1
|
Hall R, Sawant V, Gu J, Sikora T, Rollo B, Velasco S, Kim J, Segev N, Christodoulou J, Van Bergen NJ. TRAPPopathies: Severe Multisystem Disorders Caused by Variants in Genes of the Transport Protein Particle (TRAPP) Complexes. Int J Mol Sci 2024; 25:13329. [PMID: 39769094 PMCID: PMC11728246 DOI: 10.3390/ijms252413329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The TRAPP (TRAnsport Protein Particle) protein complex is a multi-subunit complex involved in vesicular transport between intracellular compartments. The TRAPP complex plays an important role in endoplasmic reticulum-to-Golgi and Golgi-to-plasma membrane transport, as well as autophagy. TRAPP complexes comprise a core complex, TRAPPI, and the association of peripheral protein subunits to make two complexes, known as TRAPPII and TRAPPIII, which act as Guanine Nucleotide Exchange Factors (GEFs) of Rab11 and Rab1, respectively. Rab1 and Rab11 are GTPases that mediate cargo selection, packaging, and delivery during pre- and post-Golgi transport in the secretory pathway. Rab1 is also required for the first step of macroautophagy, a cellular recycling pathway. Pathogenic variants in genes encoding protein subunits of the TRAPP complex are associated with a range of rare but severe neurological, skeletal, and muscular disorders, collectively called TRAPPopathies. Disease-causing variants have been identified in multiple subunits of the TRAPP complex; however, little is known about the underlying disease mechanisms. In this review, we will provide an overview of the current knowledge surrounding disease-associated variants of the TRAPP complex subunits, propose new insights into the underlying disease pathology, and suggest future research directions into the underlying disease mechanisms.
Collapse
Affiliation(s)
- Riley Hall
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
| | - Vallari Sawant
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Jinchao Gu
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia; (J.G.); (B.R.)
| | - Tim Sikora
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Ben Rollo
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia; (J.G.); (B.R.)
| | - Silvia Velasco
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Jinkuk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea;
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 61801, USA;
| | - John Christodoulou
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Nicole J. Van Bergen
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
2
|
Yu B, Chen J, Yang S, Wang H, Xiao Y, Liu S. Case Report: Whole exome sequencing identifies compound heterozygous variants in the TRAPPC9 gene in a child with developmental delay. Front Genet 2024; 15:1415194. [PMID: 39184350 PMCID: PMC11341409 DOI: 10.3389/fgene.2024.1415194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Background Developmental delay in children under 5 years old, which occurs globally with an incidence of 10%-15%, is caused by multiple factors including genetics, prenatal conditions, perinatal complications, postnatal influences, social factors, and nutritional deficiencies. Gene variants such as EFNB1, MECP2 and TRAPPC9 play a significant role in protein deformation and downregulation of nuclear factor κB (NF-κB) activity. Methods A 3-year-old girl, who exhibits poor gross motor skills, personal-social development, auditory language, hand-eye coordination, and visual performance, was diagnosed with global developmental delay. Trio whole exome sequencing was conducted to identify the genetic etiology of her condition. The identified genetic etiology was then validated through Sanger sequencing and quantitative polymerase chain reaction (qPCR). Results Genetic analysis revealed that the patient had compound heterozygous variants in the TRAPPC9 gene. These include a c.1928del frameshift variant inherited from the unaffected father and a deletion in exon 12 inherited from the unaffected mother. According to the American College of Medical Genetics (ACMG) guidelines, these variants were classified as "likely pathogenic". Conclusion The study revealed that compound heterozygous TRAPPC9 gene variants cause developmental delay in a Chinese girl. These variants have been classified as having significant pathogenic effect according to the ACMG criteria, suggesting a recessive genetic pattern and highlighting the importance of prenatal testing for future offspring. Furthermore, our findings expand the genotype spectrum of the TRAPPC9 gene, and provide more comprehensive information regarding genetic counseling for children experiencing developmental delay.
Collapse
Affiliation(s)
- Bingxuan Yu
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jing Chen
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shuo Yang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - He Wang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuanyuan Xiao
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
3
|
Kharrat M, Triki C, Ben Isaa A, Bouchaala W, Alila O, Chouchen J, Ghouliya Y, Kamoun F, Tlili A, Fakhfakh F. Expanding the genetic and phenotypic spectrum of TRAPPC9 and MID2-related neurodevelopmental disabilities: report of two novel mutations, 3D-modelling, and molecular docking studies. J Hum Genet 2024; 69:291-299. [PMID: 38467738 DOI: 10.1038/s10038-024-01242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Intellectual disabilities (ID) and autism spectrum disorders (ASD) have a variety of etiologies, including environmental and genetic factors. Our study reports a psychiatric clinical investigation and a molecular analysis using whole exome sequencing (WES) of two siblings with ID and ASD from a consanguineous family. Bioinformatic prediction and molecular docking analysis were also carried out. The two patients were diagnosed with profound intellectual disability, brain malformations such as cortical atrophy, acquired microcephaly, and autism level III. The neurological and neuropsychiatric examination revealed that P2 was more severely affected than P1, as he was unable to walk, presented with dysmorphic feature and exhibited self and hetero aggressive behaviors. The molecular investigations revealed a novel TRAPPC9 biallelic nonsense mutation (c.2920 C > T, p.R974X) in the two siblings. The more severely affected patient (P2) presented, along with the TRAPPC9 variant, a new missense mutation c.166 C > T (p.R56C) in the MID2 gene at hemizygous state, while his sister P1 was merely a carrier. The 3D modelling and molecular docking analysis revealed that c.166 C > T variant could affect the ability of MID2 binding to Astrin, leading to dysregulation of microtubule dynamics and causing morphological abnormalities in the brain. As our knowledge, the MID2 mutation (p.R56C) is the first one to be detected in Tunisia and causing phenotypic variability between the siblings. We extend the genetic and clinical spectrum of TRAPPC9 and MID2 mutations and highlights the possible concomitant presence of X-linked as well as autosomal recessive inheritance to causing ID, microcephaly, and autism.
