1
|
Torres P, Pienaar EF, Ritchie MA, Gabriel MW, Yabsley MJ. Knowledge, attitudes, and practices of Native Americans in northern California regarding ticks and tick-borne diseases. One Health 2025; 20:100976. [PMID: 39898317 PMCID: PMC11787543 DOI: 10.1016/j.onehlt.2025.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Reports of tick-borne diseases (TBDs) are increasing worldwide, particularly in North America where a diversity of endemic and exotic tick species and pathogens occur. Native American populations have unique outdoor cultural and occupational practices that may impact their exposure to ticks, yet this risk remains understudied in the context of TBD. To address this gap, we examined knowledge, attitudes, and practices regarding ticks and TBDs among Native American communities in Humboldt County, California. We conducted semi-structured interviews with participants, who represented various tribes, at a cultural gathering. Cultural practices intertwined closely with outdoor activities (e.g., ceremonies, dances), potentially influencing local tick exposure patterns. Most research participants had been bitten by ticks and reported tick exposure by children and pets. Research participants demonstrated low knowledge about ticks and TBDs, as well as low levels of risk perceptions pertaining to TBDs. Research participants most commonly conducted tick checks after outdoor activity, wore long-sleeved clothing outdoors, and used homeopathic remedies or essential oils to prevent exposure to ticks and TBDs. Culturally appropriate outreach and education initiatives are needed to address TBD risk among Native American communities. Our study lays the groundwork for future research on the intersection of cultural practices and tick exposure, with implications for public health interventions that are tailored to the needs of indigenous populations.
Collapse
Affiliation(s)
- Patricia Torres
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Center for Integrative Conservation Research, Athens, GA 30602, USA
| | - Elizabeth F. Pienaar
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Michelle A. Ritchie
- Institute for Disaster Management, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | | | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Center for Integrative Conservation Research, Athens, GA 30602, USA
| |
Collapse
|
2
|
Bald L, Ratnaweera N, Hengl T, Laube P, Grunder J, Tischhauser W, Bhandari N, Zeuss D. Assessing tick attachments to humans with citizen science data: spatio-temporal mapping in Switzerland from 2015 to 2021 using spatialMaxent. Parasit Vectors 2025; 18:22. [PMID: 39849565 PMCID: PMC11759452 DOI: 10.1186/s13071-024-06636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Ticks are the primary vectors of numerous zoonotic pathogens, transmitting more pathogens than any other blood-feeding arthropod. In the northern hemisphere, tick-borne disease cases in humans, such as Lyme borreliosis and tick-borne encephalitis, have risen in recent years, and are a significant burden on public healthcare systems. The spread of these diseases is further reinforced by climate change, which leads to expanding tick habitats. Switzerland is among the countries in which tick-borne diseases are a major public health concern, with increasing incidence rates reported in recent years. METHODS In response to these challenges, the "Tick Prevention" app was developed by the Zurich University of Applied Sciences and operated by A&K Strategy Ltd. in Switzerland. The app allows for the collection of large amounts of data on tick attachment to humans through a citizen science approach. In this study, citizen science data were utilized to map tick attachment to humans in Switzerland at a 100 m spatial resolution, on a monthly basis, for the years 2015 to 2021. The maps were created using a state-of-the-art modeling approach with the software extension spatialMaxent, which accounts for spatial autocorrelation when creating Maxent models. RESULTS Our results consist of 84 maps displaying the risk of tick attachments to humans in Switzerland, with the model showing good overall performance, with median AUC ROC values ranging from 0.82 in 2018 to 0.92 in 2017 and 2021 and convincing spatial distribution, verified by tick experts for Switzerland. Our study reveals that tick attachment to humans is particularly high at the edges of settlement areas, especially in sparsely built-up suburban regions with green spaces, while it is lower in densely urbanized areas. Additionally, forested areas near cities also show increased risk levels. CONCLUSIONS This mapping aims to guide public health interventions to reduce human exposure to ticks and to inform the resource planning of healthcare facilities. Our findings suggest that citizen science data can be valuable for modeling and mapping tick attachment risk, indicating the potential of citizen science data for use in epidemiological surveillance and public healthcare planning.
Collapse
Affiliation(s)
- Lisa Bald
- Faculty of Geography, Environmental Informatics, University of Marburg, Deutschhausstraße 12, 35032, Marburg, Hessen, Germany.
| | - Nils Ratnaweera
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences ZHAW, Grüentalstrasse 14, 8820, Wädenswil, Zürich, Switzerland
| | - Tomislav Hengl
- OpenGeoHub Foundation, Cardanuslaan 26, 6865HK, Doorwerth, The Netherlands
| | - Patrick Laube
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences ZHAW, Grüentalstrasse 14, 8820, Wädenswil, Zürich, Switzerland
| | - Jürg Grunder
- A&K Strategy Ltd., Smartphone application "Tick Prevention", Chastelstrasse 14, 8732, Neuhaus, Zürich, Switzerland
| | - Werner Tischhauser
- A&K Strategy Ltd., Smartphone application "Tick Prevention", Chastelstrasse 14, 8732, Neuhaus, Zürich, Switzerland
| | - Netra Bhandari
- Faculty of Geography, Environmental Informatics, University of Marburg, Deutschhausstraße 12, 35032, Marburg, Hessen, Germany
| | - Dirk Zeuss
- Faculty of Geography, Environmental Informatics, University of Marburg, Deutschhausstraße 12, 35032, Marburg, Hessen, Germany
| |
Collapse
|
3
|
Eisen L. Seasonal activity patterns of Ixodes scapularis and Ixodes pacificus in the United States. Ticks Tick Borne Dis 2025; 16:102433. [PMID: 39764925 DOI: 10.1016/j.ttbdis.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 02/08/2025]
Abstract
Knowledge of seasonal activity patterns of human-biting life stages of tick species serving as vectors of human disease agents provides basic information on when during the year humans are most at risk for tick bites and tick-borne diseases. Although there is a wealth of published information on seasonal activity patterns of Ixodes scapularis and Ixodes pacificus in the United States, a critical review of the literature for these important tick vectors is lacking. The aims of this paper were to: (i) review what is known about the seasonal activity patterns of I. scapularis and I. pacificus in different parts of their geographic ranges in the US, (ii) provide a synthesis of the main findings, and (iii) outline key knowledge gaps and methodological pitfalls that limit our understanding of variability in seasonal activity patterns. Based on ticks collected while questing or from wild animals, the seasonal activity patterns were found to be similar for I. pacificus in the Far West and I. scapularis in the Southeast, with synchronous activity of larvae and nymphs, peaking in spring (April to June) in the Far West and from spring to early summer (April to July) in the Southeast, and continuous activity of adults from fall through winter and spring with peak activity from fall through winter (November/December to March). In the colder climates of the Upper Midwest and Northeast, I. scapularis adults have a bimodal seasonal pattern, with activity peaks in fall (October to November) and spring (April to May). The seasonal activity patterns for immatures differ between the Upper Midwest, synchronous for larvae and nymphs with peak activity in spring and summer (May to August), and the Northeast, where the peak activity of nymphs in spring and early summer (May to July) precedes that of larvae in summer (July to September). Seasonality of human tick encounters also is influenced by changes over the year in the level of outdoor activities in tick habitat. Studies on the seasonality of ticks infesting humans have primarily focused on the coastal Northeast and the Pacific Coast states, with fewer studies in the Southeast, inland parts of the Northeast, and the Upper Midwest. Discrepancies between seasonal patterns for peak tick questing activity and peak human infestation appear to occur primarily for the adult stages of I. scapularis and I. pacificus. Study design and data presentation limitations of the published literature are discussed. Scarcity of data for seasonal activity patterns of I. pacificus outside of California and for I. scapularis from parts of the Southeast, Northeast, and Upper Midwest is a key knowledge gap. In addition to informing the public of when during the year the risk for tick bites is greatest, high-quality studies describing current seasonal activity patterns also will generate the data needed for robust model-based projections of future climate-driven change in the seasonal activity patterns and provide the baseline needed to empirically determine in the future if the projections were accurate.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States.
