1
|
Chen C, Liu G, Xu K, Chen A, Cheng Z, Yan X, Zhang T, Sun Y, Yu T, Wang J, Luo S, Zhou W, Deng S, Liu Y, Yang Y. ATG9 inhibits Rickettsia binding to the host cell surface by blocking the rOmpB-XRCC6/KU70 interaction. Autophagy 2025:1-17. [PMID: 40259479 DOI: 10.1080/15548627.2025.2496363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025] Open
Abstract
ickettsiae are tick-borne pathogens that infect human hosts through poorly characterized mechanisms. Herein, we report that ATG9 (autophagy related 9) plays a previously unrecognized role in inhibiting Rickettsia binding to the host cell surface. Unexpectedly, this new function of ATG9 is likely independent of macroautophagy/autophagy. Instead, ATG9 acts as a host defending factor by binding to XRCC6/KU70, a receptor of the Rickettsia outer-membrane protein rOmpB. Both ATG9 and rOmpB bind to the DNA-binding domain of XRCC6, suggesting a competitive role for ATG9 occupying the binding site of rOmpB to abrogate Rickettsia binding. Furthermore, we show that rapamycin transcriptionally activates ATG9 and inhibits rOmpB-mediated infection in a mouse model. Collectively, our study reveals a novel innate mechanism regulating Rickettsia infection and suggests that agonists of ATG9 May be useful for developing therapeutic strategies for the intervention of rickettsial diseases.Abbreviation: APEX2: apurinic/apyrimidinic endodeoxyribonuclease 2; ATG: autophagy related; BafA1: bafilomycin A1; CQ: chloroquine; E. coli: Escherichia coli; GST: glutathione S-transferase; ICM: immunofluorescence confocal microscopy; IP-Mass: immunoprecipitation-mass spectrometry; KD: knockdown; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; rOmpB: rickettsial outer membrane protein B; SAP: SAF-A/B, Acinus, and PIAS; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB; VWA: von Willebrand factor A; XRCC6/KU70: X-ray repair cross complementing 6.
Collapse
Affiliation(s)
- Chen Chen
- Research Center for Immunological Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Guoxu Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Kehan Xu
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Aibao Chen
- Department of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Ziyang Cheng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xueping Yan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ting Zhang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, USA
| | - Yan Sun
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tian Yu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiayao Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shuangshuang Luo
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weiting Zhou
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shengqun Deng
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Liu
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yanan Yang
- Research Center for Immunological Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Osip S, Friedman M, Haynes E, Coker SM, Bryan Ii JA, Sidouin M, Ouakou PT, Ngandolo BNR, Cleveland CA, Yabsley MJ. Prevalence and diversity of spotted fever group Rickettsia species in ixodid ticks from domestic dogs in Chad, Africa. Ticks Tick Borne Dis 2024; 15:102405. [PMID: 39427603 DOI: 10.1016/j.ttbdis.2024.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
Tick-borne pathogens in the genus Rickettsia are the causative agents of severe and potentially fatal spotted fever group (SFG) and typhus group diseases in dogs and humans. Climate, habitat, and land-use changes are impacting vector ranges, with expansions potentially resulting in novel pathogens being introduced into naïve locations. Despite the public health importance of SFG Rickettsia, there are relatively few data on the prevalence and diversity of rickettsial pathogens in sub-Saharan Africa. The aim of this study was to characterize the SFG Rickettsia prevalence and diversity in ixodid ticks (104 Amblyomma spp., 160 Rhipicephalus spp., and one Hyalomma truncatum) collected from domestic dogs in Chad, Africa. Ticks were screened for Rickettsia spp. using a nested PCR targeting the 17-kDa gene. Species identification was through bidirectional Sanger sequencing of the 17-kDa, ompA, ompB, and/or gltA gene targets. A total of 43.3 % (115/265) ticks were positive for Rickettsia spp. and six Rickettsia species were identified: R. africae, R. massiliae, R. conorii, R. felis, R. monacensis and Candidatus Rickettsia muridii. Seven additional samples were positive for Rickettsia of undetermined species. Rickettsia africae, an important zoonotic pathogen, was found in 81 % (79/97) of A. variegatum and 29 % (2/7) of an A. marmoreum complex species, a group that infests a wide range of birds and mammals, including humans. Finally, we detected a high diversity of Rickettsia spp., most of which were zoonotic, in Rh. muhsamae. Collectively these data indicate there is a risk of rickettsiosis in Chad and further studies on ticks and rickettsial pathogens in this region are warranted.
