1
|
Cossu CA, Ochai SO, Troskie M, Hartmann A, Godfroid J, de Klerk LM, Turner W, Kamath P, van Schalkwyk OL, Cassini R, Bhoora R, van Heerden H. Detection of Tick-Borne Pathogen Coinfections and Coexposures to Foot-and-Mouth Disease, Brucellosis, and Q Fever in Selected Wildlife From Kruger National Park, South Africa, and Etosha National Park, Namibia. Transbound Emerg Dis 2024; 2024:2417717. [PMID: 40303165 PMCID: PMC12016786 DOI: 10.1155/tbed/2417717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/05/2024] [Accepted: 11/15/2024] [Indexed: 05/02/2025]
Abstract
Background: Although the rate of emerging infectious diseases that originate in wildlife has been increasing globally in recent decades, there is currently a lack of epidemiological data from wild animals. Methodology: We used serology to determine prior exposure to foot-and-mouth disease virus (FMDV), Brucella spp., and Coxiella burnetii and used genetic testing to detect blood-borne parasitic infections in the genera Ehrlichia, Anaplasma, Theileria, and Babesia from wildlife in two national parks, Kruger National Park (KNP), South Africa, and Etosha National Park (ENP), Namibia. Serum and whole blood samples were obtained from free-roaming plains zebra (Equus quagga), greater kudu (Tragelaphus strepsiceros), impala (Aepyceros melampus), and blue wildebeest (Connochaetes taurinus). Risk factors (host species, sex, and sampling park) for infection with each pathogen were assessed, as well as the prevalence and distribution of co-occurring infections. Results: In KNP 13/29 (45%; confidence interval [CI]: 26%-64%) kudus tested positive for FMD, but none of these reacted to SAT serotypes. For brucellosis, seropositive results were obtained for 3/29 (10%; CI: 2%-27%) kudu samples. Antibodies against C. burnetii were detected in 6/29 (21%; CI: 8%-40%) kudus, 14/21 (67%; CI: 43%-85%) impalas, and 18/39 (46%; CI: 30%-63%) zebras. A total of 28/28 kudus tested positive for Theileria spp. (100%; CI: 88%-100%) and 27/28 for Anaplasma/Ehrlichia spp. (96%; CI: 82%-100%), whereas 12/19 impalas (63%) and 2/39 zebra (5%) tested positive for Anaplasma centrale. In ENP, only 1/29 (3%; CI: 0%-18%) wildebeest samples tested positive for FMD. None of the samples tested positive for brucellosis, while C. burnetii antibodies were detected in 26/30 wildebeests (87%; CI: 69%-96%), 16/40 kudus (40%; CI: 25%-57%), and 26/26 plains zebras (100%; CI: 87%-100%). A total of 60% Anaplasma/Ehrlichia spp. and 35% Theileria/Babesia spp. in kudu and 37% wildebeest tested positive to Theileria sp. (sable), 30% to Babesia occultans, and 3%-7% to Anaplasma spp. The seroprevalence of Q fever was significantly higher in ENP, while Brucella spp., Anaplasma, Ehrlichia, Theileria, and Babesia species were significantly higher in KNP. Significant coinfections were also identified. Conclusion: This work provided baseline serological and molecular data on 40+ pathogens in four wildlife species from two national parks in southern Africa.