| |
Collapse
|
4
|
Martyn C, Hayes BM, Lauko D, Midthun E, Castaneda G, Bosco-Lauth A, Salkeld DJ, Kistler A, Pollard KS, Chou S. Metatranscriptomic investigation of single Ixodes pacificus ticks reveals diverse microbes, viruses, and novel mRNA-like endogenous viral elements. mSystems 2024; 9:e0032124. [PMID: 38742892 PMCID: PMC11237458 DOI: 10.1128/msystems.00321-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Ticks are increasingly important vectors of human and agricultural diseases. While many studies have focused on tick-borne bacteria, far less is known about tick-associated viruses and their roles in public health or tick physiology. To address this, we investigated patterns of bacterial and viral communities across two field populations of western black-legged ticks (Ixodes pacificus). Through metatranscriptomic analysis of 100 individual ticks, we quantified taxon prevalence, abundance, and co-occurrence with other members of the tick microbiome. In addition to commonly found tick-associated microbes, we assembled 11 novel RNA virus genomes from Rhabdoviridae, Chuviridae, Picornaviridae, Phenuiviridae, Reoviridae, Solemovidiae, Narnaviridae and two highly divergent RNA virus genomes lacking sequence similarity to any known viral families. We experimentally verified the presence of these in I. pacificus ticks across several life stages. We also unexpectedly identified numerous virus-like transcripts that are likely encoded by tick genomic DNA, and which are distinct from known endogenous viral element-mediated immunity pathways in invertebrates. Taken together, our work reveals that I. pacificus ticks carry a greater diversity of viruses than previously appreciated, in some cases resulting in evolutionarily acquired virus-like transcripts. Our findings highlight how pervasive and intimate tick-virus interactions are, with major implications for both the fundamental biology and vectorial capacity of I. pacificus ticks. IMPORTANCE Ticks are increasingly important vectors of disease, particularly in the United States where expanding tick ranges and intrusion into previously wild areas has resulted in increasing human exposure to ticks. Emerging human pathogens have been identified in ticks at an increasing rate, and yet little is known about the full community of microbes circulating in various tick species, a crucial first step to understanding how they interact with each and their tick host, as well as their ability to cause disease in humans. We investigated the bacterial and viral communities of the Western blacklegged tick in California and found 11 previously uncharacterized viruses circulating in this population.
Collapse
Affiliation(s)
- Calla Martyn
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- Gladstone Institute of Data Science & Biotechnology, San Francisco, California, USA
| | - Beth M. Hayes
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- One Health Institute, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Domokos Lauko
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
| | - Edward Midthun
- Department of Biomedical Sciences, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Gloria Castaneda
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Daniel J. Salkeld
- Department of Biology, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| | - Katherine S. Pollard
- Gladstone Institute of Data Science & Biotechnology, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Eisen L, Saunders MEM, Kramer VL, Eisen RJ. History of the geographic distribution of the western blacklegged tick, Ixodes pacificus, in the United States. Ticks Tick Borne Dis 2024; 15:102325. [PMID: 38387162 PMCID: PMC10960675 DOI: 10.1016/j.ttbdis.2024.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Ixodes pacificus (the western blacklegged tick) occurs in the far western United States (US), where it commonly bites humans. This tick was not considered a species of medical concern until it was implicated in the 1980s as a vector of Lyme disease spirochetes. Later, it was discovered to also be the primary vector to humans in the far western US of agents causing anaplasmosis and hard tick relapsing fever. The core distribution of I. pacificus in the US includes California, western Oregon, and western Washington, with outlier populations reported in Utah and Arizona. In this review, we provide a history of the documented occurrence of I. pacificus in the US from the 1890s to present, and discuss associations of its geographic range with landscape, hosts, and climate. In contrast to Ixodes scapularis (the blacklegged tick) in the eastern US, there is no evidence for a dramatic change in the geographic distribution of I. pacificus over the last half-century. Field surveys in the 1930s and 1940s documented I. pacificus along the Pacific Coast from southern California to northern Washington, in the Sierra Nevada foothills, and in western Utah. County level collection records often included both immatures and adults of I. pacificus, recovered by drag sampling or from humans, domestic animals, and wildlife. The estimated geographic distribution presented for I. pacificus in 1945 by Bishopp and Trembley is similar to that presented in 2022 by the Centers for Disease Control and Prevention. There is no clear evidence of range expansion for I. pacificus, separate from tick records in new areas that could have resulted from newly initiated or intensified surveillance efforts. Moreover, there is no evidence from long-term studies that the density of questing I. pacificus ticks has increased over time in specific areas. It therefore is not surprising that the incidence of Lyme disease has remained stable in the Pacific Coast states from the early 1990s, when it became a notifiable condition, to present. We note that deforestation and deer depredation were less severe in the far western US during the 1800s and early 1900s compared to the eastern US. This likely contributed to I. pacificus maintaining stable, widespread populations across its geographic range in the far western US in the early 1900s, while I. scapularis during the same time period appears to have been restricted to a small number of geographically isolated refugia sites within its present range in the eastern US. The impact that a warming climate may have had on the geographic distribution and local abundance of I. pacificus in recent decades remains unclear.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States.
