1
|
Yalcindag E, Vasoya D, Hemmink JD, Karani B, Hernandez Castro LE, Callaby R, Mazeri S, Paxton E, Connelley TK, Toye P, Morrison LJ, Bronsvoort BMDC. Development of a novel Haemabiome tool for the high-throughput analysis of haemopathogen species co-infections in African livestock. Front Vet Sci 2024; 11:1491828. [PMID: 39758606 PMCID: PMC11695320 DOI: 10.3389/fvets.2024.1491828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
One of the principal limitations on livestock productivity in sub-Saharan Africa is the constraining effect of infectious diseases, including tick-borne blood pathogens. Currently, diagnostic markers for these pathogens are species or genus specific, making it challenging to implement high-throughput screening methods. The aim of this study was to develop and validate a novel high-throughput diagnostic tool capable of detecting a range of important haemopathogens in livestock. To achieve this, we developed a high-throughput diagnostic tool that can detect all species of Anaplasma, Ehrlichia, Theileria and Babesia present in a sample. The approach involves targeting the 16S/18S rDNA region by PCR and subjecting amplicons to deep sequencing, which allows for the identification of species present in a sample, and the exploration of haemopathogen communities. To validate the accuracy of this Next Generation Sequencing method, we compared the amplicon sequencing results with species-specific PCR and reverse line blot (RLB) test data of both control and field samples. The Haemabiome tool demonstrated the successful resolution of positive and negative samples, and highlighted the power of this diagnostic tool in identifying multiplicity of infections. The Haemabiome tool can therefore generate valuable insights regarding the understanding of the true diversity of species composition and the distribution of pathogen communities in field samples.
Collapse
Affiliation(s)
- Erhan Yalcindag
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Deepali Vasoya
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanneke D. Hemmink
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
- The International Livestock Research Institute, Nairobi, Kenya
| | - Benedict Karani
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
- The International Livestock Research Institute, Nairobi, Kenya
| | - Luis Enrique Hernandez Castro
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Callaby
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Stella Mazeri
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Edith Paxton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy K. Connelley
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Phil Toye
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
- The International Livestock Research Institute, Nairobi, Kenya
| | - Liam J. Morrison
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Barend Mark de C. Bronsvoort
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Lee YJ, Kim B, Kwak D, Nyamsuren O, Guugandaa N, Seo MG. Tick-borne pathogens in Mongolian ticks: The high prevalence of Rickettsia raoultii and its public health implications. Acta Trop 2024; 260:107412. [PMID: 39332755 DOI: 10.1016/j.actatropica.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
In Mongolia, a substantial segment of the population is engaged in pastoralism, leading to frequent interactions with livestock and heightened exposure to tick-infested environments. Consequently, ticks and the endemic tick-borne pathogens (TBPs) they harbor present significant health threats. In May 2021, we conducted a study to evaluate the prevalence of 9 TBPs in ticks collected from four regions in Mongolia: Uvurkhangai, Tuv, Bayan-Ulgii, and Khentii. The pathogens surveyed included Anaplasma, Rickettsia, Bartonella, Borrelia, Ehrlichia, Babesia, Toxoplasma, Theileria, and lumpy skin disease virus. Molecular analysis of 1142 ticks revealed that, although the majority of TBPs were not detected, 89.1 % of the ticks were positive for Rickettsia. Genetic characterization using the 16S rRNA and gltA genes identified the pathogen identified the pathogen Rickettsia raoultii. Species identification indicated a predominance of Dermacentor nuttalli (70.0 %) and Dermacentor silvarum (30.0 %). These findings highlight the extensive prevalence of R. raoultii in Mongolia and underscore the urgent need for heightened awareness and preventive measures due to the high level of interaction between livestock and humans. The genetic similarity of R. raoultii sequences to those found in neighboring countries suggests potential cross-border transmission, underscoring the importance of conducting similar research in surrounding regions. This study advances our understanding of the epidemiology of tick-borne diseases in Mongolia and can inform public health strategies aimed at mitigating the risks associated with these infections.