Collapse
Affiliation(s)
- Stephanie Osip
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA
| | - Morgan Friedman
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA
| | - Ellen Haynes
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA
| | - Sarah M Coker
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA
| | - John A Bryan Ii
- Zachery Consulting LLC, 2595 Rogers Mill Road, Danielsville, GA, 30633, USA
| | - Metinou Sidouin
- The Carter Center, National Guinea Worm Eradication Program, N'Djamena, BP 440, Chad
| | | | | | - Christopher A Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA; Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA; Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Mbiri P, Matomola OC, Muleya W, Mhuulu L, Diegaardt A, Noden BH, Changula K, Chimwamurombe P, Matos C, Weiss S, Nepolo E, Chitanga S. Molecular Detection and Characterization of Rickettsia Species in Ixodid Ticks from Selected Regions of Namibia. Microorganisms 2024; 12:912. [PMID: 38792739 PMCID: PMC11124484 DOI: 10.3390/microorganisms12050912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Rickettsial pathogens are among the emerging and re-emerging vector-borne zoonoses of public health importance. Reports indicate human exposure to Rickettsial pathogens in Namibia through serological surveys, but there is a lack of data on infection rates in tick vectors, hindering the assessment of the relative risk to humans. Our study sought to screen Ixodid ticks collected from livestock for the presence of Rickettsia species in order to determine infection rates in ticks and to determine the Rickettsia species circulating in the country. We collected and pooled Hyalomma and Rhipicephalus ticks from two adjacent regions of Namibia (Khomas and Otjozondjupa) and observed an overall minimum Rickettsia infection rate of 8.6% (26/304), with an estimated overall pooled prevalence of 9.94% (95% CI: 6.5-14.3). There were no statistically significant differences in the estimated pooled prevalence between the two regions or tick genera. Based on the nucleotide sequence similarity and phylogenetic analysis of the outer membrane protein A (n = 9) and citrate synthase (n = 12) genes, BLAST analysis revealed similarity between Rickettsia africae (n = 2) and Rickettsia aeschlimannii (n = 11), with sequence identities ranging from 98.46 to 100%. Our initial study in Namibia indicates that both zoonotic R. africae and R. aeschlimannii are in circulation in the country, with R. aeschlimannii being the predominant species.
Collapse
Affiliation(s)
- Pricilla Mbiri
- Department of Production Animal Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
| | - Ophelia Chuma Matomola
- Department of Preclinical Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
| | - Walter Muleya
- Department of Preclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Lusia Mhuulu
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Azaria Diegaardt
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Bruce Howard Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Percy Chimwamurombe
- Department of Natural and Applied Sciences, Namibia University of Science & Technology, Windhoek 10005, Namibia;
| | - Carolina Matos
- Centre for International Health Protection, Robert Koch Institute, 13353 Berlin, Germany; (C.M.); (S.W.)
| | - Sabrina Weiss
- Centre for International Health Protection, Robert Koch Institute, 13353 Berlin, Germany; (C.M.); (S.W.)
| | - Emmanuel Nepolo
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Simbarashe Chitanga
- Department of Preclinical Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, P.O. Box 50110, Lusaka 10101, Zambia
| |
Collapse
|
4
|
Mucheka VT, Pillay A, Mukaratirwa S. Prevalence of tick-borne pathogens in Rhipicephalus species infesting domestic animals in Africa: A systematic review and meta-analysis. Acta Trop 2023; 246:106994. [PMID: 37516420 DOI: 10.1016/j.actatropica.2023.106994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Rhipicephalus ticks transmit important tick-borne pathogens (TBPs) such as Anaplasma, Babesia, and Theileria spp. which cause major economic losses in livestock production and contribute to emerging zoonotic diseases. A vast amount of data is available based on the demonstration of these pathogens in various host tissues, with limited information on the prevalence of these TBPs and their