combined with mesenchymal stem cells pretreated with platelet lysate improved cardiac function in rats with myocardial infarction. Sci Rep 2024; 14:27701. [PMID: 39533052 PMCID: PMC11557824 DOI: 10.1038/s41598-024-79050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of heart failure, disability and mortality worldwide. In this study, the effects of intramyocardial injection of human platelet lysate (HPL), bone marrow mesenchymal stem cells pretreated with HPL (PMSCs), and PMSC lysate (lys), alone and in combination were investigated on MI-induced by LAD ligation in male Wistar rats. The experiment was carried out on sham, vehicle (Veh), HPL, PMSCs, PMSC lysate (PMSC lys), HPL + PMSCs, and HPL + PMSC lys groups. SBP, DBP, and ± dp/dt max were monitored by the PowerLab physiograph. The MSC characteristics and CD31, NKX2.5, and cardiac troponin I (cTnI) contents were determined by flow cytometry, immunohistochemistry, and immunofluorescence, respectively. SBP, DBP, and ± dp/dt max that decreased in the MI group were recovered by HPL, PMSC, PMSC lys, HPL + PMSC, and HPL + PMSC lys treatments. CD31 density was higher in all treated groups compared to the Veh group. CD31 density in the HPL + PMSCs and HPL + PMSC lys groups was higher than in the PMSCs group. The number of Dil+/NKX2.5 + and Dil+/cTnI + cells was higher in the HPL + PMSCs group compared to the PMSCs group. The HPL and PMSCs mitigates heart injuries and cardiac dysfunction after MI. HPL provides an appropriate environment for cardiomyocyte differentiation from PMSCs.
Collapse
Affiliation(s)
- Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Boulevard Jihad, Ebne-Sina Avenue, 7619813159, Kerman, Iran.
| | - Seedieh Jafarinejad-Farsangi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Bagheri-Hosseinabadi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, and Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Stem Cell and Regenerative Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohmmad Mehdi Bagheri
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Direct cardiac reprogramming: basics and future challenges. Mol Biol Rep 2023; 50:865-871. [PMID: 36308583 DOI: 10.1007/s11033-022-07913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Heart failure is the leading cause of morbidity and mortality worldwide and is characterized by reduced cardiac function. Currently, cardiac transplantation therapy is applied for end-stage heart failure, but it is limited by the number of available donors. METHODS AND RESULTS Following an assessment of available literature, a narrative review was conducted to summarizes the current status and challenges of cardiac reprogramming for clinical application. Scientists have developed different regenerative treatment strategies for curing heart failure, including progenitor cell delivery and pluripotent cell delivery. Recently, a novel strategy has emerged that directly reprograms cardiac fibroblast into a functional cardiomyocyte. In this treatment, transcription factors are first identified to reprogram fibroblast into a cardiomyocyte. After that, microRNA and small molecules show great potential to optimize the reprogramming process. Some challenges regarding cell reprogramming in humans are conversion efficiency, virus utilization, immature and heterogenous induced cardiomyocytes, technical reproducibility issues, and physiological effects of depleted fibroblasts on myocardial tissue. CONCLUSION Several strategies have shown positive results in direct cardiac reprogramming. However, direct cardiac reprogramming still needs improvement if it is used as a mainstay therapy in humans, and challenges need to be overcome before cardiac reprogramming can be considered a viable therapeutic strategy. Further advances in cardiac reprogramming studies are needed in cardiac regenerative therapy.