Collapse
Affiliation(s)
- Carlo Andrea Cossu
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Sunday Ochonu Ochai
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- International Centre for Antimicrobial Resistance Solutions, Copenhagen S 2300, Denmark
| | - Milana Troskie
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Axel Hartmann
- Etosha National Park, Ministry of Environment, Forestry and Tourism, Etosha Ecological Institute, Okaukuejo, Namibia
| | - Jacques Godfroid
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Lin-Mari de Klerk
- Office of the State Veterinarian, Department of Agriculture, Land Reform and Rural Development, Kruger National Park, P.O. Box 12, Skukuza 1350, South Africa
| | - Wendy Turner
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison 53706, Wisconsin, USA
| | - Pauline Kamath
- School of Food and Agriculture, University of Maine, Orono 04469, Maine, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono 04469, Maine, USA
| | - Ockert Louis van Schalkwyk
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
- Office of the State Veterinarian, Department of Agriculture, Land Reform and Rural Development, Kruger National Park, P.O. Box 12, Skukuza 1350, South Africa
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Rudi Cassini
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro (PD), Italy
| | - Raksha Bhoora
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
2
|
Pandey GS, Manandhar P, Shrestha BK, Sadaula A, Hayashi N, Abdelbaset AE, Silwal P, Tsubota T, Kwak ML, Nonaka N, Nakao R. Detection and characterization of vector-borne parasites and Wolbachia endosymbionts in greater one-horned rhinoceros (Rhinoceros unicornis) in Nepal. Acta Trop 2024; 258:107344. [PMID: 39097253 DOI: 10.1016/j.actatropica.2024.107344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Vector-borne parasite infections affect both domestic and wild animals. They are often asymptomatic but can result in fatal outcomes under natural and human-induced stressors. Given the limited availability of molecular data on vector-borne parasites in Rhinoceros unicornis (greater one-horned rhinoceros), this study employed molecular tools to detect and characterize the vector-borne parasites in rescued rhinoceros in Chitwan National Park, Nepal. Whole blood samples were collected from thirty-six R. unicornis during rescue and treatment operations. Piroplasmida infections were first screened using nested polymerase chain reaction (PCR) targeting 18S ribosomal RNA gene. Wolbachia was detected by amplifying 16S rRNA gene, while filarial nematodes were detected through amplification of 28S rRNA, COI, myoHC and hsp70 genes. Our results confirmed the presence of Theileria bicornis with a prevalence of 75% (27/36) having two previously unreported haplotypes (H8 and H9). Wolbachia endosymbionts were detected in 25% (9/36) of tested samples and belonged to either supergroup C or F. Filarial nematodes of the genera Mansonella and Onchocerca were also detected. There were no significant association between T. bicornis infections and the age, sex, or location from which the animals were rescued. The high prevalence of Theileria with novel haplotypes along with filarial parasites has important ecological and conservational implications and highlights the need to implement parasite surveillance programs for wildlife in Nepal. Further studies monitoring vector-borne pathogens and interspecies transmission among wild animals, livestock and human are required.
Collapse
Affiliation(s)
- Gita Sadaula Pandey
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; National Cattle Research Program, Nepal Agricultural Research Council, Rampur, Chitwan, Nepal
| | | | | | - Amir Sadaula
- National Trust for Nature Conservation - Biodiversity Conservation Center, Sauraha, Chitwan, Nepal
| | - Naoki Hayashi
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Abdelbaset Eweda Abdelbaset
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt
| | - Pradeepa Silwal
- National Trust for Nature Conservation - Biodiversity Conservation Center, Sauraha, Chitwan, Nepal
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Mackenzie L Kwak
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Nariaki Nonaka
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan.
| |
Collapse
|
3
|
Nehra AK, Kumari A, Moudgil AD, Vohra S. Revisiting the genotypes of Theileria equi based on the V4 hypervariable region of the 18S rRNA gene. Front Vet Sci 2024; 11:1303090. [PMID: 38560630 PMCID: PMC10978764 DOI: 10.3389/fvets.2024.1303090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Equine theileriosis, an economically important disease that affects horses and other equids worldwide, is caused by a tick-borne intracellular apicomplexan protozoa Theileria equi. Genotyping of T. equi based on the 18S rRNA gene revealed the presence of two, three, four or five genotypes. In previous published reports, these genotypes have been labelled either alphabetically or numerically, and there is no uniformity in naming of these genotypes. The present study was aimed to revisit the phylogeny, genetic diversity and geographical distribution of T. equi based on the nucleotide sequences of the V4 hypervariable region of the 18S rRNA gene available in the nucleotide databases. Methods Out of 14792 nucleotide sequences of T. equi available in the GenBank™, only 736 sequences of T. equi containing the complete V4 hypervariable region of the 18S rRNA gene (>207 bp) were used in multiple sequence alignment. Subsequently, a maximum likelihood phylogenetic tree was constructed based on the Kimura 2-parameter model (K2+I). Results The phylogenetic tree placed all the sequences into four distinct clades with high bootstrap values which were designated as T. equi clades/ genotypes A, B, C and D. Our results indicated that the genotype B of Nagore et al. and genotype E of Qablan et al. together formed the clade B with a high bootstrap value (95%). Furthermore, all the genotypes probably originated from clade B, which was the most dominant genotype (52.85%) followed by clades A (27.58%), and C (9.78%) and D (9.78%). Genotype C manifested a comparatively higher genetic diversity (91.0-100% identity) followed by genotypes A (93.2-99.5%), and B and D (95.7-100%). The alignment report of the consensus nucleotide sequences of the V4 hypervariable region of the 18S rRNA gene of four T. equi genotypes (A-D) revealed significant variations in one region, between nucleotide positions 113-183, and 41 molecular signatures were recognized. As far as geographical distribution is concerned, genotypes A and C exhibited far-extending geographical distribution involving 31 and 13 countries of the Asian, African, European, North American and South American continents, respectively. On the contrary, the genotypes B and D exemplified limited distribution with confinement to 21 and 12 countries of Asian, African and European continents, respectively. Interestingly, genotypes A and C have been reported from only two continents, viz., North and South America. It was observed that genotypes A and C, and B and D exhibit similar geographical distribution. Discussion The present study indicated the presence of only four previously described T. equi genotypes (A, B, C and D) after performing the molecular analyses of all available sequences of the complete V4 hypervariable region of the 18S rRNA gene of T. equi isolates in the GenBank™.