vectors. Quantifying TBPs infection rates among Rhipicephalus spp. is essential for the effective control and management of TBDs in domestic animals and surveillance of emerging diseases in humans, as they have close social associations. This review summarizes the prevalence of TBPs in Rhipicephalus spp. from domestic animals of Africa. A thorough search was done in SCOPUS, Web of Knowledge, PubMed, Google Scholar, and library sources from 2000 to 2022. All research in Africa reporting TBPs infection rates in Rhipicephalus spp. were included in the selection criteria. The meta-analysis evaluated publication bias using funnel plots to analyze the observed heterogeneity and applied a quality effects model. Prevalence estimates were based on data from 46 studies reporting TBPs infection rates in Rhipicephalus spp. from northern and sub-Saharan Africa. Sub-group analysis was done by geographic region and tick genus. A total of 12,368 Rhipicephalus spp. collected from domestic animals in Africa were used in the meta-analysis. The quality effects model revealed a high degree of heterogeneity among studies on the various TBPs. The overall prevalence of detected TBPs such as Theileria spp. was 8% (95% CI: 3-15%), Rickettsia spp. 3% (95% CI: 0-9%), Ehrlichia spp. 7% (95% CI: 2-14%), Anaplasma spp. 8% (95% CI: 2-16%), Coxiella spp. 10% (95% CI: 1-26%) and Babesia spp. 6% (95% CI: 2-12%). Northern Africa had the highest prevalence of Anaplasma spp. 12% (95% CI: 3-25%) and Theileria spp. 16% (95% CI: 0-42%). Whilst West Africa had the highest prevalence for Ehrlichia spp. 12% (95% CI: 3-24%) and eastern Africa for Rickettsia spp. 8% (95% CI: 4-12%). This is a systematic and quantitative investigation of the various TBPs detected in Rhipicephalus tick vectors from domestic animal hosts in Africa. The findings demonstrate considerable species variation across the African continent and offer preliminary estimates of infection rates for the continent.
Collapse
Affiliation(s)
- Vimbai Tendai Mucheka
- School of Life Sciences, Biological Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Alicia Pillay
- School of Life Sciences, Biological Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| | - Samson Mukaratirwa
- School of Life Sciences, Biological Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa; One Health Centre for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| |
Collapse
|
5
|
Distribution and Prevalence of Anaplasmataceae, Rickettsiaceae and Coxiellaceae in African Ticks: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:microorganisms11030714. [PMID: 36985288 PMCID: PMC10051480 DOI: 10.3390/microorganisms11030714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
In Africa, ticks continue to be a major hindrance to the improvement of the livestock industry due to tick-borne pathogens that include Anaplasma, Ehrlichia, Rickettsia and Coxiella species. A systemic review and meta-analysis were conducted here and highlighted the distribution and prevalence of these tick-borne pathogens in African ticks. Relevant publications were searched in five electronic databases and selected using inclusion/exclusion criteria, resulting in 138 and 78 papers included in the qualitative and quantitative analysis, respectively. Most of the studies focused on Rickettsia africae (38 studies), followed by Ehrlichia ruminantium (27 studies), Coxiella burnetii (20 studies) and Anaplasma marginale (17 studies). A meta-analysis of proportions was performed using the random-effects model. The highest prevalence was obtained for Rickettsia spp. (18.39%; 95% CI: 14.23–22.85%), R. africae (13.47%; 95% CI: 2.76–28.69%), R. conorii (11.28%; 95% CI: 1.77–25.89%), A. marginale (12.75%; 95% CI: 4.06–24.35%), E. ruminantium (6.37%; 95% CI: 3.97–9.16%) and E. canis (4.3%; 95% CI: 0.04–12.66%). The prevalence of C. burnetii was low (0%; 95% CI: 0–0.25%), with higher prevalence for Coxiella spp. (27.02%; 95% CI: 10.83–46.03%) and Coxiella-like endosymbionts (70.47%; 95% CI: 27–99.82%). The effect of the tick genera, tick species, country and other variables were identified and highlighted the epidemiology of Rhipicephalus ticks in the heartwater; affinity of each Rickettsia species for different tick genera; dominant distribution of A. marginale, R. africae and Coxiella-like endosymbionts in ticks and a low distribution of C. burnetii in African hard ticks.