| | - Megan E M Saunders
- Vector-Borne Disease Section, California Department of Public Health, 1616 Capitol Ave, Sacramento, CA 95814, United States
| | - Vicki L Kramer
- Vector-Borne Disease Section, California Department of Public Health, 1616 Capitol Ave, Sacramento, CA 95814, United States
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| |
Collapse
|
6
|
Deshpande G, Beetch JE, Heller JG, Naqvi OH, Kuhn KG. Assessing the Influence of Climate Change and Environmental Factors on the Top Tick-Borne Diseases in the United States: A Systematic Review. Microorganisms 2023; 12:50. [PMID: 38257877 PMCID: PMC10821204 DOI: 10.3390/microorganisms12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In the United States (US), tick-borne diseases (TBDs) have more than doubled in the past fifteen years and are a major contributor to the overall burden of vector-borne diseases. The most common TBDs in the US-Lyme disease, rickettsioses (including Rocky Mountain spotted fever), and anaplasmosis-have gradually shifted in recent years, resulting in increased morbidity and mortality. In this systematic review, we examined climate change and other environmental factors that have influenced the epidemiology of these TBDs in the US while highlighting the opportunities for a One Health approach to mitigating their impact. We searched Medline Plus, PUBMED, and Google Scholar for studies focused on these three TBDs in the US from January 2018 to August 2023. Data selection and extraction were completed using Covidence, and the risk of bias was assessed with the ROBINS-I tool. The review included 84 papers covering multiple states across the US. We found that climate, seasonality and temporality, and land use are important environmental factors that impact the epidemiology and patterns of TBDs. The emerging trends, influenced by environmental factors, emphasize the need for region-specific research to aid in the prediction and prevention of TBDs.
Collapse
Affiliation(s)
| | | | | | | | - Katrin Gaardbo Kuhn
- Department of Biostatistics & Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.D.); (J.E.B.); (J.G.H.); (O.H.N.)
| |
Collapse
|
7
|
Holcomb KM, Khalil N, Cozens DW, Cantoni JL, Brackney DE, Linske MA, Williams SC, Molaei G, Eisen RJ. Comparison of acarological risk metrics derived from active and passive surveillance and their concordance with tick-borne disease incidence. Ticks Tick Borne Dis 2023; 14:102243. [PMID: 37611506 PMCID: PMC10885130 DOI: 10.1016/j.ttbdis.2023.102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Tick-borne diseases continue to threaten human health across the United States. Both active and passive tick surveillance can complement human case surveillance, providing spatio-temporal information on when and where humans are at risk for encounters with ticks and tick-borne pathogens. However, little work has been done to assess the concordance of the acarological risk metrics from each surveillance method. We used data on Ixodes scapularis and its associated human pathogens from Connecticut (2019-2021) collected through active collections (drag sampling) or passive submissions from the public to compare county estimates of tick and pathogen presence, infection prevalence, and tick abundance by life stage. Between the surveillance strategies, we found complete agreement in estimates of tick and pathogen presence, high concordance in infection prevalence estimates for Anaplasma phagocytophilum, Borrelia burgdorferi sensu stricto, and Babesia microti, but no consistent relationships between actively and passively derived estimates of tick abundance or abundance of infected ticks by life stage. We also compared nymphal metrics (i.e., pathogen prevalence in nymphs, nymphal abundance, and abundance of infected nymphs) with reported incidence of Lyme disease, anaplasmosis, and babesiosis, but did not find any consistent relationships with any of these metrics. The small spatial and temporal scale for which we had consistently collected active and passive data limited our ability to find significant relationships. Findings are likely to differ if examined across a broader spatial or temporal coverage with greater variation in acarological and epidemiological outcomes. Our results indicate similar outcomes between some actively and passively derived tick surveillance metrics (tick and pathogen presence, pathogen prevalence), but comparisons were variable for abundance estimates.
Collapse
Affiliation(s)
- Karen M Holcomb
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States.
| | - Noelle Khalil
- Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Duncan W Cozens
- Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Jamie L Cantoni
- Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Doug E Brackney
- Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Megan A Linske
- Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Scott C Williams
- Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Goudarz Molaei
- Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, United States; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| |
Collapse
|
8
|
Fernández-Ruiz N, Estrada-Peña A, McElroy S, Morse K. Passive collection of ticks in New Hampshire reveals species-specific patterns of distribution and activity. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:575-589. [PMID: 37030013 PMCID: PMC10179451 DOI: 10.1093/jme/tjad030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 05/13/2023]
Abstract
Ticks and tick-borne diseases are increasing in the United States, including New Hampshire (NH). We report on the findings of an ongoing free crowdsourcing program spanning four years within NH. The date of tick's submission was recorded along with species, sex, stage, location they were collected (translated into latitude and longitude), the activity the individual was doing when the tick was found, and host species. A total of 14,252 ticks belonging to subclass Acari, family Ixodidae and genera Ixodes, Dermacentor, Amblyomma, and Haemaphysalis was recorded from the period 2018-2021 throughout NH. A total of 2,787 Ixodes scapularis and 1,041 Dermacentor variabilis, were tested for the presence of Borrelia sp. (Spirochaetales: Spirochaetaceae), B. burgdorferi sensu lato, B. miyamotoi, B. mayonii, Babesia microti (Piroplasmida: Babesiidae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), Francisella tularensis (Thiotrichales: Francisellaceae), and Rickettsia rickettsii (Rickettsiales: Rickettsiaceae) by PCR. For the I. scapularis ticks tested, the pathogen prevalence was 37% B. burgdorferi s.l. 1% B. miyamotoi, 6% A. phagocytophilum, and 5% Ba. microti. Only one D. variabilis resulted positive to F. tularensis. We created state-wide maps informing the differences of ticks as detailed by administrative divisions. Dermacentor variabilis peaked in June and I. scapularis peaked in May and October. The most reported activity by people with tick encounters was while walking/hiking, and the least was biking. Using the reported distribution of both species of ticks, we modeled their climate suitability in the target territory. In NH, I. scapularis and D. variabilis have distinct patterns of emergence, abundance, and distribution. Tick prevention is important especially during April-August when both tick species are abundant and active.
Collapse
Affiliation(s)
- Natalia Fernández-Ruiz
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
| | | | | |
Collapse
|
9
|
Eisen L. Tick species infesting humans in the United States. Ticks Tick Borne Dis 2022; 13:102025. [PMID: 35973261 PMCID: PMC10862467 DOI: 10.1016/j.ttbdis.2022.102025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
The data for human tick encounters in the United States (US) presented in this paper were compiled with the goals of: (i) presenting quantitative data across the full range of native or recently established human biting ixodid (hard) and argasid (soft) tick species with regards to their frequency of infesting humans, based on published records of ticks collected while biting humans or crawling on clothing or skin; and (ii) providing a guide to publications on human tick encounters. Summary data are presented in table format, and the detailed data these summaries were based on are included in a set of Supplementary Tables. To date, totals of 36 ixodid species (234,722 specimens) and 13 argasid species (230 specimens) have been recorded in the published literature to infest humans in the US. Nationally, the top five ixodid species recorded from humans were the blacklegged tick, Ixodes scapularis (n=158,008 specimens); the lone star tick, Amblyomma americanum (n=36,004); the American dog tick, Dermacentor variabilis (n=26,624); the western blacklegged tick, Ixodes pacificus (n=4,158); and the Rocky Mountain wood tick, Dermacentor andersoni (n=3,518). Additional species with more than 250 ticks recorded from humans included Ixodes cookei (n=2,494); the Pacific Coast tick, Dermacentor occidentalis (n=809); the brown dog tick, Rhipicephalus sanguineus sensu lato (n=714); the winter tick, Dermacentor albipictus (n=465); and the Gulf Coast tick, Amblyomma maculatum (n=335). The spinose ear tick, Otobius megnini (n=69), and the pajaroello tick, Ornithodoros coriaceus (n=55) were the argasid species most commonly recorded from humans. Additional information presented for each of the 49 tick species include a breakdown of life stages recorded from humans, broad geographical distribution in the US, host preference, and associated human pathogens or medical conditions. The paper also provides a history of publications on human tick encounters in the US, with tables outlining publications containing quantitative data on human tick encounters as well as other notable publications on human-tick interactions. Data limitations are discussed. Researchers and public health professionals in possession of unpublished human tick encounter data are strongly encouraged to publish this information in peer-reviewed scientific journals. In future papers, it would be beneficial if data consistently were broken down by tick species and life stage as well as host species and ticks found biting versus crawling on clothing or skin.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA.