Collapse
Affiliation(s)
- You-Jeong Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, South Korea
| | - Beoul Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, South Korea
| | - Dongmi Kwak
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, South Korea
| | - Ochirkhuu Nyamsuren
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Nyamdavaa Guugandaa
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Min-Goo Seo
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
3
|
Li Y, Li J, Xieripu G, Rizk MA, Macalanda AMC, Gan L, Ren J, Mohanta UK, El-Sayed SAES, Chahan B, Xuan X, Guo Q. Molecular Detection of Theileria ovis, Anaplasma ovis, and Rickettsia spp. in Rhipicephalus turanicus and Hyalomma anatolicum Collected from Sheep in Southern Xinjiang, China. Pathogens 2024; 13:680. [PMID: 39204280 PMCID: PMC11356840 DOI: 10.3390/pathogens13080680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The Xinjiang Uygur Autonomous Region (Xinjiang) borders eight countries and has a complex geographic environment. There are almost 45.696 million herded sheep in Xinjiang, which occupies 13.80% of China's sheep farming industry. However, there is a scarcity of reports investigating the role of sheep or ticks in Xinjiang in transmitting tick-borne diseases (TBDs). A total of 894 ticks (298 tick pools) were collected from sheep in southern Xinjiang. Out of the 298 tick pools investigated in this study, Rhipicephalus turanicus (Rh. turanicus) and Hyalomma anatolicum (H. anatolicum) were identified through morphological and molecular sequencing. In the southern part of Xinjiang, 142 (47.65%), 86 (28.86%), and 60 (20.13%) tick pools were positive for Rickettsia spp., Theileria spp., and Anaplasma spp., respectively. Interestingly, the infection rate of Rickettsia spp. (73%, 35.10%, and 28.56-41.64%) was higher in Rh. turanicus pools than in H. anatolicum pools (4%, 4.44%, and 0.10-8.79%) in this study. Fifty-one tick pools were found to harbor two pathogens, while nineteen tick pools were detected to have the three pathogens. Our findings indicate the presence of Rickettsia spp., Theileria spp., and Anaplasma spp. potentially transmitted by H. anatolicum and Rh. turanicus in sheep in southern Xinjiang, China.
Collapse
Affiliation(s)
- Yongchang Li
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
| | - Jianlong Li
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Gulaimubaier Xieripu
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Adrian Miki C. Macalanda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Immunopathology and Microbiology, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang 4122, Philippines
| | - Lu Gan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Jichao Ren
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Microbiology and Parasitology, Sher–e–Bangla Agricultural University, Sher–e–Bangla Nagar, Dhaka 1207, Bangladesh
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bayin Chahan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
| | - Qingyong Guo
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| |
Collapse
|
4
|
El-Alfy ES, Abbas I, Saleh S, Elseadawy R, Fereig RM, Rizk MA, Xuan X. Tick-borne pathogens in camels: A systematic review and meta-analysis of the prevalence in dromedaries. Ticks Tick Borne Dis 2024; 15:102268. [PMID: 37769585 DOI: 10.1016/j.ttbdis.2023.102268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Published data on tick-borne pathogens (TBPs) in camels worldwide have been collected to provide an overview of the global prevalence and species diversity of camelid TBPs. Several TBPs have been detected in dromedary camels, raising concerns regarding their role as natural or maintenance hosts for tick-borne pathogens. Insubstantial evidence exists regarding the natural infection of camels with Babesia spp., Theileria spp., Anaplasma spp., and Ehrlichia spp., particularly because most of the camels were considered healthy at the time of sampling. Based on polymerase chain reaction (PCR) testing, a pooled prevalence of 35.3% (95% CI: 22.6-48.1%) was estimated for Anaplasma, which was the most frequently tested TBP in dromedaries, and DNA of Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma platys, and A. platys-like were isolated, of which ruminants and dogs are reservoirs. Similarly, the estimated pooled prevalence for the two piroplasmid genera; Babesia and Theileria was approximately equal (10-12%) regardless of the detection method (microscopy or PCR testing). Nevertheless, Babesia caballi, Theileria equi, and Theileria annulata DNA have frequently been detected in camels but they have not yet been proven to be natural hosts. Scarce data detected Babesia microti, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu lato (s.l.) DNA in blood of dromedaries, although ticks of the genus Ixodes are distributed in limited areas where dromedaries are raised. Interestingly, a pooled seroprevalence of 47.7% (26.3-69.2%) was estimated for Crimean-Congo hemorrhagic fever virus, and viral RNA was detected in dromedary blood; however, their contribution to maintain the viral transmission cycles requires further experimental investigation. The substantially low incidence and scarcity of data on Rickettsia and Ehrlichia species could imply that camels were accidentally infected. In contrast, camels may play a role in the spread of Coxiella burnetii, which is primarily transmitted through the inhalation of aerosols emitted by diseased animals and contaminated environments. Bactrian camels showed no symptoms due to the examined TBPs, meanwhile, clinical disease was seen in alpacas infected with A. phagocytophilum. Similar to dromedaries, accidental tick bites may be the cause of TBP DNA found in the blood of Bactrian camels.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Somaya Saleh