Collapse
|
6
|
Onyiche TE, Labruna MB, Saito TB. Unraveling the epidemiological relationship between ticks and rickettsial infection in Africa. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.952024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tick-borne rickettsioses are emerging and re-emerging diseases of public health concern caused by over 30 species of Rickettsia. Ticks are obligate hematophagous arthropods with over 700 species of Ixodid ticks known worldwide. The escalating geographical dispersal of tick vectors and concomitant increase in the incidences of tick-borne diseases have fueled interest in the ecology of tick-borne pathogens. This review focuses on aspects of the Rickettsia pathogen, including biology, taxonomy, phylogeny, genetic diversity, epidemiology of the disease, and the role of vertebrate host in the perpetuation of rickettsioses in Africa. Our review also highlights some of the species of Rickettsia that are responsible for disease, the role of tick vectors (both hard and soft ticks) and the species of Rickettsia associated with diverse tick species across the continent. Additionally, this article emphasizes the evolutionary perspective of rickettsiae perpetuation and the possible role of amplifying vertebrate host and other small mammals, domestic animals and wildlife in the epidemiology of Rickettsia species. We also specifically, discussed the role of avian population in the epidemiology of SFG rickettsiae. Furthermore, we highlighted tick-borne rickettsioses among travelers due to African tick-bite fever (ATBF) and the challenges to surveillance of rickettsial infection, and research on rickettsiology in Africa. Our review canvasses the need for more rickettsiologists of African origin based within the continent to further research towards understanding the biology, characterization, and species distribution, including the competent tick vectors involved in their transmission of rickettsiae across the continent in collaboration with established researchers in western countries. We further highlighted the need for proper funding to encourage research despite competing demands for resources across the various sectors. We finalize by discussing the similarities between rickettsial diseases around the world and which steps need to be taken to help foster our understanding on the eco-epidemiology of rickettsioses by bridging the gap between the growing epidemiological data and the molecular characterization of Rickettsia species.
Collapse
|
7
|
Laatamna A, Strube C, Bakkes DK, Schaper S, Aziza FZ, Ben Chelef H, Amrane NEH, Bedraoui R, Dobler G, Chitimia-Dobler L. Molecular detection of tick-borne pathogens in Rhipicephalus sanguineus sensu stricto collected from dogs in the steppe and high plateau regions of Algeria. Acta Trop 2022; 234:106582. [PMID: 35787416 DOI: 10.1016/j.actatropica.2022.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Epidemiology and distributions of canine tick-borne diseases as well as their veterinary and zoonotic significance are poorly understood in Algeria. The present study describes a molecular investigation of important tick-borne pathogens in Rhipicephalus sanguineus sensu stricto collected from domestic dogs in steppe and high plateau areas of central and eastern Algeria. In total, 1,043 ticks were collected from 147 domestic dogs, including 756 ticks from 124 dogs in the steppe region of Djelfa, and 287 ticks from 23 dogs in the high plateau area of Bordj Bou Arreridj. Ticks were divided into 384 pools (309 pools from Djelfa and 75 pools from Bordj Bou Arreridj) and tested for genomic materials of Crimean-Congo hemorrhagic fever virus (CCHFV) as well as DNA for Anaplasma phagocytophilum, Anaplasma platys, Ehrlichia canis, Rickettsia spp., Babesia spp., and Hepatozoon spp. using PCR, sequencing and phylogenetic analysis. Hepatozoon spp. was most prevalent, with 160 positive pools (41.70%), and 12 of these were sequenced and identified as Hepatozoon canis. Babesia spp. was detected in 50 samples (13.0%), of which 11 were sequenced and identified as Babesia vogeli. A. platys and E. canis were detected in 92 (24.0%) and 15 (3.9%) of tested samples, respectively. Rickettsia spp. were detected in 24 (6.3%) samples, including 11 samples identified as R. massiliae, 6 samples identified as R. conorii conorii, and 7 samples could not be identified to species level. All 384 pools tested negative for CCHFV and A. phagocytophilum. In addition to detection of R. conorii conorii, R. massiliae, and E. canis, the present study provides the first molecular data for occurrence of A. platys, B. vogeli, and H. canis in Rh. sanguineus s.s. infesting dogs in Algeria. Further large scale studies should be conducted to better understand the epidemiology, distributions and importance of canine tick-borne pathogens in Algeria.
Collapse
Affiliation(s)
- AbdElkarim Laatamna
- Faculty of Nature and Life Sciences, University of Djelfa, Moudjbara Road, BP 3117, Djelfa, Algeria.