Collapse
Affiliation(s)
- Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia.
| | - Chahnez Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abir Ben Isaa
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Wafa Bouchaala
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Olfa Alila
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia
| | - Jihen Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yosra Ghouliya
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia.
| |
Collapse
|
4
|
Almousa H, Lewis SA, Bakhtiari S, Nordlie SH, Pagnozzi A, Magee H, Efthymiou S, Heim JA, Cornejo P, Zaki MS, Anwar N, Maqbool S, Rahman F, Neilson DE, Vemuri A, Jin SC, Yang XR, Heidari A, van Gassen K, Trimouille A, Thauvin-Robinet C, Liu J, Bruel AL, Tomoum H, Shata MO, Hashem MO, Toosi MB, Karimiani EG, Yeşil G, Lingappa L, Baruah D, Ebrahimzadeh F, Van-Gils J, Faivre L, Zamani M, Galehdari H, Sadeghian S, Shariati G, Mohammad R, van der Smagt J, Qari A, Vincent JB, Innes AM, Dursun A, Özgül RK, Akar HT, Bilguvar K, Mignot C, Keren B, Raveli C, Burglen L, Afenjar A, Kaat LD, van Slegtenhorst M, Alkuraya F, Houlden H, Padilla-Lopez S, Maroofian R, Sacher M, Kruer MC. TRAPPC6B biallelic variants cause a neurodevelopmental disorder with TRAPP II and trafficking disruptions. Brain 2024; 147:311-324. [PMID: 37713627 PMCID: PMC10766242 DOI: 10.1093/brain/awad301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023] Open
Abstract
Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.
Collapse
Affiliation(s)
- Hashem Almousa
- Department of Biology, Concordia University, Montreal, Quebec H4B1R6, Canada
| | - Sara A Lewis
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Somayeh Bakhtiari
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Sandra Hinz Nordlie
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Alex Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane 4029, Australia
| | - Helen Magee
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Jennifer A Heim
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Patricia Cornejo
- Pediatric Neuroradiology Division, Pediatric Radiology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
- Department of Radiology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12622, Egypt
- Genetics Department, Armed Forces College of Medicine (AFCM), Cairo 4460015, Egypt
| | - Najwa Anwar
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore 54000, Pakistan
| | - Shazia Maqbool
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore 54000, Pakistan
| | - Fatima Rahman
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore 54000, Pakistan
| | - Derek E Neilson
- Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Anusha Vemuri
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University, St.Louis, MO 63110, USA
| | - Xiao-Ru Yang
- Department of Medical Genetics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, S.W. Calgary, AB T2N 4N1, Canada
| | - Abolfazl Heidari
- Reference Laboratory, Qazvin Medical University, Qazvin 34148-33245, Iran
| | - Koen van Gassen
- Division of Laboratories, Pharmacy and Biomedical Genetics, Section of Clinical Genetics, University Medical Center Utrecht (UMCU), 3584 CX Utrecht, Netherlands
| | - Aurélien Trimouille
- Laboratoire de Génétique Moléculaire, Service de Génétique Médicale, CHU Bordeaux—Hôpital Pellegrin, Place Amélie Raba Léon, 33000 Bordeaux, France
| | - Christel Thauvin-Robinet
- Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
- Unité Fontctionnelle d’Innovation diagnostiques des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
- GAD ‘Génétique des Anomalies du Développement’, INSERM-Université de Bourgogne UMR1231, 21078 Dijon, France
| | - James Liu
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Ange-Line Bruel
- Unité Fontctionnelle d’Innovation diagnostiques des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
- GAD ‘Génétique des Anomalies du Développement’, INSERM-Université de Bourgogne UMR1231, 21078 Dijon, France
| | - Hoda Tomoum
- Department of Pediatrics, Ain Shams University, Cairo 11516, Egypt
| | | | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran
- Neuroscience Research Center, Mashhad University of Medical Science, Mashhad 13944-91388, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St.George’s, University of London, London SW17 0RE, UK
| | - Gözde Yeşil
- Istanbul Medical Faculty Department of Medical Genetics, Istanbul University, Istanbul 34452, Turkey
| | - Lokesh Lingappa
- Pediatric Neurology, Rainbow Children Hospital, Hyderabad 500034, India
| | - Debangana Baruah
- Pediatric Neurology, Rainbow Children Hospital, Hyderabad 500034, India
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran
| | - Julien Van-Gils
- Division of Laboratories, Pharmacy and Biomedical Genetics, Section of Clinical Genetics, University Medical Center Utrecht (UMCU), 3584 CX Utrecht, Netherlands
| | - Laurence Faivre
- Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz 6155889467, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135733118, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz 6155889467, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135733118, Iran
| | - Rahema Mohammad
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Jasper van der Smagt
- Division of Laboratories, Pharmacy and Biomedical Genetics, Section of Clinical Genetics, University Medical Center Utrecht (UMCU), 3584 CX Utrecht, Netherlands
| | - Alya Qari
- Medical Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, S.W. Calgary, AB T2N 4N1, Canada
| | - Ali Dursun
- Department of Pediatric Metabolism, Hacettepe University, Faculty of Medicine & Institute of Child Health, Ankara 06800, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Hacettepe University, Faculty of Medicine & Institute of Child Health, Ankara 06800, Turkey
| | - Halil Tuna Akar
- Department of Pediatric Metabolism, Hacettepe University, Faculty of Medicine & Institute of Child Health, Ankara 06800, Turkey
| | - Kaya Bilguvar
- Department of Medical Genetics, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
- Department of Neurosurgery and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cyril Mignot