Collapse
Affiliation(s)
- Anil Kumar Nehra
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ansu Kumari
- Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Aman Dev Moudgil
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Sukhdeep Vohra
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
4
|
Zimmermann DE, Vorster I, Dreyer C, Fowlds W, Penzhorn BL. Successful treatment of babesiosis in a south-western black rhinoceros
(Diceros bicornis bicornis). J S Afr Vet Assoc 2022; 93:139-143. [DOI: 10.36303/jsava.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- DE Zimmermann
- South African National Parks, Veterinary Wildlife Services,
South Africa
| | - I Vorster
- Ticks & Tick-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - C Dreyer
- South African National Parks, Veterinary Wildlife Services,
South Africa
| | - W Fowlds
- Ikhala Veterinary Wildlife Services, Amakhala Game Reserve,
South Africa
| | - BL Penzhorn
- Ticks & Tick-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria,
South Africa
- National Zoological Garden, South African National Biodiversity Institute,
South Africa
- Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| |
Collapse
|
5
|
The Piroplasmida Babesia, Cytauxzoon, and Theileria in farm and companion animals: species compilation, molecular phylogeny, and evolutionary insights. Parasitol Res 2022; 121:1207-1245. [DOI: 10.1007/s00436-022-07424-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
|
6
|
Ledwaba MB, Nozipho K, Tembe D, Onyiche TE, Chaisi ME. Distribution and prevalence of ticks and tick-borne pathogens of wild animals in South Africa: A systematic review. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100088. [PMID: 35601607 PMCID: PMC9114622 DOI: 10.1016/j.crpvbd.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/21/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022]
Abstract
Ticks are significant ectoparasites of animals and humans. Published data indicate that most vectors that transmit livestock and human pathogens in sub-Saharan Africa, are native to the region and originate from wild animals. Currently, there is a paucity of information on the role of wild animals on the epidemiology of zoonotic tick-borne pathogens in South Africa. This systematic review focuses on the distribution of ticks and prevalence of tick-borne pathogens in different wild animals in South Africa to identify potential reservoir hosts and possible hotspots for emergence of novel tick-borne pathogens. Following several screening processes, 38 peer-reviewed studies published from 1970 to 2021, were deemed eligible. The studies reported on ticks collected from 63 host species of 21 host families, mostly Canidae, Felidae, Bovidae and Muridae. A total of 49 tick species of nine genera, i.e. Amblyomma, Dermacentor, Haemaphysalis, Hyalomma, Ixodes, Margaropus, Nuttalliella, Rhipicentor and Rhipicephalus, were reported. Nine tick species, i.e. Amblyomma marmoreum, Am. hebraeum, Haemaphysalis elliptica, Hyalomma truncatum, I. rubicundus, Rh. appendiculatus, Rh. (B.) decoloratus, Rh. evertsi evertsi and Rh. simus were the most commonly reported. Pathogens of the genera Anaplasma, Babesia, Hepatozoon and Theileria were identified in the wild animals. This review provides more insight on the ecology of ticks and tick-borne pathogens of wild animals in South Africa and gives useful information for predicting their future spread. It also demonstrates that wild animals habour a diverse range of tick species. This level of diversity entails a similarly high potential for emergence of novel tick-borne pathogens. The review further indicates that wild animals in South Africa are sentinels of tick-borne protozoans of veterinary importance and some bacterial pathogens as most ticks they habour are known vectors of pathogens of domestic animals and humans. However, studies on potential tick-borne zoonoses are under-represented and should be included in future epidemiological surveys, especially in the light of climate change and other anthropogenic threats which might result in the emergence of novel tick-borne pathogens. Wild animals in South Africa harbor a wide range of tick species of veterinary and medical importance. Forty-nine tick species belonging to 9 genera were reported from 63 wild host species of 21 families. Majority of the ticks occur throughout all nine provinces of South Africa. Wildlife in South Africa are sentinels of tick-borne protozoans and some bacterial pathogens of veterinary importance. The review also emphasizes the host preference of the ticks and the pathogens they transmit.
