1
|
Simitsis P, Nohria A, Kelleher J, Boulet J, Wanderley MRB, Natarajan P, Libby P, Mehra MR. Clonal Hematopoiesis of Indeterminate Potential and Long-term Outcomes in Heart Transplantation. J Card Fail 2025; 31:400-410. [PMID: 38885783 DOI: 10.1016/j.cardfail.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP) mutations, a trait of aging, has been associated with the progression of cardiovascular disease and the development of malignancy. Uncertainty prevails regarding a robust association between CHIP and heart-transplantation (HT) outcomes. OBJECTIVES To determine the prevalence of CHIP mutations in HT and their association with long-term outcomes, including cardiac allograft vasculopathy (CAV), graft failure, malignancy, and all-cause mortality. METHODS We conducted a mixed retrospective-prospective observational study of HT recipients with targeted sequencing for CHIP mutations (variant allele frequency [VAF] of ≥ 2%). The primary composite outcome was the first occurrence of CAV grade ≥ 2, graft failure, malignancy, cardiac retransplantation, or all-cause death. Secondary outcomes were the individual components of the composite primary outcome. Sensitivity analyses with base-case and extreme scenarios were performed. RESULTS Among 95 HT recipients, 30 had CHIP mutations (31.6%). DNMT3A mutations were most common (44.7%), followed by PPM1D (13.2%), SF3B1 (10.5%), TET2 (7.9%), and TP53 (7.9%). The only significant independent predictor of CHIP was age at enrollment or age at transplantation. After multivariable adjustment, CHIP mutations were not associated with the primary outcome, which occurred in 44 (46.3%) patients (HR = 0.487; 95% CI:0.197-1.204; P = 0.119), nor were they associated with mlalignancy alone, or death. CONCLUSION We demonstrated no association between CHIP mutations and post-transplant outcomes, including CAV, graft failure, malignancy, and all-cause mortality. In line with previously published data, our analysis provides additional evidence about the lack of clinical value of using CHIP mutations as a biomarker for surveillance in outcomes after HT.
Collapse
Affiliation(s)
- Panagiotis Simitsis
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Anju Nohria
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jane Kelleher
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jacinthe Boulet
- Department of Medicine, Division of Cardiology, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mauro R B Wanderley
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Pradeep Natarajan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mandeep R Mehra
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Xiao C, Tamura MK, Pan Y, Rao V, Missikpode C, Vlasschaert C, Nakao T, Sun X, Li C, Huang Z, Anderson A, Uddin MM, Kim D, Taliercio J, Deo R, Bhat Z, Xie D, Rao P, Chen J, Lash JP, He J, Natarajan P, Hixson JE, Yaffe K, Kelly TN. Clonal hematopoiesis of indeterminate potential is associated with reduced risk of cognitive impairment in patients with chronic kidney disease. Alzheimers Dement 2024; 20:6960-6971. [PMID: 39115897 PMCID: PMC11485087 DOI: 10.1002/alz.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Clonal hematopoiesis of indeterminate potential (CHIP) and dementia disproportionately burden patients with chronic kidney disease (CKD). The association between CHIP and cognitive impairment in CKD patients is unknown. METHODS We conducted time-to-event analyses in up to 1452 older adults with CKD from the Chronic Renal Insufficiency Cohort who underwent CHIP gene sequencing. Cognition was assessed using four validated tests in up to 6 years mean follow-up time. Incident cognitive impairment was defined as a test score one standard deviation below the baseline mean. RESULTS Compared to non-carriers, CHIP carriers were markedly less likely to experience impairment in attention (adjusted hazard ratio [HR] [95% confidence interval {CI}] = 0.44 [0.26, 0.76], p = 0.003) and executive function (adjusted HR [95% CI] = 0.60 [0.37, 0.97], p = 0.04). There were no significant associations between CHIP and impairment in global cognition or verbal memory. DISCUSSION CHIP was associated with lower risks of impairment in attention and executive function among CKD patients. HIGHLIGHTS Our study is the first to examine the role of CHIP in cognitive decline in CKD. CHIP markedly decreased the risk of impairment in attention and executive function. CHIP was not associated with impairment in global cognition or verbal memory.