- Département de Génétique, APHP Sorbonne Université, Hôpital Trousseau & Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, 75012 Paris, France
| | - Boris Keren
- Département de Génétique, APHP Sorbonne Université, Hôpital Trousseau & Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Claudia Raveli
- APHP Sorbonne Université, Service de Neuropédiatrie, Hôpital Trousseau, 75012 Paris, France
| | - Lydie Burglen
- Département de Génétique, Centre de référence des malformations et maladies congénitales du cervelet, APHP. Sorbonne Université, Hôpital Trousseau, 75012 Paris, France
| | - Alexandra Afenjar
- Département de Génétique, Centre de référence des malformations et maladies congénitales du cervelet, APHP. Sorbonne Université, Hôpital Trousseau, 75012 Paris, France
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus Medical Center, 3000 Rotterdam, The Netherlands
| | | | - Fowzan Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Sergio Padilla-Lopez
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec H4B1R6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A0C7, Canada
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Cellular and Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| |
Collapse
|
5
|
Papaioannou P, Wallace MJ, Malhotra N, Mohler PJ, El Refaey M. Biochemical Structure and Function of TRAPP Complexes in the Cardiac System. JACC Basic Transl Sci 2023; 8:1599-1612. [PMID: 38205348 PMCID: PMC10774597 DOI: 10.1016/j.jacbts.2023.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 01/12/2024]
Abstract
Trafficking protein particle (TRAPP) is well reported to play a role in the trafficking of protein products within the Golgi and endoplasmic reticulum. Dysfunction in TRAPP has been associated with disorders in the nervous and cardiovascular systems, but the majority of literature focuses on TRAPP function in the nervous system solely. Here, we highlight the known pathways of TRAPP and hypothesize potential impacts of TRAPP dysfunction on the cardiovascular system, particularly the role of TRAPP as a guanine-nucleotide exchange factor for Rab1 and Rab11. We also review the various cardiovascular phenotypes associated with changes in TRAPP complexes and their subunits.
Collapse
Affiliation(s)
- Peter Papaioannou
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nipun Malhotra
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
6
|
Uctepe E, Yesilyurt A, Esen FN, Tumer S, Mancilar H, Sonmez FM. TRAPPC9-Related Intellectual Disability: Report of Two New Cases and Review of the Literature. Mol Syndromol 2023; 14:485-492. [PMID: 38058760 PMCID: PMC10697769 DOI: 10.1159/000531439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/05/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Hereditary forms of intellectual disability (ID), an estimated prevalence ranging between 1% and 3% in the general population, are among the most important problems in health care. Especially, autosomal-recessive ID has a very heterogeneous molecular basis and a lack of specific phenotypic features. Methods Here, we report on two unrelated patients with autosomal-recessive ID, microcephaly, and autistic features and review the patients with TRAPPC9-related ID. Whole-exome sequencing and array CGH were performed for molecular diagnosis of the patients. Results The first case has a microdeletion on chromosome 8q24.23-q24.3 region which is 1.7 Mb in length and includes the last 5 exons of TRAPPC9, and c.3435delG [p.Thr1146Profs*8] deletion. The second case has a homozygous missense c.623A>C (p.His208Pro) variant in TRAPPC9 which is detected by means of whole-exome sequencing study of the proband. We also reviewed the clinical findings and mutation spectrum of all patients with TRAPPC9-related ID reported so far. Conclusions Our study showed that the most consistent clinical findings for TRAPPC9-related ID are ID, microcephaly, and some structural brain MRI abnormalities. The mutations in the TRAPPC9 are scattered throughout all exons of TRAPPC9 indicating there is no hot spot mutation region in this gene.
Collapse
Affiliation(s)
- Eyyup Uctepe
- Acibadem Ankara Tissue Typing Laboratory, Ankara, Turkey
| | - Ahmet Yesilyurt
- Acibadem Labgen Genetic Diagnosis Center, Istanbul, Turkey
- Acibadem Maslak Hospital, Istanbul, Turkey
| | | | - Sait Tumer
- Acibadem Labgen Genetic Diagnosis Center, Istanbul, Turkey
| | | | - Fatma Mujgan Sonmez
- Karadeniz Technical University Faculty of Medicine, Department of Child Neurology, Ankara, Turkey
- Private office, Child Neurology, Ankara, Turkey
| |
Collapse
|
7
|
Hu M, Bodnar B, Zhang Y, Xie F, Li F, Li S, Zhao J, Zhao R, Gedupoori N, Mo Y, Lin L, Li X, Meng W, Yang X, Wang H, Barbe MF, Srinivasan S, Bethea JR, Mo X, Xu H, Hu W. Defective neurite elongation and branching in Nibp/Trappc9 deficient zebrafish and mice. Int J Biol Sci 2023; 19:3226-3248. [PMID: 37416774 PMCID: PMC10321293 DOI: 10.7150/ijbs.78489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Loss of function in transport protein particles (TRAPP) links a new set of emerging genetic disorders called "TRAPPopathies". One such disorder is NIBP syndrome, characterized by microcephaly and intellectual disability, and caused by mutations of NIBP/TRAPPC9, a crucial and unique member of TRAPPII. To investigate the neural cellular/molecular mechanisms underlying microcephaly, we developed Nibp/Trappc9-deficient animal models using different techniques, including morpholino knockdown and CRISPR/Cas mutation in zebrafish and Cre/LoxP-mediated gene targeting in mice. Nibp/Trappc9 deficiency impaired the stability of the TRAPPII complex at actin filaments and microtubules of neurites and growth cones. This deficiency also impaired elongation and branching of neuronal dendrites and axons, without significant effects on neurite initiation or neural cell number/types in embryonic and adult brains. The positive correlation of TRAPPII stability and neurite elongation/branching suggests a potential role for TRAPPII in regulating neurite morphology. These results provide novel genetic/molecular evidence to define patients with a type of non-syndromic autosomal recessive intellectual disability and highlight the importance of developing therapeutic approaches targeting the TRAPPII complex to cure TRAPPopathies.