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Deon K Bakkes
- Gertrud Theiler Tick Museum, Agricultural Research Council - Onderstepoort Veterinary Research, Pretoria, South Africa
| | | | - Fatima Zohra Aziza
- Faculty of Nature and Life Sciences, University of Djelfa, Moudjbara Road, BP 3117, Djelfa, Algeria
| | - Hanan Ben Chelef
- Faculty of Nature and Life Sciences, University of Djelfa, Moudjbara Road, BP 3117, Djelfa, Algeria
| | - Nour El Houda Amrane
- Faculty of Nature and Life Sciences, University of Djelfa, Moudjbara Road, BP 3117, Djelfa, Algeria
| | - Ramlia Bedraoui
- Faculty of Nature and Life Sciences, University of Djelfa, Moudjbara Road, BP 3117, Djelfa, Algeria
| | | | | |
Collapse
|
8
|
Pillay A, Manyangadze T, Mukaratirwa S. Prevalence of Rickettsia africae in tick vectors collected from mammalian hosts in sub-Saharan Africa: A systematic review and meta-analysis. Ticks Tick Borne Dis 2022; 13:101960. [DOI: 10.1016/j.ttbdis.2022.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
|
9
|
High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria. Pathogens 2021; 10:pathogens10030362. [PMID: 33803682 PMCID: PMC8002991 DOI: 10.3390/pathogens10030362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Ixodid ticks are hematophagous arthropods considered to be prominent ectoparasite vectors that have a negative impact on cattle, either through direct injury or via the transmission of several pathogens. In this study, we investigated the molecular infection rates of numerous tick-borne pathogens in ticks sampled on cattle from the Kabylia region, northeastern Algeria, using a high-throughput microfluidic real-time PCR system. A total of 235 ticks belonging to seven species of the genera Rhipicephalus, Hyalomma, and Ixodes were sampled on cattle and then screened for the presence of 36 different species of bacteria and protozoans. The most prevalent tick-borne microorganisms were Rickettsia spp. at 79.1%, followed by Francisella-like endosymbionts (62.9%), Theileria spp. (17.8%), Anaplasma spp. (14.4%), Bartonella spp. (6.8%), Borrelia spp. (6.8%), and Babesia spp. (2.5%). Among the 80.4% of ticks bearing microorganisms, 20%, 36.6%, 21.7%, and 2.1% were positive for one, two, three, and four different microorganisms, respectively. Rickettsia aeschlimannii was detected in Hyalomma marginatum, Hyalomma detritum, and Rhipicephalus bursa ticks. Rickettsia massiliae was found in Rhipicephalus sanguineus, and Rickettsiamonacensis and Rickettsia helvetica were detected in Ixodesricinus. Anaplasma marginale was found in all identified tick genera, but Anaplasma centrale was detected exclusively in Rhipicephalus spp. ticks. The DNA of Borrelia spp. and Bartonella spp. was identified in several tick species. Theileria orientalis was found in R. bursa, R. sanguineus, H. detritum, H. marginatum, and I. ricinus and Babesia bigemina was found in Rhipicephalus annulatus and R. sanguineus. Our study highlights the importance of tick-borne pathogens in cattle in Algeria.
Collapse
|
10
|
Chitimia-Dobler L, Schaper S, Rieß R, Bitterwolf K, Frangoulidis D, Bestehorn M, Springer A, Oehme R, Drehmann M, Lindau A, Mackenstedt U, Strube C, Dobler G. Imported Hyalomma ticks in Germany in 2018. Parasit Vectors 2019; 12:134. [PMID: 30909964 PMCID: PMC6434826 DOI: 10.1186/s13071-019-3380-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/05/2019] [Indexed: 12/02/2022] Open
Abstract
Background Hyalomma marginatum and Hyalomma rufipes are two-host tick species, which are mainly distributed in southern Europe, Africa and middle-eastern Asia. They are well-known vectors of Crimean Congo hemorrhagic fever (CCHF) virus and other viruses as well as Rickettsia aeschlimannii. In recent years, these tick species have been found sporadically in Germany, but they do not belong to the autochthonous tick fauna in Germany. Methods Ticks with unusual morphology were collected and sent from private persons or public health offices to involve institutions for morphological identification and further testing. All ticks identified as Hyalomma spp. were tested using molecular detection methods for CCHF virus, Rickettsia spp., Coxiella burnetii and Coxiella-like organisms, Babesia spp. and Theileria spp. Results Thirty-five ticks with an unusual appearance or behaviour were reported to us during summer-autumn 2018. For 17 of them, the description or photos implied that they belong to the hard tick genus Hyalomma. The remaining 18 ticks were sent to us and were identified as adult Hyalomma marginatum (10 specimens) or adult Hyalomma rufipes (8 specimens). All ticks tested negative for CCHF virus, Coxiella burnetii, Coxiella-like organisms, Babesia spp. and Theileria spp. The screening for rickettsiae gave positive results in 9 specimens . The Rickettsia species in all cases was identified as R. aeschlimannii. Conclusions These results show that exotic tick species imported into Germany were able to develop from the nymphal to the adult stage under appropriate weather conditions. Fifty percent of the ticks carried R. aeschlimannii, a human pathogen, while CCHF virus or other pathogens were not detected. Imported Hyalomma ticks may be the source of exotic diseases acquired in Germany.