| |
Collapse
|
10
|
Freeman EA, Salkeld DJ. Surveillance of Rocky Mountain wood ticks (Dermacentor andersoni) and American dog ticks (Dermacentor variabilis) in Colorado. Ticks Tick Borne Dis 2022; 13:102036. [PMID: 36274450 DOI: 10.1016/j.ttbdis.2022.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/05/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Ticks pose an emerging threat of infectious pathogen transmission in the United States in part due to expanding suitable habitat ranges in the wake of climate change. Active and passive tick surveillance can inform maps of tick distributions to warn the public of their risk of exposure to ticks. In Colorado, widespread active surveillance programs have difficulty due to the state's diverse terrain. However, combining multiple citizen science techniques can create a more accurate representation of tick distribution than any passive surveillance dataset alone. Our study uses county-level tick distribution data from Northern Arizona University, the Colorado Department of Public Health and the Environment, and veterinary surveillance in addition to literature data to assess the distribution of the Rocky Mountain wood tick, Dermacentor andersoni, and the American dog tick, Dermacentor variabilis. We found that D. andersoni for the most part inhabits counties at higher elevations than D. variabilis in Colorado.
Collapse
Affiliation(s)
- Elizabeth A Freeman
- Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523, United States.
| | - Daniel J Salkeld
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
11
|
Kjemtrup AM, Padgett K, Paddock CD, Messenger S, Hacker JK, Feiszli T, Melgar M, Metzger ME, Hu R, Kramer VL. A forty-year review of Rocky Mountain spotted fever cases in California shows clinical and epidemiologic changes. PLoS Negl Trop Dis 2022; 16:e0010738. [PMID: 36108065 PMCID: PMC9514610 DOI: 10.1371/journal.pntd.0010738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 09/27/2022] [Accepted: 08/12/2022] [Indexed: 01/05/2023] Open
Abstract
Rocky Mountain spotted fever (RMSF) is a life-threatening tick-borne disease documented in North, Central, and South America. In California, RMSF is rare; nonetheless, recent fatal cases highlight ecological cycles of the two genera of ticks, Dermacentor and Rhipicephalus, known to transmit the disease. These ticks occur in completely different habitats (sylvatic and peridomestic, respectively) resulting in different exposure risks for humans. This study summarizes the demographic, exposure, and clinical aspects associated with the last 40 years of reported RMSF cases to the California Department of Public Health (CDPH). Seventy-eight RMSF cases with onsets from 1980 to 2019 were reviewed. The incidence of RMSF has risen in the last 20 years from 0.04 cases per million to 0.07 cases per million (a two-fold increase in reports), though the percentage of cases that were confirmed dropped significantly from 72% to 25% of all reported cases. Notably, Hispanic/Latino populations saw the greatest rise in incidence. Cases of RMSF in California result from autochthonous and out-of-state exposures. During the last 20 years, more cases reported exposure in Southern California or Mexico than in the previous 20 years. The driver of these epidemiologic changes is likely the establishment and expansion of Rhipicephalus sanguineus sensu lato ticks in Southern California and on-going outbreaks of RMSF in northern Mexico. Analysis of available electronically reported clinical data from 2011 to 2019 showed that 57% of reported cases presented with serious illness requiring hospitalization with a 7% mortality. The difficulty in recognizing RMSF is due to a non-specific clinical presentation; however, querying patients on the potential of tick exposure in both sylvatic and peridomestic environments may facilitate appropriate testing and treatment.
Collapse
Affiliation(s)
- Anne M. Kjemtrup
- California Department of Public Health, Sacramento, California, United States of America
- * E-mail:
| | - Kerry Padgett
- California Department of Public Health, Richmond, California, United States of America
| | | | - Sharon Messenger
- California Department of Public Health, Richmond, California, United States of America
| | - Jill K. Hacker
- California Department of Public Health, Richmond, California, United States of America
| | - Tina Feiszli
- California Department of Public Health, Richmond, California, United States of America
| | - Michael Melgar
- School of Medicine, University of California, San Francisco, California, United States of America
| | - Marco E. Metzger
- California Department of Public Health, Ontario, California, United States of America
| | - Renjie Hu
- California Department of Public Health, Ontario, California, United States of America
| | - Vicki L. Kramer
- California Department of Public Health, Sacramento, California, United States of America
| |
Collapse
|
12
|
Paddock CD, Slater K, Swei A, Zambrano ML, Kleinjan JE, Padgett KA, Saunders MEM, Andrews ES, Trent E, Zhong J, Sambado S, Goldsmith CS, Pascoe EL, Foley J, Lane RS, Karpathy SE. Detection and Isolation of Rickettsia tillamookensis (Rickettsiales: Rickettsiaceae) From Ixodes pacificus (Acari: Ixodidae) From Multiple Regions of California. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1404-1412. [PMID: 35468215 DOI: 10.1093/jme/tjac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The western black-legged tick (Ixodes pacificus) is the most frequently identified human-biting tick species in the western United States and the principal vector of at least three recognized bacterial pathogens of humans. A potentially pathogenic Rickettsia species, first described in 1978 and recently characterized as a novel transitional group agent designated as Rickettsia tillamookensis, also exists among populations of I. pacificus, although the distribution and frequency of this agent are poorly known. We evaluated DNA extracts from 348 host-seeking I. pacificus nymphs collected from 9 locations in five California counties, and from 916 I. pacificus adults collected from 24 locations in 13 counties, by using a real-time PCR designed specifically to detect DNA of R. tillamookensis. DNA of R. tillamookensis was detected in 10 (2.9%) nymphs (95% CI: 1.6-5.2%) and 17 (1.9%) adults (95% CI: 1.2-3.0%) from 11 counties of northern California. Although site-specific infection rates varied greatly, frequencies of infection remained consistently low when aggregated by stage, sex, habitat type, or geographical region. Four novel isolates of R. tillamookensis were cultivated in Vero E6 cells from individual adult ticks collected from Alameda, Nevada, and Yolo counties. Four historical isolates, serotyped previously as 'Tillamook-like' strains over 40 yr ago, were revived from long-term storage in liquid nitrogen and confirmed subsequently by molecular methods as isolates of R. tillamookensis. The potential public health impact of R. tillamookensis requires further investigation.