Collapse
Affiliation(s)
- Min Hu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Brittany Bodnar
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Fangxin Xie
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
- Department of Clinical Laboratory, Xi'an NO. 3 Hospital, Xi'an, Shaanxi, 710018, China
| | - Fang Li
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Siying Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Jin Zhao
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ruotong Zhao
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Naveen Gedupoori
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Mo
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Lanyi Lin
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xue Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Mary F. Barbe
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Hong Xu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wenhui Hu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Penon-Portmann M, Hodoglugil U, Arun P W, Yip T, Slavotinek A, Tenney JL. TRAPPC9-related neurodevelopmental disorder: Report of a homozygous deletion in TRAPPC9 due to paternal uniparental isodisomy. Am J Med Genet A 2023; 191:1077-1082. [PMID: 36574751 DOI: 10.1002/ajmg.a.63100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 12/11/2022] [Indexed: 12/28/2022]
Abstract
TRAPPC9 loss-of-function biallelic variants are associated with an autosomal recessive intellectual disability syndrome (Online Mendelian Inheritance of Man no. 613192), also characterized by microcephaly, hypertelorism, obesity, growth delay, and behavioral differences. Here, we describe an 8-year-old Hispanic female with neurodevelopmental disorder, partial epilepsy, microcephaly, bilateral cleft lip and alveolus, growth delay, and dysmorphic features. She had abnormal myelination, mega cisterna magna, and colpocephaly on brain magnetic resonance imaging (MRI). Microarray showed a single ~146 Mb region of homozygosity (ROH) encompassing all of Chromosome 8, consistent with uniparental isodisomy (UPD). Exome sequencing performed in-house did not identify single nucleotide variants to explain her phenotype. Algorithms developed in-house and further evaluation of BAM files revealed a homozygous deletion overlapping Exon 2 in TRAPPC9 within the ROH. Subsequent del/dup analyses with exon-level oligo array confirmed a likely pathogenic deletion in TRAPPC9 (NM_031466.5): arr[GRCh37] 8q24.3(141460661_141461780)x0. Our case highlights the implications of downstream analyses from UPD/ROH given the increased risk for AR conditions, the strengths of combining orthologous molecular methods to establish a diagnosis and further delineates the TRAPPC9-related phenotype in an individual of Hispanic ancestry.
Collapse
Affiliation(s)
- Monica Penon-Portmann
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Ugur Hodoglugil
- Genomic Medicine Laboratory, University of California San Francisco, San Francisco, California, USA
| | - Wiita Arun P
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Tiffany Yip
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA.,Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jessica L Tenney
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Zhu Y, Saribas AS, Liu J, Lin Y, Bodnar B, Zhao R, Guo Q, Ting J, Wei Z, Ellis A, Li F, Wang X, Yang X, Wang H, Ho WZ, Yang L, Hu W. Protein expression/secretion boost by a novel unique 21-mer cis-regulatory motif (Exin21) via mRNA stabilization. Mol Ther 2023; 31:1136-1158. [PMID: 36793212 PMCID: PMC9927791 DOI: 10.1016/j.ymthe.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Boosting protein production is invaluable in both industrial and academic applications. We discovered a novel expression-increasing 21-mer cis-regulatory motif (Exin21) that inserts between SARS-CoV-2 envelope (E) protein-encoding sequence and luciferase reporter gene. This unique Exin21 (CAACCGCGGTTCGCGGCCGCT), encoding a heptapeptide (QPRFAAA, designated as Qα), significantly (34-fold on average) boosted E production. Both synonymous and nonsynonymous mutations within Exin21 diminished its boosting capability, indicating the exclusive composition and order of 21 nucleotides. Further investigations demonstrated that Exin21/Qα addition could boost the production of multiple SARS-CoV-2 structural proteins (S, M, and N) and accessory proteins (NSP2, NSP16, and ORF3), and host cellular gene products such as IL-2, IFN-γ, ACE2, and NIBP. Exin21/Qα enhanced the packaging yield of S-containing pseudoviruses and standard lentivirus. Exin21/Qα addition on the heavy and light chains of human anti-SARS-CoV monoclonal antibody robustly increased antibody production. The extent of such boosting varied with protein types, cellular density/function, transfection efficiency, reporter dosage, secretion signaling, and 2A-mediated auto-cleaving efficiency. Mechanistically, Exin21/Qα increased mRNA synthesis/stability, and facilitated protein expression and secretion. These findings indicate that Exin21/Qα has the potential to be used as a universal booster for protein production, which is of importance for biomedicine research and development of bioproducts, drugs, and vaccines.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - A. Sami Saribas
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Jinbiao Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yuan Lin
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Brittany Bodnar
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ruotong Zhao
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Qian Guo
- Department of Medical Genetics & Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Julia Ting
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Zhengyu Wei
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Aidan Ellis
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fang Li
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ling Yang
- Department of Medical Genetics & Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
10
|
Xu Y, Zhang Z, Zhao Y, Zhao C, Shi M, Dong X, Zhang J, Tan L, Zhang L, Zhao Y. TRAPPC1 is essential for the maintenance and differentiation of common myeloid progenitors in mice. EMBO Rep 2023; 24:e55503. [PMID: 36440617 PMCID: PMC9900341 DOI: 10.15252/embr.202255503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Myeloid cell development in bone marrow is essential for the maintenance of peripheral immune homeostasis. However, the role of intracellular protein trafficking pathways during myeloid cell differentiation is currently unknown. By mining bioinformatics data, we identify trafficking protein particle complex subunit 1 (TRAPPC1) as continuously upregulated during myeloid cell development. Using inducible ER-TRAPPC1 knockout mice and bone marrow chimeric mouse models, we demonstrate that TRAPPC1 deficiency causes severe monocyte and neutrophil defects, accompanied by a selective decrease in common myeloid progenitors (CMPs) and subsequent cell subsets in bone marrow. TRAPPC1-deleted CMPs differentiate poorly into monocytes and neutrophils in vivo and in vitro, in addition to exhibiting enhanced endoplasmic reticulum stress and apoptosis via a Ca2+ -mitochondria-dependent pathway. Cell cycle arrest and senescence of TRAPPC1-deleted CMPs are mediated by the activation of pancreatic endoplasmic reticulum kinase and the upregulation of cyclin-dependent kinase inhibitor p21. This study reveals the essential role of TRAPPC1 in the maintenance and differentiation of CMPs and highlights the significance of protein processing and trafficking processes in myeloid cell development.