Collapse
Affiliation(s)
- Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937, Munich, Germany.,Department of Parasitology, Institute of Zoology, University of Hohenheim, Emil Wolff-Strasse 34, 70599, Stuttgart, Germany
| | - Sabine Schaper
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Ramona Rieß
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Karin Bitterwolf
- Public Health Office Main-Kinzig, Barbarossastrasse 24, 63571, Gelnhausen, Germany
| | | | - Malena Bestehorn
- Department of Parasitology, Institute of Zoology, University of Hohenheim, Emil Wolff-Strasse 34, 70599, Stuttgart, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Rainer Oehme
- Baden-Wuerttemberg State Health Office, Stuttgart, Germany
| | - Marco Drehmann
- Department of Parasitology, Institute of Zoology, University of Hohenheim, Emil Wolff-Strasse 34, 70599, Stuttgart, Germany
| | - Alexander Lindau
- Department of Parasitology, Institute of Zoology, University of Hohenheim, Emil Wolff-Strasse 34, 70599, Stuttgart, Germany
| | - Ute Mackenstedt
- Department of Parasitology, Institute of Zoology, University of Hohenheim, Emil Wolff-Strasse 34, 70599, Stuttgart, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937, Munich, Germany. .,Department of Parasitology, Institute of Zoology, University of Hohenheim, Emil Wolff-Strasse 34, 70599, Stuttgart, Germany.
| |
Collapse
|
11
|
Ehounoud C, Fenollar F, Dahmani M, N’Guessan J, Raoult D, Mediannikov O. Bacterial arthropod-borne diseases in West Africa. Acta Trop 2017; 171:124-137. [PMID: 28365316 DOI: 10.1016/j.actatropica.2017.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 01/18/2023]
Abstract
Arthropods such as ticks, lice, fleas and mites are excellent vectors for many pathogenic agents including bacteria, protozoa and viruses to animals. Moreover, many of these pathogens can also be accidentally transmitted to humans throughout the world. Bacterial vector-borne diseases seem to be numerous and very important in human pathology, however, they are often ignored and are not well known. Yet they are in a phase of geographic expansion and play an important role in the etiology of febrile episodes in regions of Africa. Since the introduction of molecular techniques, the presence of these pathogens has been confirmed in various samples from arthropods and animals, and more rarely from human samples in West Africa. In this review, the aim is to summarize the latest information about vector-borne bacteria, focusing on West Africa from 2000 until today in order to better understand the epidemiological risks associated with these arthropods. This will allow health and veterinary authorities to develop a strategy for surveillance of arthropods and bacterial disease in order to protect people and animals.
Collapse
|
12
|
Chitimia-Dobler L, Nava S, Bestehorn M, Dobler G, Wölfel S. First detection of Hyalomma rufipes in Germany. Ticks Tick Borne Dis 2016; 7:1135-1138. [DOI: 10.1016/j.ttbdis.2016.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 11/24/2022]
|
13
|
Bessas A, Leulmi H, Bitam I, Zaidi S, Ait-Oudhia K, Raoult D, Parola P. Molecular evidence of vector-borne pathogens in dogs and cats and their ectoparasites in Algiers, Algeria. Comp Immunol Microbiol Infect Dis 2016; 45:23-8. [DOI: 10.1016/j.cimid.2016.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 02/03/2023]
|
14
|
Leulmi H, Aouadi A, Bitam I, Bessas A, Benakhla A, Raoult D, Parola P. Detection of Bartonella tamiae, Coxiella burnetii and rickettsiae in arthropods and tissues from wild and domestic animals in northeastern Algeria. Parasit Vectors 2016; 9:27. [PMID: 26791781 PMCID: PMC4721140 DOI: 10.1186/s13071-016-1316-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/15/2016] [Indexed: 11/20/2022] Open
Abstract