Collapse
|
3
|
Zhang GL, Sun ML, Zhang XA. Exercise-Induced Adult Cardiomyocyte Proliferation in Mammals. Front Physiol 2021; 12:729364. [PMID: 34526914 PMCID: PMC8437341 DOI: 10.3389/fphys.2021.729364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022] Open
Abstract
Loss of cardiomyocytes is a vital manifestation and predisposing factor of many cardiovascular diseases and will eventually lead to heart failure (HF). On the other hand, adult mammalian cardiomyocytes have a very limited regenerative capacity and cannot achieve self-repair of the myocardium after injury. Therefore, it is necessary to promote regeneration and repair of the myocardium through effective intervention means. Exercise plays an important role in the prevention and rehabilitation of cardiovascular diseases. Exercise can improve ischemia-reperfusion injury, reduce the size of the infarcted area, and improve the quality of life of patients. In addition, exercise has also been shown to be able to elevate the proliferative potential of adult cardiomyocytes and promote myocardial regeneration. Studies have shown that newly formed cardiomyocytes in adult mammalian hearts are mainly derived from pre-existing cardiomyocytes. By regulating various cytokines, transcription factors, and microRNAs (miRNAs), exercise can promote the dedifferentiation and proliferation of pre-existing cardiomyocytes to form new cardiomyocytes. Therefore, this paper focuses on the recent research progress of exercise-induced adult cardiomyocyte proliferation and explores its potential molecular mechanism.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
4
|
Valizadeh A, Asghari S, Mansouri P, Alemi F, Majidinia M, Mahmoodpoor A, Yousefi B. The roles of signaling pathways in cardiac regeneration. Curr Med Chem 2021; 29:2142-2166. [PMID: 34521319 DOI: 10.2174/0929867328666210914115411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
In recent years, knowledge of cardiac regeneration mechanisms has dramatically expanded. Regeneration can replace lost parts of organs, common among animal species. The heart is commonly considered an organ with terminal development, which has no reparability potential during post-natal life; however, some intrinsic regeneration capacity has been reported for cardiac muscle, which opens novel avenues in cardiovascular disease treatment. Different endogenous mechanisms were studied for cardiac repairing and regeneration in recent decades. Survival, proliferation, inflammation, angiogenesis, cell-cell communication, cardiomyogenesis, and anti-aging pathways are the most important mechanisms that have been studied in this regard. Several in vitro and animal model studies focused on proliferation induction for cardiac regeneration reported promising results. These studies have mainly focused on promoting proliferation signaling pathways and demonstrated various signaling pathways such as Wnt, PI3K/Akt, IGF-1, TGF-β, Hippo, and VEGF signaling cardiac regeneration. Therefore, in this review, we intended to discuss the connection between different critical signaling pathways in cardiac repair and regeneration.
Collapse
Affiliation(s)
- Amir Valizadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Samira Asghari
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Parinaz Mansouri
- Students Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia. Iran
| | - Ata Mahmoodpoor
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| |
Collapse
|
5
|
Adams E, McCloy R, Jordan A, Falconer K, Dykes IM. Direct Reprogramming of Cardiac Fibroblasts to Repair the Injured Heart. J Cardiovasc Dev Dis 2021; 8:72. [PMID: 34206355 PMCID: PMC8306371 DOI: 10.3390/jcdd8070072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is a leading cause of mortality and morbidity. Those that survive acute myocardial infarction are at significant risk of subsequent heart failure due to fibrotic remodelling of the infarcted myocardium. By applying knowledge from the study of embryonic cardiovascular development, modern medicine offers hope for treatment of this condition through regeneration of the myocardium by direct reprogramming of fibrotic scar tissue. Here, we will review mechanisms of cell fate specification leading to the generation of cardiovascular cell types in the embryo and use this as a framework in which to understand direct reprogramming. Driving expression of a network of transcription factors, micro RNA or small molecule epigenetic modifiers can reverse epigenetic silencing, reverting differentiated cells to a state of induced pluripotency. The pluripotent state can be bypassed by direct reprogramming in which one differentiated cell type can be transdifferentiated into another. Transdifferentiating cardiac fibroblasts to cardiomyocytes requires a network of transcription factors similar to that observed in embryonic multipotent cardiac progenitors. There is some flexibility in the composition of this network. These studies raise the possibility that the failing heart could one day be regenerated by directly reprogramming cardiac fibroblasts within post-infarct scar tissue.
Collapse
Affiliation(s)
- Emma Adams
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Rachel McCloy
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Ashley Jordan
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Kaitlin Falconer
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Iain M. Dykes
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
6
|
Chua SK, Wang BW, Yu YJ, Fang WJ, Lin CM, Shyu KG. Cyclic stretching boosts microRNA-499 to regulate Bcl-2 via microRNA-208a in atrial fibroblasts. J Cell Mol Med 2021; 25:3113-3123. [PMID: 33605072 PMCID: PMC7957261 DOI: 10.1111/jcmm.16373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs that modulate transcription can regulate other microRNAs and are also up-regulated under pathological stress. MicroRNA-499 (miR-499), microRNA-208a (miR-208a) and B-cell lymphoma 2 (Bcl-2) play roles in cardiovascular diseases, such as direct reprogramming of cardiac fibroblast into cardiomyocyte and cardiomyocyte apoptosis. Whether miR208a, miR499 and Bcl-2 were critical regulators in cardiac fibroblast apoptosis under mechanical stretching conditions in human cardiac fibroblasts-adult atrial (HCF-aa) was investigated. Using negative pressure, HCF-aa grown on a flexible membrane base were cyclically stretched to 20% of their maximum elongation. In adult rats, an aortocaval shunt was used to create an in vivo model of volume overload. MiR208a was up-regulated early by stretching and returned to normal levels with longer stretching cycles, whereas the expression of miR499 and Bcl-2 was up-regulated by longer stretching times. Pre-treatment with antagomir-499 reversed the miR-208a down-regulation, whereas Bcl-2 expression could be suppressed by miR-208a overexpression. In the HCF-aa under stretching for 1 h, miR-499 overexpression decreased pri-miR-208a luciferase activity; this inhibition of pri-miR-208a luciferase activity with stretching was reversed when the miR-499-5p binding site in pri-miR-208a was mutated. The addition of antagomir-208a reversed the Bcl-2-3'UTR suppression from stretching for 1 h. Flow cytometric analysis revealed that pre-treatment with miR-499 or antagomir-208a inhibited cellular apoptosis in stretched HCF-aa. In hearts with volume overload, miR-499 overexpression inhibited myocardial miR-208a expression, whereas Bcl-2 expression could be suppressed by the addition of miR-208a. In conclusion, miR-208a mediated the regulation of miR-499 on Bcl-2 expression in stretched HCF-aa and hearts with volume overload.