Collapse
Affiliation(s)
- Yanan Xu
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Yang Zhao
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Chenxu Zhao
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Mingpu Shi
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Xue Dong
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Jiayu Zhang
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Liang Tan
- Kidney Transplantation DepartmentSecond Xiangya Hospital of Central South UniversityChangshaChina
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Yong Zhao
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
11
|
Abstract
Vesicles mediate the trafficking of membranes/proteins in the endocytic and secretory pathways. These pathways are regulated by small GTPases of the Rab family. Rab proteins belong to the Ras superfamily of GTPases, which are significantly involved in various intracellular trafficking and signaling processes in the nervous system. Rab11 is known to play a key role especially in recycling many proteins, including receptors important for signal transduction and preservation of functional activities of nerve cells. Rab11 activity is controlled by GEFs (guanine exchange factors) and GAPs (GTPase activating proteins), which regulate its function through modulating GTP/GDP exchange and the intrinsic GTPase activity, respectively. Rab11 is involved in the transport of several growth factor molecules important for the development and repair of neurons. Overexpression of Rab11 has been shown to significantly enhance vesicle trafficking. On the other hand, a reduced expression of Rab11 was observed in several neurodegenerative diseases. Current evidence appears to support the notion that Rab11 and its cognate proteins may be potential targets for therapeutic intervention. In this review, we briefly discuss the function of Rab11 and its related interaction partners in intracellular pathways that may be involved in neurodegenerative processes.
Collapse
Affiliation(s)
| | - Jiri Novotny
- Jiri Novotny, Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
12
|
Abstract
Bovine viral diarrhea virus (BVDV) belongs to the family Flaviviridae genus pestivirus. The viral genome is a single-stranded, positive-sense RNA that encodes four structural proteins (i.e., C, Erns, E1, and E2) and eight non-structural proteins (NSPs) (i.e., Npro, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Cattle infected with BVDV exhibit a number of different clinical signs including diarrhea, abortion, and other reproductive disorders which have a serious impact on the cattle industry worldwide. Research on BVDV mainly focuses on its structural protein, however, progress in understanding the functions of the NSPs of BVDV has also been made in recent decades. The knowledge gained on the BVDV non-structural proteins is helpful to more fully understand the viral replication process and the molecular mechanism of viral persistent infection. This review focuses on the functions of BVDV NSPs and provides references for the identification of BVDV, the diagnosis and prevention of Bovine viral diarrhea mucosal disease (BVD-MD), and the development of vaccines.
Collapse
|
13
|
TRAPPC9-CDG: A novel congenital disorder of glycosylation with dysmorphic features and intellectual disability. Genet Med 2022; 24:894-904. [PMID: 35042660 DOI: 10.1016/j.gim.2021.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE TRAPPC9 deficiency is an autosomal recessive disorder mainly associated with intellectual disability (ID), microcephaly, and obesity. Previously, TRAPPC9 deficiency has not been associated with biochemical abnormalities. METHODS Exome sequencing was performed in 3 individuals with ID and dysmorphic features. N-Glycosylation analyses were performed in the patients' blood samples to test for possible congenital disorder of glycosylation (CDG). TRAPPC9 gene, TRAPPC9 protein expression, and N-glycosylation markers were assessed in patient fibroblasts. Complementation with wild-type TRAPPC9 and immunofluorescence studies to assess TRAPPC9 expression and localization were performed. The metabolic consequences of TRAPPC9 deficiency were evaluated using tracer metabolomics. RESULTS All 3 patients carried biallelic missense variants in TRAPPC9 and presented with an N-glycosylation defect in blood, consistent with CDG type I. Extensive investigations in patient fibroblasts corroborated TRAPPC9 deficiency and an N-glycosylation defect. Tracer metabolomics revealed global metabolic changes with several affected glycosylation-related metabolites. CONCLUSION We identified 3 TRAPPC9 deficient patients presenting with ID, dysmorphic features, and abnormal glycosylation. On the basis of our findings, we propose that TRAPPC9 deficiency could lead to a CDG (TRAPPC9-CDG). The finding of abnormal glycosylation in these patients is highly relevant for diagnosis, further elucidation of the pathophysiology, and management of the disease.