Background In recent years, the scope and importance of emergent vector-borne diseases has increased dramatically. In Algeria, only limited information is currently available concerning the presence and prevalence of these zoonotic diseases. For this reason, we conducted a survey of hematophagous ectoparasites of domestic mammals and/or spleens of wild animals in El Tarf and Souk Ahras, Algeria. Methods Using real-time PCR, standard PCR and sequencing, the presence of Bartonella spp., Rickettsia spp., Borrelia spp. and Coxiella burnetii was evaluated in 268/1626 ticks, 136 fleas, 11 Nycteribiidae flies and 16 spleens of domestic and/or wild animals from the El Tarf and Souk Ahras areas. Results For the first time in Algeria, Bartonella tamiae was detected in 12/19 (63.2 %) Ixodes vespertilionis ticks, 8/11 (72.7 %) Nycteribiidae spp. flies and in 6/10 (60 %) bat spleens (Chiroptera spp.). DNA from Coxiella burnetii, the agent of Q fever, was also identified in 3/19 (15.8 %) I. vespertilionis from bats. Rickettsia slovaca, the agent of tick-borne lymphadenopathy, was detected in 1/1 (100 %) Haemaphysalis punctata and 2/3 (66.7 %) Dermacentor marginatus ticks collected from two boars (Sus scrofa algira) respectively. Ri. massiliae, an agent of spotted fever, was detected in 38/94 (40.4 %) Rhipicephalus sanguineus sensu lato collected from cattle, sheep, dogs, boars and jackals. DNA of Ri. aeschlimannii was detected in 6/20 (30 %) Hyalomma anatolicum excavatum and 6/20 (30 %) Hy. scupense from cattle. Finally, Ri. felis, an emerging rickettsial pathogen, was detected in 80/110 (72.7 %) Archaeopsylla erinacei and 2/2 (100 %) Ctenocephalides felis of hedgehogs (Atelerix algirus). Conclusion In this study, we expanded knowledge about the repertoire of ticks and flea-borne bacteria present in ectoparasites and/or tissues of domestic and wild animals in Algeria.
Collapse
Affiliation(s)
- Hamza Leulmi
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille, Cedex 5, France. .,Ecole Nationale Supérieure Vétérinaire d'Alger. El Aliya Alger, Algiers, 16000, Algeria.
| | - Atef Aouadi
- Département des Sciences Vétérinaires, Université Cherif Messaadia, Souk Ahras, 41000, Algeria. .,Département des Sciences Vétérinaires, Université Chadli Bendjdid, El Tarf, 36000, Algeria.
| | - Idir Bitam
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille, Cedex 5, France. .,Ecole Nationale Supérieure Vétérinaire d'Alger. El Aliya Alger, Algiers, 16000, Algeria. .,Laboratoire d'Ecologie et Environnement: Interaction, Génome, Université de Bab Ezzouar, Bab Ezzouar, 16000, Algeria.
| | - Amina Bessas
- Ecole Nationale Supérieure Vétérinaire d'Alger. El Aliya Alger, Algiers, 16000, Algeria.
| | - Ahmed Benakhla
- Département des Sciences Vétérinaires, Université Cherif Messaadia, Souk Ahras, 41000, Algeria.
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille, Cedex 5, France.
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille, Cedex 5, France.
| |
Collapse
|
15
|
Abstract
A dataset of bacterial diversity found in mites was compiled from 193 publications (from 1964 to January 2015). A total of 143 mite species belonging to the 3 orders (Mesostigmata, Sarcoptiformes and Trombidiformes) were recorded and found to be associated with approximately 150 bacteria species (in 85 genera, 51 families, 25 orders and 7 phyla). From the literature, the intracellular symbiont Cardinium, the scrub typhus agent Orientia, and Wolbachia (the most prevalent symbiont of arthropods) were the dominant mite-associated bacteria, with approximately 30 mite species infected each. Moreover, a number of bacteria of medical and veterinary importance were also reported from mites, including species from the genera Rickettsia, Anaplasma, Bartonella, Francisella, Coxiella, Borrelia, Salmonella, Erysipelothrix and Serratia. Significant differences in bacterial infection patterns among mite taxa were identified. These data will not only be useful for raising awareness of the potential for mites to transmit disease, but also enable a deeper understanding of the relationship of symbionts with their arthropod hosts, and may facilitate the development of intervention tools for disease vector control. This review provides a comprehensive overview of mite-associated bacteria and is a valuable reference database for future research on mites of agricultural, veterinary and/or medical importance.