Collapse
Affiliation(s)
- Christopher D Paddock
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kimetha Slater
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Maria L Zambrano
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joyce E Kleinjan
- Alameda County Vector Control Services District, Alameda, CA, USA
| | - Kerry A Padgett
- Vector-Borne Disease Section, California Department of Public Health, Richmond, CA, USA
| | - Megan E M Saunders
- Vector-Borne Disease Section, California Department of Public Health, Richmond, CA, USA
| | - Elizabeth S Andrews
- Vector-Borne Disease Section, California Department of Public Health, Richmond, CA, USA
| | - Erin Trent
- Department of Biological Sciences, Humboldt State University, Arcata, CA, USA
| | - Jianmin Zhong
- Department of Biological Sciences, Humboldt State University, Arcata, CA, USA
| | - Samantha Sambado
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Cynthia S Goldsmith
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily L Pascoe
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Robert S Lane
- Department of Environmental Science, Policy and Management, University of California, Berkeley CA, USA
| | - Sandor E Karpathy
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
13
|
Eisen L. Personal protection measures to prevent tick bites in the United States: Knowledge gaps, challenges, and opportunities. Ticks Tick Borne Dis 2022; 13:101944. [PMID: 35364518 PMCID: PMC10859966 DOI: 10.1016/j.ttbdis.2022.101944] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/27/2022] [Accepted: 03/24/2022] [Indexed: 01/07/2023]
Abstract
Personal protection measures to prevent human tick encounters from resulting in bites are widely recommended as the first line of defense against health impacts associated with ticks. This includes using repellents, wearing untreated or permethrin-treated protective clothing, and conducting tick checks after coming inside, aided by removing outdoor clothing articles and running them in a dryer on high heat (to kill undetected ticks) and taking a shower/bath (to aid in detecting ticks on the skin). These measures have the benefit of incurring no or low cost, but they need to be used consistently to be most effective. In this paper, I review the level of use (acceptability combined with behavior) of the above-mentioned personal protection measures and their effectiveness to prevent tick bites and tick-borne disease. Studies on the level of use of personal protection measures to prevent tick bites have used different recruitment strategies, focused on different types of respondent populations, employed variable phrasings of survey questions relating to a given personal protection measure, and presented results based on variable frequencies of taking action. This complicates the synthesis of the findings, but the studies collectively indicate that members of the public commonly take action to prevent tick bites, most frequently by wearing untreated protective clothing or conducting tick checks (done routinely by 30 to 70% of respondents in most studies of the public), followed by showering/bathing after being outdoors or using repellents on skin/clothing (15 to 40% range), and with permethrin-treated clothing being the least frequently used tick bite prevention method (<5 to 20% range). A suite of experimental studies have shown that applying repellents or permethrin to coveralls or uniform-style clothing can result in decreased numbers of tick bites, but similar studies are lacking for members of the public wearing summer-weight clothing during normal daily activities. Moreover, a set of case-control and cross-sectional studies have explored associations between use of different personal protection measures to prevent tick bites and Lyme disease or other tick-borne infections. The results are mixed for each personal protection measure, with some studies indicating that regular use of the measure is associated with a reduction in tick-borne disease while other studies found no similar protective effect. One possible interpretation is that these personal protection measures can protect against tick-borne infection but the information gathered to date has not been sufficiently detailed to clarify the circumstances under which protection is achieved, especially with regards to frequency of use, parts of the body being protected, and use of combinations of two or more potentially protective measures. In conclusion, personal protection measures to prevent tick bites are used by the public and merit further study to better understand how they need to be used to have the greatest public health impact.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA.
| |
Collapse
|
14
|
Kontowicz E, Brown G, Torner J, Carrel M, Baker KK, Petersen CA. Inclusion of environmentally themed search terms improves Elastic net regression nowcasts of regional Lyme disease rates. PLoS One 2022; 17:e0251165. [PMID: 35271589 PMCID: PMC8912246 DOI: 10.1371/journal.pone.0251165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/01/2022] [Indexed: 11/19/2022] Open
Abstract
Lyme disease is the most widely reported vector-borne disease in the United States. 95% of confirmed human cases are reported in the Northeast and upper Midwest (25,778 total confirmed cases from Northeast and upper Midwest / 27,203 total US confirmed cases). Human cases typically occur in the spring and summer months when an infected nymph Ixodid tick takes a blood meal. Current federal surveillance strategies report data on an annual basis, leading to nearly a year lag in national data reporting. These lags in reporting make it difficult for public health agencies to assess and plan for the current burden of Lyme disease. Implementation of a nowcasting model, using historical data to predict current trends, provides a means for public health agencies to evaluate current Lyme disease burden and make timely priority-based budgeting decisions. The objective of the study was to develop and compare the performance of nowcasting models using free data from Google Trends and Centers of Disease Control and Prevention surveillance reports. We developed two sets of elastic net models for five regions of the United States: 1. Using only monthly proportional hit data from the 21 disease symptoms and tick related terms, and 2. Using monthly proportional hit data from terms identified via Google correlate and the disease symptom and vector terms. Elastic net models using the full-term list were highly accurate (Root Mean Square Error: 0.74, Mean Absolute Error: 0.52, R2: 0.97) for four of the five regions of the United States and improved accuracy 1.33-fold while reducing error 0.5-fold compared to predictions from models using disease symptom and vector terms alone. Many of the terms included and found to be important for model performance were environmentally related. These models can be implemented to help local and state public health agencies accurately monitor Lyme disease burden during times of reporting lag from federal public health reporting agencies.