Collapse
Affiliation(s)
- Maphuti B. Ledwaba
- Foundational Research and Services, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
- Corresponding author.
| | - Khumalo Nozipho
- Foundational Research and Services, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
| | - Danisile Tembe
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - ThankGod E. Onyiche
- Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria
| | - Mamohale E. Chaisi
- Foundational Research and Services, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
7
|
Takhampunya R, Sakolvaree J, Chanarat N, Youngdech N, Phonjatturas K, Promsathaporn S, Tippayachai B, Tachavarong W, Srinoppawan K, Poole-Smith BK, McCardle PW, Chaorattanakawee S. The Bacterial Community in Questing Ticks From Khao Yai National Park in Thailand. Front Vet Sci 2021; 8:764763. [PMID: 34881320 PMCID: PMC8645651 DOI: 10.3389/fvets.2021.764763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 02/01/2023] Open
Abstract
Ticks are known vectors for a variety of pathogens including bacteria, viruses, fungi, and parasites. In this study, bacterial communities were investigated in active life stages of three tick genera (Haemaphysalis, Dermacentor, and Amblyomma) collected from Khao Yai National Park in Thailand. Four hundred and thirty-three questing ticks were selected for pathogen detection individually using real-time PCR assays, and 58 of these were subjected to further metagenomics analysis. A total of 62 ticks were found to be infected with pathogenic bacteria, for a 14.3% prevalence rate, with Amblyomma spp. exhibiting the highest infection rate (20.5%), followed by Haemaphysalis spp. (14.5%) and Dermacentor spp. (8.6%). Rickettsia spp. were the most prevalent bacteria (7.9%) found, followed by Ehrlichia spp. (3.2%), and Anaplasma spp. and Borrelia spp. each with a similar prevalence of 1.6%. Co-infection between pathogenic bacteria was only detected in three Haemaphysalis females, and all co-infections were between Rickettsia spp. and Anaplasmataceae (Ehrlichia spp. or Anaplasma spp.), accounting for 4.6% of infected ticks or 0.7% of all examined questing ticks. The prevalence of the Coxiella-like endosymbiont was also investigated. Of ticks tested, 65.8% were positive for the Coxiella-like endosymbiont, with the highest infection rate in nymphs (86.7%), followed by females (83.4%). Among tick genera, Haemaphysalis exhibited the highest prevalence of infection with the Coxiella-like endosymbiont. Ticks harboring the Coxiella-like endosymbiont were more likely to be infected with Ehrlichia spp. or Rickettsia spp. than those without, with statistical significance for Ehrlichia spp. infection in particular (p-values = 0.003 and 0.917 for Ehrlichia spp. and Rickettsia spp., respectively). Profiling the bacterial community in ticks using metagenomics revealed distinct, predominant bacterial taxa in tick genera. Alpha and beta diversities analyses showed that the bacterial community diversity and composition in Haemaphysalis spp. was significantly different from Amblyomma spp. However, when examining bacterial diversity among tick life stages (larva, nymph, and adult) in Haemaphysalis spp., no significant difference among life stages was detected. These results provide valuable information on the bacterial community composition and co-infection rates in questing ticks in Thailand, with implications for animal and human health.
Collapse
Affiliation(s)
- Ratree Takhampunya
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Jira Sakolvaree
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Nitima Chanarat
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Nittayaphon Youngdech
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Kritsawan Phonjatturas
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Sommai Promsathaporn
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Bousaraporn Tippayachai
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Wirunya Tachavarong
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Kanchit Srinoppawan
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Betty K Poole-Smith
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - P Wesley McCardle
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| |
Collapse
|