Collapse
Affiliation(s)
- Cissy Xiao
- Division of NephrologyDepartment of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Manjula Kurella Tamura
- Division of NephrologyDepartment of MedicineStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Yang Pan
- Division of NephrologyDepartment of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Varun Rao
- Division of NephrologyDepartment of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Celestin Missikpode
- Division of NephrologyDepartment of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | | | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - Xiao Sun
- Division of NephrologyDepartment of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Changwei Li
- Department of EpidemiologyTulane University School of Public Health and Tropical MedicineNew OrleansLouisianaUSA
| | - Zhijie Huang
- Department of EpidemiologyTulane University School of Public Health and Tropical MedicineNew OrleansLouisianaUSA
| | - Amanda Anderson
- Department of EpidemiologyUniversity of Alabama at Birmingham School of Public HealthBirminghamAlabamaUSA
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - Do‐Kyun Kim
- Human Genetics CenterUniversity of Texas at Houston School of Public HealthHoustonTexasUSA
| | - Jonathan Taliercio
- Division of NephrologyDepartment of MedicineCleveland Clinic Lerner School of MedicineClevelandOhioUSA
| | - Rajat Deo
- Department of MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zeenat Bhat
- Department of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Dawei Xie
- Department of Biostatistics and EpidemiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Panduranga Rao
- Department of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Jing Chen
- Department of EpidemiologyTulane University School of Public Health and Tropical MedicineNew OrleansLouisianaUSA
| | - James P. Lash
- Division of NephrologyDepartment of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Jiang He
- Department of EpidemiologyTulane University School of Public Health and Tropical MedicineNew OrleansLouisianaUSA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - James E. Hixson
- Human Genetics CenterUniversity of Texas at Houston School of Public HealthHoustonTexasUSA
| | - Kristine Yaffe
- Departments of Psychiatry and NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Tanika N. Kelly
- Division of NephrologyDepartment of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | | |
Collapse
|
3
|
Shannon ML, Heimlich JB, Olson S, Debevec A, Copeland Z, Kishtagari A, Vlasschaert C, Snider C, Silver AJ, Brown D, Spaulding T, Bhatta M, Pugh K, Stockton SS, Ulloa J, Xu Y, Baljevic M, Moslehi J, Jahangir E, Ferrell PB, Slosky D, Bick AG, Savona MR. Clonal hematopoiesis and inflammation in the vasculature: CHIVE, a prospective, longitudinal clonal hematopoiesis cohort and biorepository. Blood Adv 2024; 8:3453-3463. [PMID: 38608257 PMCID: PMC11259927 DOI: 10.1182/bloodadvances.2023011510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 04/14/2024] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is an age-associated phenomenon leading to an increased risk of both hematologic malignancy and nonmalignant organ dysfunction. Increasingly available genetic testing has made the incidental discovery of CH clinically common yet evidence-based guidelines and effective management strategies to prevent adverse CH health outcomes are lacking. To address this gap, the prospective CHIVE (clonal hematopoiesis and inflammation in the vasculature) registry and biorepository was created to identify and monitor individuals at risk, support multidisciplinary CH clinics, and refine taxonomy and standards of practice for CH risk mitigation. Data from the first 181 patients enrolled in this prospective registry recapitulate the molecular epidemiology of CH from biobank-scale retrospective studies, with DNMT3A, TET2, ASXL1, and TP53 as the most commonly mutated genes. Blood counts across all hematopoietic lineages trended lower in patients with CH. In addition, patients with CH had higher rates of end organ dysfunction, in particular chronic kidney disease. Among patients with CH, variant allele frequency was independently associated with the presence of cytopenias and progression to hematologic malignancy, whereas other common high-risk CH clone features were not clear. Notably, accumulation of multiple distinct high-risk clone features was also associated with cytopenias and hematologic malignancy progression, supporting a recently published CH risk score. Surprisingly, ∼30% of patients enrolled in CHIVE from CH clinics were adjudicated as not having clonal hematopoiesis of indeterminate potential, highlighting the need for molecular standards and purpose-built assays in this field. Maintenance of this well-annotated cohort and continued expansion of CHIVE to multiple institutions are underway and will be critical to understanding how to thoughtfully care for this patient population.