Collapse
|
14
|
Rawlins LE, Almousa H, Khan S, Collins SC, Milev MP, Leslie J, Saint-Dic D, Khan V, Hincapie AM, Day JO, McGavin L, Rowley C, Harlalka GV, Vancollie VE, Ahmad W, Lelliott CJ, Gul A, Yalcin B, Crosby AH, Sacher M, Baple EL. Biallelic variants in TRAPPC10 cause a microcephalic TRAPPopathy disorder in humans and mice. PLoS Genet 2022; 18:e1010114. [PMID: 35298461 PMCID: PMC8963566 DOI: 10.1371/journal.pgen.1010114] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/29/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022] Open
Abstract
The highly evolutionarily conserved transport protein particle (TRAPP) complexes (TRAPP II and III) perform fundamental roles in subcellular trafficking pathways. Here we identified biallelic variants in TRAPPC10, a component of the TRAPP II complex, in individuals with a severe microcephalic neurodevelopmental disorder. Molecular studies revealed a weakened interaction between mutant TRAPPC10 and its putative adaptor protein TRAPPC2L. Studies of patient lymphoblastoid cells revealed an absence of TRAPPC10 alongside a concomitant absence of TRAPPC9, another key TRAPP II complex component associated with a clinically overlapping neurodevelopmental disorder. The TRAPPC9/10 reduction phenotype was recapitulated in TRAPPC10-/- knockout cells, which also displayed a membrane trafficking defect. Notably, both the reduction in TRAPPC9 levels and the trafficking defect in these cells could be rescued by wild type but not mutant TRAPPC10 gene constructs. Moreover, studies of Trappc10-/- knockout mice revealed neuroanatomical brain defects and microcephaly, paralleling findings seen in the human condition as well as in a Trappc9-/- mouse model. Together these studies confirm autosomal recessive TRAPPC10 variants as a cause of human disease and define TRAPP-mediated pathomolecular outcomes of importance to TRAPPC9 and TRAPPC10 mediated neurodevelopmental disorders in humans and mice. Microcephalic neurodevelopmental disorders are a group of conditions that are often inherited in families, involving small head size and abnormal brain development and function. This often results in delayed development of an affected child, affecting their movement, language and/or non-verbal communication and learning, as well as seizures and neuropsychiatric problems. A group of proteins called the transport protein particles (TRAPPs) are important for the transport of cargos inside cells. Alterations within a number of the TRAPP proteins have previously been associated with human inherited diseases called the ‘TRAPPopathies’, which involve neurodevelopmental and skeletal abnormalities. Here we show that TRAPPC10 gene alterations cause a new TRAPPopathy microcephalic neurodevelopmental disorder, and we provide a detailed clinical description of the condition termed ‘TRAPPC10-related disorder’. Our studies in mice lacking the TRAPPC10 gene identified similar features to those of affected humans, including small brain size and skeletal abnormalities. Our molecular studies showed that an affected individual with an alteration in the TRAPPC10 gene has no functional TRAPPC10 protein in their cells, which in turn causes a reduction in levels of another important TRAPP molecule, TRAPPC9. Cells lacking TRAPPC10 also display abnormalities in cellular transport processes. Together our data confirm alterations in TRAPPC10 as a cause of a microcephalic neurodevelopmental disorder in both humans and mice.
Collapse
Affiliation(s)
- Lettie E. Rawlins
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, United Kingdom
| | - Hashem Almousa
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Shazia Khan
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Stephan C. Collins
- Institute of Genetics and Molecular and Cellular Biology, Inserm, Illkirch, France
- Inserm, University of Bourgogne Franche-Comté, Dijon, France
| | - Miroslav P. Milev
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Joseph Leslie
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
| | - Djenann Saint-Dic
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Valeed Khan
- Department of Molecular Diagnostics, Rehman Medical Institute, Peshawar, Pakistan
| | | | - Jacob O. Day
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Lucy McGavin
- University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | | | - Gaurav V. Harlalka
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Malvihir, Buldana, India
| | | | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Asma Gul
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Binnaz Yalcin
- Institute of Genetics and Molecular and Cellular Biology, Inserm, Illkirch, France
- Inserm, University of Bourgogne Franche-Comté, Dijon, France
| | - Andrew H. Crosby
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Emma L. Baple
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Biallelic loss of TRAPPC9 function links vesicle trafficking pathway to autosomal recessive intellectual disability. J Hum Genet 2022; 67:279-284. [PMID: 34983975 DOI: 10.1038/s10038-021-01007-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND The trafficking protein particle (TRAPP) complex subunit 9 (C9) protein is a member of TRAPP-II complexes and regulates vesicle trafficking. Biallelic mutations in the TRAPPC9 gene are responsible for intellectual disability with expanded developmental delay, epilepsy, microcephaly, and brain atrophy. TRAPPC9-related disease list is still expanding, however, the functional effects of only a limited fraction of these have been studied. METHODS In a patient with a pathological variant in TRAPPC9, clinical examination and cranial imaging findings were evaluated. Whole-exome sequencing, followed by Sanger sequencing was performed to detect and verify the variant. To confirm the functional effect of the mutation; variant mRNA and protein expression levels were evaluated by qRT-PCR and Western blotting. Immunostaining for TRAPPC9 and lipid droplet accumulation were examined. RESULTS We have identified a novel homozygous c.696C>G (p.Phe232Leu) pathogenic variant in TRAPPC9 (NM_031466.6) gene as a cause of severe developmental delay. Functional characterization of the TRAPPC9 variant resulted in decreased mRNA and protein expression. The intracellular findings showed that TRAPPC9 protein build-up around the nucleus in mutant type while there was no specific accumulation in the control cell line. This disrupted protein pattern affected the amount of neutral lipid-carrying vesicles and their homogenous distribution at a decreasing level. CONCLUSION Biallelic variants in the TRAPPC9 gene have been reported as the underlying cause of intellectual disability. This study provides functional evidence of the novel variant in TRAPPC9 We demonstrated that the loss of function variant exclusively targeting TRAPPC9 may explicate the neurological findings through vesicle trafficking.