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rana Elseadawy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ragab M Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| |
Collapse
|
5
|
Zhang L, Han J, Zhou Q, He Z, Sun SW, Li R, Li RS, Zhang WK, Wang YH, Xu LL, Lu ZH, Shao ZJ. Differential microbial composition in parasitic vs. questing ticks based on 16S next-generation sequencing. Front Microbiol 2023; 14:1264939. [PMID: 38192286 PMCID: PMC10773790 DOI: 10.3389/fmicb.2023.1264939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction As tick-borne diseases rise to become the second most prevalent arthropod-transmitted disease globally, the increasing investigations focus on ticks correspondingly. Factors contributed to this increase include anthropogenic influences, changes in vertebrate faunal composition, social-recreational shifts, and climatic variation. Employing the 16S gene sequence method in next-generation sequencing (NGS) allows comprehensive pathogen identification in samples, facilitating the development of refined approaches to tick research omnidirectionally. Methods In our survey, we compared the microbial richness and biological diversity of ticks in Wuwei City, Gansu province, differentiating between questing ticks found in grass and parasitic ticks collected from sheep based on 16S NGS method. Results The results show Rickettsia, Coxiella, and Francisella were detected in all 50 Dermacentor nuttalli samples, suggesting that the co-infection may be linked to specific symbiotic bacteria in ticks. Our findings reveal significant differences in the composition and diversity of microorganisms, with the Friedmanniella and Bordetella genera existing more prevalent in parasitic ticks than in questing ticks (p < 0.05). Additionally, the network analysis demonstrates that the interactions among bacterial genera can be either promotive or inhibitive in ticks exhibiting different lifestyles with the correlation index |r| > 0.6. For instance, Francisella restrains the development of 10 other bacteria in parasitic ticks, whereas Phyllobacterium and Arthrobacter enhance colonization across all tick species. Discussion By leveraging NGS techniques, our study reveals a high degree of species and phylogenetic diversity within the tick microbiome. It further highlights the potential to investigate the interplay between bacterial genera in both parasitic and questing ticks residing in identical habitat environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhen-Hua Lu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, Shaanxi, China
| | - Zhong-Jun Shao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Matulis GA, Sakolvaree J, Boldbaatar B, Cleary N, Takhampunya R, Poole-Smith BK, Lilak AA, Altantogtokh D, Tsogbadrakh N, Chanarat N, Youngdech N, Lindroth EJ, Fiorenzano JM, Letizia AG, von Fricken ME. Applying next generation sequencing to detect tick-pathogens in Dermacentor nuttalli, Ixodes persulcatus, and Hyalomma asiaticum collected from Mongolia. Ticks Tick Borne Dis 2023; 14:102203. [PMID: 37290396 DOI: 10.1016/j.ttbdis.2023.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
Ticks and tick-borne diseases represent major threats to the public health of the Mongolian population, of which an estimated 26% live a traditional nomadic pastoralist lifestyle that puts them at increased risk for exposure. Ticks were collected by dragging and removal from livestock in Khentii, Selenge, Tuv, and Umnugovi aimags (provinces) during March-May 2020. Using next-generation sequencing (NGS) with confirmatory PCR and DNA sequencing, we sought to characterize the microbial species present in Dermacentor nuttalli (n = 98), Hyalomma asiaticum (n = 38), and Ixodes persulcatus (n = 72) tick pools. Rickettsia spp. were detected in 90.4% of tick pools, with Khentii, Selenge, and Tuv tick pools all having 100% pool positivity. Coxiella spp. were detected at an overall pool positivity rate of 60%, while Francisella spp. were detected in 20% of pools and Borrelia spp. detected in 13% of pools. Additional confirmatory testing for Rickettsia-positive pools demonstrated Rickettsia raoultii (n = 105), Candidatus Rickettsia tarasevichiae (n = 65) and R. slovaca/R. sibirica (n = 2), as well as the first report of Candidatus Rickettsia jingxinensis (n = 1) in Mongolia. For Coxiella spp. reads, most samples were identified as a Coxiella endosymbiont (n = 117), although Coxiella burnetii was detected in eight pools collected in Umnugovi. Borrelia species that were identified include Borrelia burgdorferi sensu lato (n = 3), B. garinii (n = 2), B. miyamotoi (n = 16), and B. afzelii (n = 3). All Francisella spp. reads were identified as Francisella endosymbiont species. Our findings emphasize the utility of NGS to provide baseline data across multiple tick-borne pathogen groups, which in turn can be used to inform health policy, determine regions for expanded surveillance, and guide risk mitigation strategies.