Collapse
Affiliation(s)
- Su-Kiat Chua
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Bao-Wei Wang
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ying-Ju Yu
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Wei-Jen Fang
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chiu-Mei Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.,Department of Emergency Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kou-Gi Shyu
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Jiang L, Liang J, Huang W, Wu Z, Paul C, Wang Y. Strategies and Challenges to Improve Cellular Programming-Based Approaches for Heart Regeneration Therapy. Int J Mol Sci 2020; 21:E7662. [PMID: 33081233 PMCID: PMC7589611 DOI: 10.3390/ijms21207662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Limited adult cardiac cell proliferation after cardiovascular disease, such as heart failure, hampers regeneration, resulting in a major loss of cardiomyocytes (CMs) at the site of injury. Recent studies in cellular reprogramming approaches have provided the opportunity to improve upon previous techniques used to regenerate damaged heart. Using these approaches, new CMs can be regenerated from differentiation of iPSCs (similar to embryonic stem cells), the direct reprogramming of fibroblasts [induced cardiomyocytes (iCMs)], or induced cardiac progenitors. Although these CMs have been shown to functionally repair infarcted heart, advancements in technology are still in the early stages of development in research laboratories. In this review, reprogramming-based approaches for generating CMs are briefly introduced and reviewed, and the challenges (including low efficiency, functional maturity, and safety issues) that hinder further translation of these approaches into a clinical setting are discussed. The creative and combined optimal methods to address these challenges are also summarized, with optimism that further investigation into tissue engineering, cardiac development signaling, and epigenetic mechanisms will help to establish methods that improve cell-reprogramming approaches for heart regeneration.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
8
|
Iwamiya T, Segard BD, Matsuoka Y, Imamura T. Human cardiac fibroblasts expressing VCAM1 improve heart function in postinfarct heart failure rat models by stimulating lymphangiogenesis. PLoS One 2020; 15:e0237810. [PMID: 32936824 PMCID: PMC7494079 DOI: 10.1371/journal.pone.0237810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide. After an ischemic injury, the myocardium undergoes severe necrosis and apoptosis, leading to a dramatic degradation of function. Numerous studies have reported that cardiac fibroblasts (CFs) play a critical role in heart function even after injury. However, CFs present heterogeneous characteristics according to their development stage (i.e., fetal or adult), and the molecular mechanisms by which they maintain heart function are not fully understood. The aim of this study is to explore the hypothesis that a specific population of CFs can repair the injured myocardium in heart failure following ischemic infarction, and lead to a significant recovery of cardiac function. Flow cytometry analysis of CFs defined two subpopulations according to their relative expression of vascular cell adhesion molecule 1 (VCAM1). Whole-transcriptome analysis described distinct profiles for these groups, with a correlation between VCAM1 expression and lymphangiogenesis-related genes up-regulation. Vascular formation assays showed a significant stimulation of lymphatic cells network complexity by VCFs. Injection of human VCAM1-expressing CFs (VCFs) in postinfarct heart failure rat models (ligation of the left anterior descending artery) led to a significant restoration of the left ventricle contraction. Over the course of the experiment, left ventricular ejection fraction and fractional shortening increased by 16.65% ± 5.64% and 10.43% ± 6.02%, respectively, in VCF-treated rats. Histological examinations revealed that VCFs efficiently mobilized the lymphatic endothelial cells into the infarcted area. In conclusion, human CFs present heterogeneous expression of VCAM1 and lymphangiogenesis-promoting factors. VCFs restore the mechanical properties of ventricular walls by mobilizing lymphatic endothelial cells into the infarct when injected into a rat heart failure model. These results suggest a role of this specific population of CFs in the homeostasis of the lymphatic system in cardiac regeneration, providing new information for the study and therapy of cardiac diseases.