Collapse
Affiliation(s)
- Eric Kontowicz
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
- Center for Emerging Infectious Diseases, University of Iowa Research Park, Coralville, Iowa, United States of America
| | - Grant Brown
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
| | - James Torner
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
| | - Margaret Carrel
- Department of Geographical and Sustainability Sciences, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Kelly K. Baker
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, United States of America
| | - Christine A. Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
- Center for Emerging Infectious Diseases, University of Iowa Research Park, Coralville, Iowa, United States of America
- Immunology Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
15
|
Kopsco HL, Duhaime RJ, Mather TN. Crowdsourced Tick Image-Informed Updates to U.S. County Records of Three Medically Important Tick Species. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2412-2424. [PMID: 33973636 DOI: 10.1093/jme/tjab082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Burgeoning cases of tick-borne disease present a significant public health problem in the United States. Passive tick surveillance gained traction as an effective way to collect epidemiologic data, and in particular, photograph-based tick surveillance can complement in-hand tick specimen identification to amass distribution data and related encounter demographics. We compared the Federal Information Processing Standards (FIPS) code of tick photos submitted to a free public identification service (TickSpotters) from 2014 to 2019 to published nationwide county reports for three tick species of medical concern: Ixodes scapularis Say (Ixodida: Ixodidae), Ixodes pacificus Cooley and Kohls (Ixodida: Ixodidae), and Amblyomma americanum Linneaus (Ixodida: Ixodidae). We tallied the number of TickSpotters submissions for each tick species according to "Reported" or "Established" criteria per county, and found that TickSpotters submissions represented more than half of the reported counties of documented occurrence, and potentially identified hundreds of new counties with the occurrence of these species. We detected the largest number of new county reports of I. scapularis presence in Michigan, North Carolina, and Texas. Tick image submissions revealed potentially nine new counties of occurrence for I. pacificus, and we documented the largest increase in new county reports of A. americanum in Kentucky, Illinois, Indiana, and Ohio. These findings demonstrate the utility of crowdsourced photograph-based tick surveillance as a complement to other tick surveillance strategies in documenting tick distributions on a nationwide scale, its potential for identifying new foci, and its ability to highlight at-risk localities that might benefit from tick-bite prevention education.
Collapse
Affiliation(s)
- Heather L Kopsco
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI, USA
- TickEncounter Resource Center, University of Rhode Island, Kingston, RI, USA
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Roland J Duhaime
- TickEncounter Resource Center, University of Rhode Island, Kingston, RI, USA
- Environmental Data Center, University of Rhode Island, Kingston, RI, USA
| | - Thomas N Mather
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI, USA
- TickEncounter Resource Center, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
16
|
Citizen Science Provides an Efficient Method for Broad-Scale Tick-Borne Pathogen Surveillance of Ixodes pacificus and Ixodes scapularis across the United States. mSphere 2021; 6:e0068221. [PMID: 34585963 PMCID: PMC8550138 DOI: 10.1128/msphere.00682-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tick-borne diseases have expanded over the last 2 decades as a result of shifts in tick and pathogen distributions. These shifts have significantly increased the need for accurate portrayal of real-time pathogen distributions and prevalence in hopes of stemming increases in human morbidity. Traditionally, pathogen distribution and prevalence have been monitored through case reports or scientific collections of ticks or reservoir hosts, both of which have challenges that impact the extent, availability, and accuracy of these data. Citizen science tick collections and testing campaigns supplement these data and provide timely estimates of pathogen prevalence and distributions to help characterize and understand tick-borne disease threats to communities. We utilized our national citizen science tick collection and testing program to describe the distribution and prevalence of four Ixodes-borne pathogens, Borrelia burgdorferisensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti, across the continental United States. IMPORTANCE In the 21st century, zoonotic pathogens continue to emerge, while previously discovered pathogens continue to have changes within their distribution and prevalence. Monitoring these pathogens is resource intensive, requiring both field and laboratory support; thus, data sets are often limited within their spatial and temporal extents. Citizen science collections provide a method to harness the general public to collect samples, enabling real-time monitoring of pathogen distribution and prevalence.
Collapse
|
17
|
Examining Prevalence and Diversity of Tick-Borne Pathogens in Questing Ixodes pacificus Ticks in California. Appl Environ Microbiol 2021; 87:e0031921. [PMID: 33893109 PMCID: PMC8316035 DOI: 10.1128/aem.00319-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tick-borne diseases in California include Lyme disease (caused by Borrelia burgdorferi), infections with Borrelia miyamotoi, and human granulocytic anaplasmosis (caused by Anaplasma phagocytophilum). We surveyed multiple sites and habitats (woodland, grassland, and coastal chaparral) in California to describe spatial patterns of tick-borne pathogen prevalence in western black-legged ticks (Ixodes pacificus). We found that several species of Borrelia-B. burgdorferi, Borrelia americana, and Borrelia bissettiae-were observed in habitats, such as coastal chaparral, that do not harbor obvious reservoir host candidates. Describing tick-borne pathogen prevalence is strongly influenced by the scale of surveillance: aggregating data from individual sites to match jurisdictional boundaries (e.g., county or state) can lower the reported infection prevalence. Considering multiple pathogen species in the same habitat allows a more cohesive interpretation of local pathogen occurrence. IMPORTANCE Understanding the local host ecology and prevalence of zoonotic diseases is vital for public health. Using tick-borne diseases in California, we show that there is often a bias to our understanding and that studies tend to focus on particular habitats, e.g., Lyme disease in oak woodlands. Other habitats may harbor a surprising diversity of tick-borne pathogens but have been neglected, e.g., coastal chaparral. Explaining pathogen prevalence requires descriptions of data on a local scale; otherwise, aggregating the data can misrepresent the local dynamics of tick-borne diseases.
Collapse
|
18
|
Anderson KR, Blekking J, Omodior O. Tick trails: the role of online recreational trail reviews in identifying risk factors and behavioral recommendations associated with tick encounters in Indiana. BMC Public Health 2021; 21:908. [PMID: 33980203 PMCID: PMC8117608 DOI: 10.1186/s12889-021-10940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Recreational trails abound across the United States and represent high risk areas for tick exposure. Although online reviews represent a rich source of user information, they have rarely been used in determining the risk of tick exposure during recreational trail use. Based on online user reviews and comments, the purpose of this study was to determine risk factors and behavioral recommendations associated with tick encounters (Tick Presence) on recreational trails in the state of Indiana, U.S. METHODS We reviewed 26,016 user comments left on AllTrails.com for 697 Indiana trails. Reviews were evaluated to determine Tick Presence/Absence, the total number of Tick Presence Reviews per trail, and multiple trail and user behavioral characteristics. We used hot spot (Getis-Ord Gi*) analysis to test the hypothesis of whether there are clusters in the number of Tick Presence Reviews. Pearson chi-square tests of independence evaluated whether tick presence was associated with several trail characteristics. Finally, negative binomial regression evaluated the strength of the association between the number of Tick Presence Reviews and several trail characteristics. RESULTS Tick Presence was recorded at 10% (n = 65) of trails and occurred most frequently in May. Hot spot analysis revealed statistically significant clusters of Tick Presence Reviews on trails in the Southern Indiana State Region. Results of χ2 tests indicated significant associations between Tick Presence Reviews and (a) State Region and (b) Land Management Type; Mann-Whitney U tests detected significant differences in Tick Presence Reviews based on Trail Length and Elevation Gain. Subsequent results of a negative binomial regression model indicated that Southern Indiana State Region, Federal and Private Land Management Type, and Elevation Gain were factors significantly associated with Tick Presence Reviews. Content of user reviews indicated several behaviors employed to prevent tick encounters, particularly Repellent Application and Recreational Deterrence; 25% included a behavior Recommendation to others. CONCLUSIONS Online, user-generated trail reviews have the potential to serve as rich data sources for identifying recreational trails, where 1) the risk of tick exposure is great, 2) more robust active tick and tick-borne pathogen surveillance may be warranted, and 3) tailored prevention interventions are needed.