Collapse
Affiliation(s)
- Graham A Matulis
- Department of Global and Community Health, George Mason University, Fairfax, VA, USA
| | - Jira Sakolvaree
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Bazartseren Boldbaatar
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Nora Cleary
- Department of Global and Community Health, George Mason University, Fairfax, VA, USA
| | - Ratree Takhampunya
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - B Katherine Poole-Smith
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Abigail A Lilak
- Department of Global and Community Health, George Mason University, Fairfax, VA, USA
| | | | | | - Nitima Chanarat
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Nittayaphon Youngdech
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Erica J Lindroth
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | | | | | - Michael E von Fricken
- Department of Global and Community Health, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
7
|
Abdugheni R, Li L, Yang ZN, Huang Y, Fang BZ, Shurigin V, Mohamad OAA, Liu YH, Li WJ. Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms 2023; 11:1897. [PMID: 37630456 PMCID: PMC10456746 DOI: 10.3390/microorganisms11081897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Livestock excrement is a major pollutant yielded from husbandry and it has been constantly imported into various related environments. Livestock excrement comprises a variety of microorganisms including certain units with health risks and these microorganisms are transferred synchronically during the management and utilization processes of livestock excrement. The livestock excrement microbiome is extensively affecting the microbiome of humans and the relevant environments and it could be altered by related environmental factors as well. The zoonotic microorganisms, extremely zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and environmental safety. In this review, we highlight the main feature of the microbiome of livestock excrement and elucidate the composition and structure of the repertoire of microbes, how these microbes transfer from different spots, and they then affect the microbiomes of related habitants as a whole. Overall, the environmental problems caused by the microbiome of livestock excrement and the potential risks it may cause are summarized from the microbial perspective and the strategies for prediction, prevention, and management are discussed so as to provide a reference for further studies regarding potential microbial risks of livestock excrement microbes.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Ni Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
von Fricken ME, Melendrez MC, Linton YM, Takhampunya R. Editorial: Metagenomics for epidemiological surveillance in One Health. Front Microbiol 2023; 14:1191946. [PMID: 37065150 PMCID: PMC10104163 DOI: 10.3389/fmicb.2023.1191946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Affiliation(s)
- Michael E. von Fricken
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA, United States
- *Correspondence: Michael E. von Fricken
| | - Mel C. Melendrez
- Department of Biology, Anoka-Ramsey Community College, Coon Rapids, MN, United States
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Smithsonian Museum Support Center, Suitland, MD, United States
- Department of Entomology, Smithsonian Institution – National Museum of Natural History (NMNH), Washington, DC, United States
- Walter Reed Army Institute of Research, One Health Branch, Silver Spring, MD, United States
| | - Ratree Takhampunya
- Department of Entomology, United States Army Medical Directorate—Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| |
Collapse
|
9
|
Davitt C, Traub R, Batsukh B, Battur B, Pfeffer M, Wiethoelter AK. Knowledge of Mongolian veterinarians towards canine vector-borne diseases. One Health 2022; 15:100458. [DOI: 10.1016/j.onehlt.2022.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
|
10
|