Collapse
Affiliation(s)
- Takahiro Iwamiya
- Research & Development Department, Metcela Inc., Kawasaki, Kanagawa, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- * E-mail:
| | | | - Yuimi Matsuoka
- Research & Development Department, Metcela Inc., Kawasaki, Kanagawa, Japan
| | - Tomomi Imamura
- Research & Development Department, Metcela Inc., Kawasaki, Kanagawa, Japan
| |
Collapse
|
9
|
van Gorp PRR, Trines SA, Pijnappels DA, de Vries AAF. Multicellular In vitro Models of Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front Cardiovasc Med 2020; 7:43. [PMID: 32296716 PMCID: PMC7138102 DOI: 10.3389/fcvm.2020.00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice with a large socioeconomic impact due to its associated morbidity, mortality, reduction in quality of life and health care costs. Currently, antiarrhythmic drug therapy is the first line of treatment for most symptomatic AF patients, despite its limited efficacy, the risk of inducing potentially life-threating ventricular tachyarrhythmias as well as other side effects. Alternative, in-hospital treatment modalities consisting of electrical cardioversion and invasive catheter ablation improve patients' symptoms, but often have to be repeated and are still associated with serious complications and only suitable for specific subgroups of AF patients. The development and progression of AF generally results from the interplay of multiple disease pathways and is accompanied by structural and functional (e.g., electrical) tissue remodeling. Rational development of novel treatment modalities for AF, with its many different etiologies, requires a comprehensive insight into the complex pathophysiological mechanisms. Monolayers of atrial cells represent a simplified surrogate of atrial tissue well-suited to investigate atrial arrhythmia mechanisms, since they can easily be used in a standardized, systematic and controllable manner to study the role of specific pathways and processes in the genesis, perpetuation and termination of atrial arrhythmias. In this review, we provide an overview of the currently available two- and three-dimensional multicellular in vitro systems for investigating the initiation, maintenance and termination of atrial arrhythmias and AF. This encompasses cultures of primary (animal-derived) atrial cardiomyocytes (CMs), pluripotent stem cell-derived atrial-like CMs and (conditionally) immortalized atrial CMs. The strengths and weaknesses of each of these model systems for studying atrial arrhythmias will be discussed as well as their implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Antoine A. F. de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Date Y, Kondo H, Yamashita A, Iseki S, Kasugai S, Ota MS. Combined in silico analysis identified a putative tooth root formation-related gene, Chd3, which regulates DNA synthesis in HERS01a cells. Odontology 2020; 108:386-395. [PMID: 32026140 DOI: 10.1007/s10266-020-00489-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
Abstract
There exists a close connection between changes occurring in the teeth and those occurring in the jaw during the evolutionary process. In mammals, the roots of teeth are supported, along with periodontal ligaments and alveolar bones by a unique structure termed the gomphosis. In the present study, we performed combined in silico analysis using the information obtained from various DNA microarrays and identified 19 putative tooth root formation-related genes. Furthermore, quantitative PCR was performed on the candidate genes, Chd3 was confirmed as having sufficient expression levels in the early stage of tooth root formation and increased gene expression toward the middle stage. A high degree of Chd3 gene expression was observed in secretory ameloblasts and Hertwig's epithelial root sheath (HERS), but low expression was observed in developing odontoblasts and stellate reticulum. The CHD3 foci were observed in the nucleus of the HERS01a cells. In addition, knockdown experiments using SiChd3 suggested the involvement of Chd3 in the suppression of DNA synthesis. These results suggested that Chd3 plays a role in DNA synthesis in HERS cells for promoting tooth root development.
Collapse
Affiliation(s)
- Yuki Date
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Section of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hisatomo Kondo
- Section of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Atsuko Yamashita
- Laboratory of Anatomy, Physiology, and Food Biological Science, Department of Food and Nutrition, Japan Women's University, 2-8-1, Mejirodai, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shohei Kasugai
- Section of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato S Ota
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Laboratory of Anatomy, Physiology, and Food Biological Science, Department of Food and Nutrition, Japan Women's University, 2-8-1, Mejirodai, Bunkyo-Ku, Tokyo, 112-8681, Japan.
| |
Collapse
|
11
|
Triposkiadis F, Xanthopoulos A, Butler J. Cardiovascular Aging and Heart Failure. J Am Coll Cardiol 2019; 74:804-813. [DOI: 10.1016/j.jacc.2019.06.053] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
|