Collapse
Affiliation(s)
- Kristina R Anderson
- Department of Health & Wellness Design, School of Public Health, Indiana University Bloomington, 1025 E. 7th Street, IN, 47405, Bloomington, USA.
| | - Jordan Blekking
- Department of Geography, College of Arts & Sciences, Indiana University Bloomington, 701 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Oghenekaro Omodior
- Department of Health & Wellness Design, School of Public Health, Indiana University Bloomington, 1025 E. 7th Street, IN, 47405, Bloomington, USA
| |
Collapse
|
19
|
Luker HA, Rodriguez S, Kandel Y, Vulcan J, Hansen IA. A novel Tick Carousel Assay for testing efficacy of repellents on Amblyomma americanum L.. PeerJ 2021; 9:e11138. [PMID: 33976963 PMCID: PMC8067905 DOI: 10.7717/peerj.11138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
Ticks are important vectors of human and veterinary diseases. A primary way ticks gain access to human hosts is by engaging to clothing. Repellents or acaricides sprayed onto fabric are used to deter ticks’ access to human hosts. However, there are a limited amount of standardized laboratory assays that can determine the potency and efficacy of repellents. We present a novel fabric-engagement assay referred to as the ‘Tick Carousel Assay’. This assay utilizes fabric brushing past ticks located on an artificial grass patch and measures tick engagements to fabric over time. After screening a variety of tick species, we used the lone star tick (Amblyomma americanum) to test the efficacy of four commonly used active ingredients in repellents: DEET, Picaridin, IR3535, and Oil of Lemon Eucalyptus. Repellency was tested immediately, after three hours, and six hours post application to fabric. Our data show that each repellent we tested significantly reduced the number of tick engagements to fabric for at least 6 hours. We did not find significant differences in repellent efficacy between the four active ingredients tested directly and three hours after application. After six hours, Oil of Lemon Eucalyptus repelled ticks more than the other active ingredients. We show that our Tick Carousel Assay provides an affordable, repeatable, and standardized way to compare and test repellent efficacy on treated fabrics. Our results confirm that commonly used repellents applied to fabric are an effective way to reduce tick engagement.
Collapse
Affiliation(s)
- Hailey A Luker
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Stacy Rodriguez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Yashoda Kandel
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Julia Vulcan
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| |
Collapse
|
20
|
Saleh MN, Allen KE, Lineberry MW, Little SE, Reichard MV. Ticks infesting dogs and cats in North America: Biology, geographic distribution, and pathogen transmission. Vet Parasitol 2021; 294:109392. [PMID: 33971481 PMCID: PMC9235321 DOI: 10.1016/j.vetpar.2021.109392] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
A diverse array of ixodid and argasid ticks infest dogs and cats in North America, resulting in skin lesions, blood loss, and disease. The ticks most commonly found on pets in this region are hard ticks of the genera Amblyomma, Dermacentor, Ixodes, and Rhipicephalus, as well as the more recently established Haemaphysalis longicornis. Soft tick genera, especially Otobius and Ornithodoros, are also reported from pets in some regions. In this review, we provide a summary of the complex and diverse life histories, distinct morphologies, and questing and feeding behaviors of the more common ticks of dogs and cats in North America with a focus on recent changes in geographic distribution. We also review pathogens of dogs and cats associated with the different tick species, some of which can cause serious, potentially fatal disease, and describe the zoonotic risk posed by ticks of pets. Understanding the natural history of ticks and the maintenance cycles responsible for providing an ongoing source of tick-borne infections is critical to effectively combatting the challenges ticks pose to the health of pets and people.
Collapse
Affiliation(s)
- Meriam N Saleh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Kelly E Allen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States.
| | - Megan W Lineberry
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Susan E Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| | - Mason V Reichard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, United States
| |
Collapse
|
21
|
Eisen L, Eisen RJ. Benefits and Drawbacks of Citizen Science to Complement Traditional Data Gathering Approaches for Medically Important Hard Ticks (Acari: Ixodidae) in the United States. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1-9. [PMID: 32772108 PMCID: PMC8056287 DOI: 10.1093/jme/tjaa165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 05/16/2023]
Abstract
Tick-borne diseases are increasing in North America. Knowledge of which tick species and associated human pathogens are present locally can inform the public and medical community about the acarological risk for tick bites and tick-borne infections. Citizen science (also called community-based monitoring, volunteer monitoring, or participatory science) is emerging as a potential approach to complement traditional tick record data gathering where all aspects of the work is done by researchers or public health professionals. One key question is how citizen science can best be used to generate high-quality data to fill knowledge gaps that are difficult to address using traditional data gathering approaches. Citizen science is particularly useful to generate information on human-tick encounters and may also contribute to geographical tick records to help define species distributions across large areas. Previous citizen science projects have utilized three distinct tick record data gathering methods including submission of: 1) physical tick specimens for identification by professional entomologists, 2) digital images of ticks for identification by professional entomologists, and 3) data where the tick species and life stage were identified by the citizen scientist. We explore the benefits and drawbacks of citizen science, relative to the traditional scientific approach, to generate data on tick records, with special emphasis on data quality for species identification and tick encounter locations. We recognize the value of citizen science to tick research but caution that the generated information must be interpreted cautiously with data quality limitations firmly in mind to avoid misleading conclusions.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Rebecca J. Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| |
Collapse
|
22
|
Porter WT, Barrand ZA, Wachara J, DaVall K, Mihaljevic JR, Pearson T, Salkeld DJ, Nieto NC. Predicting the current and future distribution of the western black-legged tick, Ixodes pacificus, across the Western US using citizen science collections. PLoS One 2021; 16:e0244754. [PMID: 33400719 PMCID: PMC7785219 DOI: 10.1371/journal.pone.0244754] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
In the twenty-first century, ticks and tick-borne diseases have expanded their ranges and impact across the US. With this spread, it has become vital to monitor vector and disease distributions, as these shifts have public health implications. Typically, tick-borne disease surveillance (e.g., Lyme disease) is passive and relies on case reports, while disease risk is calculated using active surveillance, where researchers collect ticks from the environment. Case reports provide the basis for estimating the number of cases; however, they provide minimal information on vector population or pathogen dynamics. Active surveillance monitors ticks and sylvatic pathogens at local scales, but it is resource-intensive. As a result, data are often sparse and aggregated across time and space to increase statistical power to model or identify range changes. Engaging public participation in surveillance efforts allows spatially and temporally diverse samples to be collected with minimal effort. These citizen-driven tick collections have the potential to provide a powerful tool for tracking vector and pathogen changes. We used MaxEnt species distribution models to predict the current and future distribution of Ixodes pacificus across the Western US through the use of a nationwide citizen science tick collection program. Here, we present niche models produced through citizen science tick collections over two years. Despite obvious limitations with citizen science collections, the models are consistent with previously-predicted species ranges in California that utilized more than thirty years of traditional surveillance data. Additionally, citizen science allows for an expanded understanding of I. pacificus distribution in Oregon and Washington. With the potential for rapid environmental changes instigated by a burgeoning human population and rapid climate change, the development of tools, concepts, and methodologies that provide rapid, current, and accurate assessment of important ecological qualities will be invaluable for monitoring and predicting disease across time and space.