Collapse
|
16
|
Noden BH, Tshavuka FI, van der Colf BE, Chipare I, Wilkinson R. Exposure and risk factors to coxiella burnetii, spotted fever group and typhus group Rickettsiae, and Bartonella henselae among volunteer blood donors in Namibia. PLoS One 2014; 9:e108674. [PMID: 25259959 PMCID: PMC4178180 DOI: 10.1371/journal.pone.0108674] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 09/03/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The role of pathogen-mediated febrile illness in sub-Saharan Africa is receiving more attention, especially in Southern Africa where four countries (including Namibia) are actively working to eliminate malaria. With a high concentration of livestock and high rates of companion animal ownership, the influence of zoonotic bacterial diseases as causes of febrile illness in Namibia remains unknown. METHODOLOGY/PRINCIPAL FINDINGS The aim of the study was to evaluate exposure to Coxiella burnetii, spotted fever and typhus group rickettsiae, and Bartonella henselae using IFA and ELISA (IgG) in serum collected from 319 volunteer blood donors identified by the Blood Transfusion Service of Namibia (NAMBTS). Serum samples were linked to a basic questionnaire to identify possible risk factors. The majority of the participants (64.8%) had extensive exposure to rural areas or farms. Results indicated a C. burnetii prevalence of 26.1% (screening titre 1∶16), and prevalence rates of 11.9% and 14.9% (screening titre 1∶100) for spotted fever group and typhus group rickettsiae, respectively. There was a significant spatial association between C. burnetii exposure and place of residence in southern Namibia (P<0.021). Donors with occupations involving animals (P>0.012), especially cattle (P>0.006), were also significantly associated with C. burnetii exposure. Males were significantly more likely than females to have been exposed to spotted fever (P<0.013) and typhus (P<0.011) group rickettsiae. Three (2.9%) samples were positive for B. henselae possibly indicating low levels of exposure to a pathogen never reported in Namibia. CONCLUSIONS/SIGNIFICANCE These results indicate that Namibians are exposed to pathogenic fever-causing bacteria, most of which have flea or tick vectors/reservoirs. The epidemiology of febrile illnesses in Namibia needs further evaluation in order to develop comprehensive local diagnostic and treatment algorithms.
Collapse
Affiliation(s)
- Bruce H. Noden
- Department of Biomedical Science, Polytechnic of Namibia, Windhoek, Namibia
| | | | | | | | - Rob Wilkinson
- Blood Transfusion Service of Namibia, Windhoek, Namibia
| |
Collapse
|
17
|
Fagir DM, Ueckermann EA, Horak IG, Bennett NC, Lutermann H. The Namaqua rock mouse (Micaelamys namaquensis) as a potential reservoir and host of arthropod vectors of diseases of medical and veterinary importance in South Africa. Parasit Vectors 2014; 7:366. [PMID: 25127720 PMCID: PMC4141090 DOI: 10.1186/1756-3305-7-366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022] Open
Abstract
Background The role of endemic murid rodents as hosts of arthropod vectors of diseases of medical and veterinary significance is well established in the northern hemisphere. In contrast, endemic murids are comparatively understudied as vector hosts in Africa, particularly in South Africa. Considering the great rodent diversity in South Africa, many of which may occur as human commensals, this is unwarranted. Methods In the current study we assessed the ectoparasite community of a widespread southern African endemic, the Namaqua rock mouse (Micaelamys namaquensis), that is known to carry Bartonella spp. and may attain pest status. We aimed to identify possible vectors of medical and/or veterinary importance which this species may harbour and explore the contributions of habitat type, season, host sex and body size on ectoparasite prevalence and abundance. Results Small mammal abundance was substantially lower in grasslands compared to rocky outcrops. Although the small mammal community comprised of different species in the two habitats, M. namaquensis was the most abundant species in both habitat types. From these 23 ectoparasite species from four taxa (fleas, ticks, mites and lice) were collected. However, only one flea (Xenopsylla brasiliensis) and one tick species (Haemaphysalis elliptica) have a high zoonotic potential and have been implicated as vectors for Yersinia pestis and Bartonella spp. and Rickettsia conorii, respectively. The disease status of the most commonly collected tick (Rhipicephalus distinctus) is currently unknown. Only flea burdens differed markedly between habitat types and increased with body size. With the exception of lice, all parasite taxa exhibited seasonal peaks in abundance during spring and summer. Conclusion M. namaquensis is the dominant small mammal species irrespective of habitat type. Despite the great ectoparasite diversity harboured by M. namaquensis, only a small number of these are known as vectors of diseases of medical and/or veterinary importance but occur at high prevalence and/or abundance. This raises concern regarding the potential of this host as an endemic reservoir for zoonotic diseases. Consequently, additional sampling throughout its distributional range and research addressing the role of M. namaquensis as a reservoir for zoonotic diseases in southern Africa is urgently needed.
Collapse
Affiliation(s)
| | | | | | | | - Heike Lutermann
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|