Collapse
|
16
|
Ben Ayed I, Bouchaala W, Bouzid A, Feki W, Souissi A, Ben Nsir S, Ben Said M, Sammouda T, Majdoub F, Kharrat I, Kamoun F, Elloumi I, Kamoun H, Tlili A, Masmoudi S, Triki C. Further insights into the spectrum phenotype of TRAPPC9 and CDK5RAP2 genes, segregating independently in a large Tunisian family with intellectual disability and microcephaly. Eur J Med Genet 2021; 64:104373. [PMID: 34737153 DOI: 10.1016/j.ejmg.2021.104373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Intellectual disability (ID) often co-occurs with other neurologic phenotypes making molecular diagnosis more challenging particularly in consanguineous populations with the co-segregation of more than one ID-related gene in some cases. In this study, we investigated the phenotype of three patients from a large Tunisian family with significant ID phenotypic variability and microcephaly and performed a clinical exome sequencing in two cases. We identified, within the first branch, a homozygous variant in the TRAPPC9 gene (p.Arg472Ter) in two cases presenting severe ID, absent speech, congenital/secondary microcephaly in addition to autistic features, supporting the implication of TRAPPC9 in the "secondary" autism spectrum disorders and congenital microcephaly. In the second branch, we identified a homozygous variant (p.Lys189ArgfsTer15) in the CDK5RAP2 gene associated with an heterozygous TRAPPC9 variant (p.Arg472Ter) in one case harbouring primary hereditary microcephaly (MCPH) associated with an inter-hypothalamic adhesion, mixed hearing loss, selective thinning in the retinal nerve fiber layer and parafoveal ganglion cell complex, and short stature. Our findings expand the spectrum of the recently reported neurosensorial abnormalities and revealed the variable phenotype expressivity of CDK5RAP2 defect. Our study highlights the complexity of the genetic background of microcephaly/ID and the efficiency of the exome sequencing to provide an accurate diagnosis and to improve the management and follow-up of such patients.
Collapse
Affiliation(s)
- Ikhlas Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia; Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Tunisia.
| | - Wafa Bouchaala
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Tunisia; Research Laboratory "Neuropédiatrie" LR19ES15, Sfax University, Tunisia
| | - Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia; Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Wiem Feki
- Radiology Department, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Sihem Ben Nsir
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Tunisia; Research Laboratory "Neuropédiatrie" LR19ES15, Sfax University, Tunisia
| | - Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Takwa Sammouda
- Department of Ophthalmology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Fatma Majdoub
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Tunisia
| | - Ines Kharrat
- Department of Otorhinolaryngology, University Habib Bourguiba Hospital of Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Tunisia; Research Laboratory "Neuropédiatrie" LR19ES15, Sfax University, Tunisia
| | - Ines Elloumi
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Hassen Kamoun
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Tunisia; Laboratory of Human Molecular Genetics, LR33ES99, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Chahnez Triki
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Tunisia; Research Laboratory "Neuropédiatrie" LR19ES15, Sfax University, Tunisia
| |
Collapse
|
17
|
Systematic Identification of circRNAs in Alzheimer's Disease. Genes (Basel) 2021; 12:genes12081258. [PMID: 34440432 PMCID: PMC8391980 DOI: 10.3390/genes12081258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Mammalian circRNAs are covalently closed circular RNAs often generated through backsplicing of precursor linear RNAs. Although their functions are largely unknown, they have been found to influence gene expression at different levels and in a wide range of biological processes. Here, we investigated if some circRNAs may be differentially abundant in Alzheimer’s Disease (AD). We identified and analyzed publicly available RNA-sequencing data from the frontal lobe, temporal cortex, hippocampus, and plasma samples reported from persons with AD and persons who were cognitively normal, focusing on circRNAs shared across these datasets. We identified an overlap of significantly changed circRNAs among AD individuals in the various brain datasets, including circRNAs originating from genes strongly linked to AD pathology such as DOCK1, NTRK2, APC (implicated in synaptic plasticity and neuronal survival) and DGL1/SAP97, TRAPPC9, and KIF1B (implicated in vesicular traffic). We further predicted the presence of circRNA isoforms in AD using specialized statistical analysis packages to create approximations of entire circRNAs. We propose that the catalog of differentially abundant circRNAs can guide future investigation on the expression and splicing of the host transcripts, as well as the possible roles of these circRNAs in AD pathogenesis.
Collapse
|
18
|
WWOX and Its Binding Proteins in Neurodegeneration. Cells 2021; 10:cells10071781. [PMID: 34359949 PMCID: PMC8304785 DOI: 10.3390/cells10071781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is known as one of the risk factors for Alzheimer's disease (AD), a neurodegenerative disease. WWOX binds Tau via its C-terminal SDR domain and interacts with Tau phosphorylating enzymes ERK, JNK, and GSK-3β, and thereby limits AD progression. Loss of WWOX in newborns leads to severe neural diseases and early death. Gradual loss of WWOX protein in the hippocampus and cortex starting from middle age may slowly induce aggregation of a protein cascade that ultimately causes accumulation of extracellular amyloid beta plaques and intracellular tau tangles, along with reduction in inhibitory GABAergic interneurons, in AD patients over 70 years old. Age-related increases in pS14-WWOX accumulation in the brain promotes neuronal degeneration. Suppression of Ser14 phosphorylation by a small peptide Zfra leads to enhanced protein degradation, reduction in NF-κB-mediated inflammation, and restoration of memory loss in triple transgenic mice for AD. Intriguingly, tumor suppressors p53 and WWOX may counteract each other in vivo, which leads to upregulation of AD-related protein aggregation in the brain and lung. WWOX has numerous binding proteins. We reported that the stronger the binding between WWOX and its partners, the better the suppression of cancer growth and reduction in inflammation. In this regard, the stronger complex formation between WWOX and partners may provide a better blockade of AD progression. In this review, we describe whether and how WWOX and partner proteins control inflammatory response and protein aggregation and thereby limit AD progression.