Altantogtokh D, Lilak AA, Takhampunya R, Sakolvaree J, Chanarat N, Matulis G, Poole-Smith BK, Boldbaatar B, Davidson S, Hertz J, Bolorchimeg B, Tsogbadrakh N, Fiorenzano JM, Lindroth EJ, von Fricken ME. Metagenomic profiles of Dermacentor tick pathogens from across Mongolia, using next generation sequencing. Front Microbiol 2022; 13:946631. [PMID: 36033893 PMCID: PMC9399792 DOI: 10.3389/fmicb.2022.946631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Tick-borne diseases are a major public health concern in Mongolia. Nomadic pastoralists, which make up ~ 26% of Mongolia’s population, are at an increased risk of both tick bite exposure and economic loss associated with clinical disease in herds. This study sought to further characterize tick-borne pathogens present in Dermacentor ticks (n = 1,773) sampled in 2019 from 15 of Mongolia’s 21 aimags (provinces). The ticks were morphologically identified and sorted into 377 pools which were then screened using Next-Generation Sequencing paired with confirmatory PCR and DNA sequence analysis. Rickettsia spp. were detected in 88.33% of pools, while Anaplasma spp. and Bartonella spp. were detected in 3.18 and 0.79% of pools, respectively. Khentii had the highest infection rate for Rickettsia spp. (76.61%; CI: 34.65–94.79%), while Arkhangai had the highest infection rate for Anaplasma spp. (7.79%; CI:4.04–13.72%). The exclusive detection of Anaplasma spp. in tick pools collected from livestock supports previous work in this area that suggests livestock play a significant role in disease maintenance. The detection of Anaplasma, Bartonella, and Rickettsia demonstrates a heightened risk for infection throughout Mongolia, with this study, to our knowledge, documenting the first detection of Bartonella melophagi in ticks collected in Mongolia. Further research deploying NGS methods is needed to characterize tick-borne pathogens in other endemic tick species found in Mongolia, including Hyalomma asiaticum and Ixodes persulcatus.
Collapse
Affiliation(s)
| | - Abigail A. Lilak
- Department of Global and Community Health, George Mason University, Fairfax, VA, United States
| | - Ratree Takhampunya
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Jira Sakolvaree
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Nitima Chanarat
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Graham Matulis
- Department of Global and Community Health, George Mason University, Fairfax, VA, United States
| | - Betty Katherine Poole-Smith
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Bazartseren Boldbaatar
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Silas Davidson
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
- Department of Chemistry and Life Science, US Military Academy, West Point, NY, United States
| | - Jeffrey Hertz
- Naval Medical Research Unit TWO (NAMRU-2), Sembawang, Singapore
| | | | | | | | - Erica J. Lindroth
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Michael E. von Fricken
- Department of Global and Community Health, George Mason University, Fairfax, VA, United States
- *Correspondence: Michael E. von Fricken,
| |
Collapse
|
11
|
Lu X, Peng Y, Geng Y, Zhao H, Shen X, Li D, Li Z, Lu L, Fan M, Xu W, Wang J, Xia L, Zhang Z, Kan B. Co-Localization of Sampling and Sequencing for Zoonotic Pathogen Identification in the Field Monitoring Using Mobile Laboratories. China CDC Wkly 2022; 4:259-263. [PMID: 35433082 PMCID: PMC9005490 DOI: 10.46234/ccdcw2022.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/20/2022] [Indexed: 12/26/2022] Open
Abstract
Introduction Methods Results Discussion
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yao Peng
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Geng
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaona Shen
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Li
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengguang Fan
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot City, Inner Mongolia Autonomous Region, China
| | - Wenbin Xu
- Siziwang Banner Center for Disease Control and Prevention, Huhhot City, Inner Mongolia Autonomous Region, China
| | - Jin Wang
- Siziwang Banner Center for Disease Control and Prevention, Huhhot City, Inner Mongolia Autonomous Region, China
| | - Lianxu Xia
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Biao Kan,
| | - Zhongbing Zhang
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot City, Inner Mongolia Autonomous Region, China
- Lianxu Xia,
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Shandong University, Jinan City, Shandong Province, China
- Zhongbing Zhang,
| |
Collapse
|