Collapse
Affiliation(s)
- Morgan L. Shannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - J. Brett Heimlich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Sydney Olson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ariana Debevec
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Zachary Copeland
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ashwin Kishtagari
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Christina Snider
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alexander J. Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Donovan Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Travis Spaulding
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Manasa Bhatta
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kelly Pugh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jessica Ulloa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Muhamed Baljevic
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Javid Moslehi
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
| | - Eiman Jahangir
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - P. Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN
| | - David Slosky
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alexander G. Bick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
4
|
Silver AJ, Vlasschaert C, Mack T, Sharber B, Xu Y, Bick AG, Pinson CW, Savona MR. Solid Organ Transplant Recipients Exhibit More TET2-Mutant Clonal Hematopoiesis of Indeterminate Potential Not Driven by Increased Transplantation Risk. Clin Cancer Res 2024; 30:2475-2485. [PMID: 38551504 DOI: 10.1158/1078-0432.ccr-23-3840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Solid organ transplant recipients comprise a unique population of immunosuppressed patients with increased risk of malignancy, including hematologic neoplasms. Clonal hematopoiesis of indeterminate potential (CHIP) represents a known risk factor for hematologic malignancy and this study describes the prevalence and patterns of CHIP mutations across several types of solid organ transplants. EXPERIMENTAL DESIGN We use two national biobank cohorts comprised of >650,000 participants with linked genomic and longitudinal phenotypic data to describe the features of CHIP across 2,610 individuals who received kidney, liver, heart, or lung allografts. RESULTS We find individuals with an allograft before their biobank enrollment had an increased prevalence of TET2 mutations (OR, 1.90; P = 4.0e-4), but individuals who received transplants post-enrollment had a CHIP mutation spectrum similar to that of the general population, without enrichment of TET2. In addition, we do not observe an association between CHIP and risk of incident transplantation among the overall population (HR, 1.02; P = 0.91). And in an exploratory analysis, we do not find evidence for a strong association between CHIP and rates of transplant complications such as rejection or graft failure. CONCLUSIONS These results demonstrate that recipients of solid organ transplants display a unique pattern of clonal hematopoiesis with enrichment of TET2 driver mutations, the causes of which remain unclear and are deserving of further study.
Collapse
Affiliation(s)
- Alexander J Silver
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Taralynn Mack
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian Sharber
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yaomin Xu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexander G Bick
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Wright Pinson
- Transplant Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael R Savona
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
5
|
Vlasschaert C, Lanktree MB, Rauh MJ, Kelly TN, Natarajan P. Clonal haematopoiesis, ageing and kidney disease. Nat Rev Nephrol 2024; 20:161-174. [PMID: 37884787 PMCID: PMC10922936 DOI: 10.1038/s41581-023-00778-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) is a preclinical condition wherein a sizeable proportion of an individual's circulating blood cells are derived from a single mutated haematopoietic stem cell. CHIP occurs frequently with ageing - more than 10% of individuals over 65 years of age are affected - and is associated with an increased risk of disease across several organ systems and premature death. Emerging evidence suggests that CHIP has a role in kidney health, including associations with predisposition to acute kidney injury, impaired recovery from acute kidney injury and kidney function decline, both in the general population and among those with chronic kidney disease. Beyond its direct effect on the kidney, CHIP elevates the susceptibility of individuals to various conditions that can detrimentally affect the kidneys, including cardiovascular disease, obesity and insulin resistance, liver disease, gout, osteoporosis and certain autoimmune diseases. Aberrant pro-inflammatory signalling, telomere attrition and epigenetic ageing are potential causal pathophysiological pathways and mediators that underlie CHIP-related disease risk. Experimental animal models have shown that inhibition of inflammatory cytokine signalling can ameliorate many of the pathological effects of CHIP, and assessment of the efficacy and safety of this class of medications for human CHIP-associated pathology is ongoing.