Collapse
|
19
|
Novel Compound Heterozygous Mutation in TRAPPC9 Gene: The Relevance of Whole Genome Sequencing. Genes (Basel) 2021; 12:genes12040557. [PMID: 33921338 PMCID: PMC8068822 DOI: 10.3390/genes12040557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Advances in high-throughput technologies and its implementation worldwide have had a considerable impact on the elucidation of the molecular causes underlying neurodevelopmental psychiatric disorders, especially for autism spectrum disorder and intellectual disability (ID). Nevertheless, etiology remains elusive in close to 50% of cases, even in those families with multiple affected individuals, strongly hinting at a genetic cause. Here we present a case report of two siblings affected with severe ID and other comorbidities, who embarked on a genetic testing odyssey until diagnosis was reached by using whole genome sequencing (WGS). WGS identified a maternally inherited novel missense variant (NM_031466.7:c.1037G > A; p.Gly346Glu) and a paternally inherited 90 kb intragenic deletion in TRAPPC9 gene. This report demonstrates the clinical utility of WGS in patients who remain undiagnosed after whole exome sequencing.
Collapse
|
20
|
Krämer J, Beer M, Bode H, Winter B. Two Novel Compound Heterozygous Mutations in the TRAPPC9 Gene Reveal a Connection of Non-syndromic Intellectual Disability and Autism Spectrum Disorder. Front Genet 2021; 11:972. [PMID: 33719327 PMCID: PMC7947907 DOI: 10.3389/fgene.2020.00972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction Autism spectrum disorder (ASD) is characterized by deficits in communication, social interaction, and repetitive behavior. Up to 70% of ASD cases are linked with intellectual disability (ID). The major genetic causes for ASD and ID are largely unknown, however, a shared genetic etiology between ASD and ID must be assumed. The trafficking protein particle complex subunit 9 (TRAPPC9) is highly expressed in postmitotic neurons of the cerebral cortex, playing a key role in development. Among 43 reported cases with mutations in TRAPPC9, all (100%) showed ID and developmental delay. Among the cases including information about ASD, 26% were affected (19 cases with information, among them 5 with ASD). Nevertheless, in some cases not classified as ASD, descriptions of autistic features like hand-flapping movements were present. Clinical Findings The affected individual presented with delay of speech development. Physical development was normal. Besides lateral slope of the eye-lid axis no facial abnormalities were evident. The individual was diagnosed with ID and ASD by structured testing. Cerebral MRI revealed associated abnormalities. Genetical Findings The chromosome set was 46,XY without structural changes. Array-CGH showed a normal molecular karyotype (arr(1-22)x2,(X,Y)x1). PCR for the FMR1 gene showed 41 ± 1 CGG repeats, and therefore no evidence of fragile X syndrome. A panel diagnostic for syndromal ID (CASK, EP300, HIVEP2, KIF1A, TRAPPC9) revealed two structural changes in TRAPPC9 in the compound heterozygosity. The mutations c.1678C > T (p.Arg560Cys) and c.3370C > T (p.Pro1124Ser) are classified as missense mutations and are both not described in the literature. Conclusion We report two new missense mutations in the TRAPPC9 gene in one individual with ID and ASD. The TRAPPC9 gene should be part of the diagnostic assessment in ID. ASD must be considered as a feature of TRAPPC9-associated ID. It might have been neglected in the literature and should result in specific testing for ASD in affected individuals.
Collapse
Affiliation(s)
- Johannes Krämer
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Children's Hospital, Ulm University, Ulm, Germany
| | - Meinrad Beer
- Department of Radiology, Ulm University, Ulm, Germany
| | - Harald Bode
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Children's Hospital, Ulm University, Ulm, Germany
| | - Benedikt Winter
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Children's Hospital, Ulm University, Ulm, Germany
| |
Collapse
|
21
|
Khan MZ, Khan A, Xiao J, Ma J, Ma Y, Chen T, Shao D, Cao Z. Overview of Research Development on the Role of NF-κB Signaling in Mastitis. Animals (Basel) 2020; 10:E1625. [PMID: 32927884 PMCID: PMC7552152 DOI: 10.3390/ani10091625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Mastitis is the inflammation of the mammary gland. Escherichia coli and Staphylococcus aureus are the most common bacteria responsible for mastitis. When mammary epithelial cells are infected by microorganisms, this activates an inflammatory response. The bacterial infection is recognized by innate pattern recognition receptors (PRRs) in the mammary epithelial cells, with the help of Toll-like receptors (TLRs). Upon activation by lipopolysaccharides, a virulent agent of bacteria, the TLRs further trigger nuclear factor-κB (NF-κB) signaling to accelerate its pathogenesis. The NF-κB has an essential role in many biological processes, such as cell survival, immune response, inflammation and development. Therefore, the NF-κB signaling triggered by the TLRs then regulates the transcriptional expression of specific inflammatory mediators to initiate inflammation of the mammary epithelial cells. Thus, any aberrant regulation of NF-κB signaling may lead to many inflammatory diseases, including mastitis. Hence, the inhibiting of NF-κB signaling has potential therapeutic applications in mastitis control strategies. In this review, we highlighted the regulation and function of NF-κB signaling in mastitis. Furthermore, the role of NF-κB signaling for therapeutic purposes in mastitis control has been explored in the current review.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Dafu Shao
- Institute of Agricultural Information of CAAS, Beijing 100081, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| |
Collapse
|