Collapse
Affiliation(s)
- W. Tanner Porter
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
- Translational Genomics Research Institute, Flagstaff, AZ, United States of America
- * E-mail:
| | - Zachary A. Barrand
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Julie Wachara
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Kaila DaVall
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Joseph R. Mihaljevic
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Talima Pearson
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Daniel J. Salkeld
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
| | - Nathan C. Nieto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
| |
Collapse
|
23
|
MacDonald AJ, McComb S, O'Neill C, Padgett KA, Larsen AE. Projected climate and land use change alter western blacklegged tick phenology, seasonal host-seeking suitability and human encounter risk in California. GLOBAL CHANGE BIOLOGY 2020; 26:5459-5474. [PMID: 32649017 DOI: 10.1111/gcb.15269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Global environmental change is having profound effects on the ecology of infectious disease systems, which are widely anticipated to become more pronounced under future climate and land use change. Arthropod vectors of disease are particularly sensitive to changes in abiotic conditions such as temperature and moisture availability. Recent research has focused on shifting environmental suitability for, and geographic distribution of, vector species under projected climate change scenarios. However, shifts in seasonal activity patterns, or phenology, may also have dramatic consequences for human exposure risk, local vector abundance and pathogen transmission dynamics. Moreover, changes in land use are likely to alter human-vector contact rates in ways that models of changing climate suitability are unlikely to capture. Here we used climate and land use projections for California coupled with seasonal species distribution models to explore the response of the western blacklegged tick (Ixodes pacificus), the primary Lyme disease vector in western North America, to projected climate and land use change. Specifically, we investigated how environmental suitability for tick host-seeking changes seasonally, how the magnitude and direction of changing seasonal suitability differs regionally across California, and how land use change shifts human tick-encounter risk across the state. We found vector responses to changing climate and land use vary regionally within California under different future scenarios. Under a hotter, drier scenario and more extreme land use change, the duration and extent of seasonal host-seeking activity increases in northern California, but declines in the south. In contrast, under a hotter, wetter scenario seasonal host-seeking declines in northern California, but increases in the south. Notably, regardless of future scenario, projected increases in developed land adjacent to current human population centers substantially increase potential human-vector encounter risk across the state. These results highlight regional variability and potential nonlinearity in the response of disease vectors to environmental change.
Collapse
Affiliation(s)
- Andrew J MacDonald
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - Sofie McComb
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Craig O'Neill
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Kerry A Padgett
- Vector-Borne Disease Section, California Department of Public Health, Richmond, CA, USA
| | - Ashley E Larsen
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| |
Collapse
|
24
|
Relationship Between Tick Activity, Tick-Borne Diseases, Cognitive and Affective Risk Assessment in Peri-domestic Areas. J Community Health 2020; 46:334-342. [DOI: 10.1007/s10900-020-00902-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
MacDonald AJ, Weinstein SB, O’Connor KE, Swei A. Circulation of Tick-Borne Spirochetes in Tick and Small Mammal Communities in Santa Barbara County, California, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1293-1300. [PMID: 31943036 PMCID: PMC7457333 DOI: 10.1093/jme/tjz253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 05/13/2023]
Abstract
A diversity of Borrelia burgdorferi sensu lato (Johnson, Schmid, Hyde, Steigerwalt & Brenner) (Spirochaetales: Spirochaetaceae) genomospecies, including the Lyme disease agent, Borrelia burgdorferi sensu stricto (s.s.), have been identified in the western United States. However, enzootic transmission of B. burgdorferi s.l. in small mammals and ticks is poorly characterized throughout much of the region. Here we report prevalence of B. burgdorferi s.l. in small mammal and tick communities in the understudied region of southern California. We found B. burgdorferi s.l. in 1.5% of Ixodes species ticks and 3.6% of small mammals. Infection was uncommon (~0.3%) in Ixodes pacificus Cooley and Kohls (Acari: Ixodidae), the primary vector of the Lyme disease agent to humans in western North America, but a diversity of spirochetes-including Borrelia bissettiae, Borrelia californiensis, Borrelia americana, and B. burgdorferi s.s.-were identified circulating in Ixodes species ticks and their small mammal hosts. Infection with B. burgdorferi s.l. is more common in coastal habitats, where a greater diversity of Ixodes species ticks are found feeding on small mammal hosts (four species when compared with only I. pacificus in other sampled habitats). This provides some preliminary evidence that in southern California, wetter coastal areas might be more favorable for enzootic transmission than hotter and drier climates. Infection patterns confirm that human transmission risk of B. burgdorferi s.s. is low in this region. However, given evidence for local maintenance of B. burgdorferi s.l., more studies of enzootic transmission may be warranted, particularly in understudied regions where the tick vector of B. burgdorferi s.s. occurs.
Collapse
Affiliation(s)
| | - Sara B Weinstein
- School of Biological Sciences, University of Utah, Salt Lake City, UT
| | - Kerry E O’Connor
- Department of Biology, San Francisco State University, San Francisco, CA
| | - Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, CA
| |
Collapse
|
26
|
Salkeld DJ, Antolin MF. Ecological Fallacy and Aggregated Data: A Case Study of Fried Chicken Restaurants, Obesity and Lyme Disease. ECOHEALTH 2020; 17:4-12. [PMID: 32026056 DOI: 10.1007/s10393-020-01472-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Interdisciplinary approaches are merited when attempting to understand the complex and idiosyncratic processes driving the spillover of pathogens from wildlife and vector species to human populations. Public health data are often available for zoonotic pathogens but can lead to erroneous conclusions if the data have been spatially or temporally aggregated. As an illustration, we use human Lyme disease incidence data as a case study to examine correlations between mammalian biodiversity, fried chicken restaurants and obesity rates on human disease incidence. We demonstrate that Lyme disease incidence is negatively correlated with mammalian biodiversity, the abundance of fried chicken restaurants and obesity rates. We argue, however, that these correlations are spurious, representing both an 'ecologic fallacy' and Simpson's paradox, and are generated by the use of aggregated data. We argue that correlations based on aggregated data across large spatial scales must be rigorously examined before being invoked as proof of disease ecology theory or as a rationale for public health policy.
Collapse
Affiliation(s)
- Daniel J Salkeld
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Michael F Antolin
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|