Collapse
Affiliation(s)
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Cacic AM, Schulz FI, Germing U, Dietrich S, Gattermann N. Molecular and clinical aspects relevant for counseling individuals with clonal hematopoiesis of indeterminate potential. Front Oncol 2023; 13:1303785. [PMID: 38162500 PMCID: PMC10754976 DOI: 10.3389/fonc.2023.1303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has fascinated the medical community for some time. Discovered about a decade ago, this phenomenon links age-related alterations in hematopoiesis not only to the later development of hematological malignancies but also to an increased risk of early-onset cardiovascular disease and some other disorders. CHIP is detected in the blood and is characterized by clonally expanded somatic mutations in cancer-associated genes, predisposing to the development of hematologic neoplasms such as MDS and AML. CHIP-associated mutations often involve DNA damage repair genes and are frequently observed following prior cytotoxic cancer therapy. Genetic predisposition seems to be a contributing factor. It came as a surprise that CHIP significantly elevates the risk of myocardial infarction and stroke, and also contributes to heart failure and pulmonary hypertension. Meanwhile, evidence of mutant clonal macrophages in vessel walls and organ parenchyma helps to explain the pathophysiology. Besides aging, there are some risk factors promoting the appearance of CHIP, such as smoking, chronic inflammation, chronic sleep deprivation, and high birth weight. This article describes fundamental aspects of CHIP and explains its association with hematologic malignancies, cardiovascular disorders, and other medical conditions, while also exploring potential progress in the clinical management of affected individuals. While it is important to diagnose conditions that can lead to adverse, but potentially preventable, effects, it is equally important not to stress patients by confronting them with disconcerting findings that cannot be remedied. Individuals with diagnosed or suspected CHIP should receive counseling in a specialized outpatient clinic, where professionals from relevant medical specialties may help them to avoid the development of CHIP-related health problems. Unfortunately, useful treatments and clinical guidelines for managing CHIP are still largely lacking. However, there are some promising approaches regarding the management of cardiovascular disease risk. In the future, strategies aimed at restoration of gene function or inhibition of inflammatory mediators may become an option.
Collapse
Affiliation(s)
- Anna Maria Cacic
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| |
Collapse
|
7
|
Ottesen JT, Andersen M. Aging, Inflammation, and Comorbidity in Cancers-A General In Silico Study Exemplified by Myeloproliferative Malignancies. Cancers (Basel) 2023; 15:4806. [PMID: 37835500 PMCID: PMC10572046 DOI: 10.3390/cancers15194806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: We consider dormant, pre-cancerous states prevented from developing into cancer by the immune system. Inflammatory morbidity may compromise the immune system and cause the pre-cancer to escape into an actual cancerous development. The immune deficiency described is general, but the results may vary across specific cancers due to different variances (2) Methods: We formulate a general conceptual model to perform rigorous in silico consequence analysis. Relevant existing data for myeloproliferative malignancies from the literature are used to calibrate the in silico computations. (3) Results and conclusions: The hypothesis suggests a common physiological origin for many clinical and epidemiological observations in relation to cancers in general. Examples are the observed age-dependent prevalence for hematopoietic cancers, a general mechanism-based explanation for why the risk of cancer increases with age, and how somatic mutations in general, and specifically seen in screenings of citizens, sometimes are non-increased or even decrease when followed over time. The conceptual model is used to characterize different groups of citizens and patients, describing different treatment responses and development scenarios.
Collapse
Affiliation(s)
- Johnny T. Ottesen
- Mathematical Modeling—Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | | |
Collapse
|