1
|
Giannotta MM, Smith I, Michie M, Blasdell K, Dunn M, Nicholls J, Heath ACG, Rodriguez J, Gofton AW. Molecular characterisation of Australasian Ixodiphagus (Hymenoptera; Encyrtidae; Encyrtinae) reveals unexpected diversity and a potential novel host switch. Int J Parasitol 2024; 54:743-753. [PMID: 39270964 DOI: 10.1016/j.ijpara.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Ticks are important medical and veterinary parasites that represent a substantial health threat to humans, companion animals, and livestock. Ixodiphagus wasps (Hymenoptera; Encyrtidae) are known endoparasitoids of ixodid (hard) and argasid (soft) ticks, with potential utility as natural biocontrol agents. Two species, Ixodiphagus brunneus and Ixodiphagus mysorensis, are previously recorded from Australia, however, the genus lacks formal revisionary work in Australia, and the validity and host ranges of these species remain uncertain. This work aimed to investigate the diversity of Ixodiphagus in Australasia and provide a molecular data resource for future work on these understudied endoparasitoids. We extracted DNA from archival Ixodiphagus specimens from Australian and New Zealand insect collections and performed high-throughput sequencing which resulted in complete or mostly complete mitochondrial genome sequences from 11 specimens, including I. brunneus, Ixodiphagus taiaroaensis, and a novel Ixodiphagus sp. reared from Rhipicephalus linnaei from Townsville, Australia. In addition, approximately 70% of the genome of the Wolbachia endosymbiont of I. brunneus was recovered. Finally, we screened 178 recently collected pooled tick samples from southern New South Wales, Australia, for Ixodiphagus spp. using 28S rRNA and cytochrome c oxidase subunit 1(COI) gene PCR, and recovered 14 positive samples. Phylogenetic analysis of Australasian Ixodiphagus spp. based on 28S rRNA and complete mitochondrial genome sequences determined that members of the Australasian fauna are distinct from Ixodiphagus hookeri (the only other Ixodiphagus species for which genetic data exists), and that at least two distinct species are present in Australia; I. brunneus identified from Ixodes holocyclus and Haemaphysalis bancrofti ticks, and an uncharacterised Ixodiphagus sp. found in Rhipicephalus linnaei ticks from northern Queensland. Furthermore, there was substantial genetic diversity at the 28S rRNA loci among I. brunneus samples, which may represent normal genetic variability or a secondary cryptic species. The molecular data generated here represents the first known for the genus Ixodiphagus in Australasia, doubling that of the world fauna, and provides the first known complete mitochondrial genomes for these important tick parasitoids.
Collapse
Affiliation(s)
- Madalene M Giannotta
- Centre for Biodiversity Analysis, Research School of Biology, Australian National University, Canberra, Australia; CSIRO National Research Collections Australia, Australian National Insect Collection, Canberra, Australia
| | - Ina Smith
- CSIRO Health and Biosecurity, Canberra, Australia
| | | | - Kim Blasdell
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Mike Dunn
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - James Nicholls
- CSIRO National Research Collections Australia, Australian National Insect Collection, Canberra, Australia
| | | | - Juanita Rodriguez
- CSIRO National Research Collections Australia, Australian National Insect Collection, Canberra, Australia
| | | |
Collapse
|
2
|
Chakraborty A, Rath PK, Panda SK, Mishra BP, Dehuri M, Biswal S, Jena MK, Sahu BP, Paital B, Sahoo DK. Molecular Confirmation, Epidemiology, and Pathophysiology of Ehrlichia canis Prevalence in Eastern India. Pathogens 2024; 13:803. [PMID: 39338994 PMCID: PMC11435433 DOI: 10.3390/pathogens13090803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The present study aimed to investigate pathological epidemiology and molecular confirmation of Ehrlichia canis among pet dogs in Bhubaneswar, Odisha, a state in eastern India. A total of 178 dogs were screened for Ehrlichiosis based on history, clinical signs, blood, and buffy coat smear examination, resulting in only 56 dogs (31.46%) screening positive. The epidemiological study recorded a non-significant (p ≥ 0.05) increase in incidences among male dogs (68%), German Shepherds (25%), dogs more than 20 kg body weight (75%), in the summer months (55%), and dogs housed in pukka houses with exposure to the outside (59%). The majority of the infected dogs had a history of tick infestation (79%) at some point in their lives. Clinical signs showed non-typical manifestations like fever, lethargy, diarrhoea, epistaxis, hind limb edema, and corneal opacity. Haematological studies revealed anaemia and thrombocytopenia along with neutrophilia with relative lymphopenia and monocytosis. A decreasing trend was observed in the levels of total protein and albumin, with an increase in the levels of globulin, alanine aminotransferase, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, and creatinine. The ultrasonography studies revealed hepatosplenomegaly along with hyper-echogenicity in various organs. Proteinuria and haematuria were consistent, along with the presence of bile salts in the urine of affected dogs. Molecular confirmation from n-type PCR data using Ehrlichia-specific primers targeting the p28 gene (843 bp) was done, and the identified gene sequences submitted to NCBI databases have accession numbers OQ383671-OQ383674 and OP886674-OP886677. Ticks collected from dogs were identified morphologically through microscopy and scanning electron microscopy as Rhipicephalus sanguineus.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India
| | - Susen Kumar Panda
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India
| | - Bidyut Prava Mishra
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India
| | - Manaswini Dehuri
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology (OUAT), Bhubaneswar 751003, Odisha, India
| | - Sangram Biswal
- Department of Preventive Veterinary Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology (OUAT), Bhubaneswar 751003, Odisha, India
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Basanta Pravas Sahu
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong 999077, China
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India
| | - Dipak Kumar Sahoo
- Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Selmi R, Belkahia H, Tayh G, Mezzi A, Chibani S, Ben Said M, Messadi L. First detection of Rickettsia felis and Ehrlichia canis in the common bed bug Cimex lectularius. Comp Immunol Microbiol Infect Dis 2024; 110:102200. [PMID: 38788400 DOI: 10.1016/j.cimid.2024.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Bed bugs, common blood-feeding pests, have received limited attention regarding their potential involvement in emerging pathogen transmission. This study aimed to investigate the main vector-borne bacteria within bed bugs collected from Tunisian governorates and to genetically characterize the identified species. Molecular screening was conducted on field-collected bed bug samples, targeting zoonotic vector-borne bacteria from the Anaplasmataceae family, as well as the genera Rickettsia, Ehrlichia, Bartonella, and Borrelia. A total of 119 Cimex lectularius specimens were collected and grouped into 14 pools based on sampling Tunisian sites. Using genus-specific PCR assays, DNA of Rickettsia and Ehrlichia spp. was detected in a single pool. Sequencing and BLAST analysis of the obtained partial ompB and dsb sequences from positive samples revealed 100% similarity with those of Ehrlichia canis and Rickettsia felis available in GenBank. Obtained partial sequences showed phylogenetic similarity to R. felis and E. canis isolates found in dogs and ticks from American and European countries. To the best of our knowledge, this study is the first to investigate bed bugs in Tunisia and to report the worldwide identification of R. felis and E. canis DNA in the common bed bug, C. lectularius. These findings highlight the need for further research to explore the potential role of bed bugs in the epidemiology of these vector-borne bacteria.
Collapse
Affiliation(s)
- Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; Military Center of Veterinary Medicine, General Directorate of Military Health, Tunis, Tunisia.
| | - Hanène Belkahia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Ghassan Tayh
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Abderrahmene Mezzi
- Military Center of Veterinary Medicine, General Directorate of Military Health, Tunis, Tunisia
| | - Sarra Chibani
- Military Center of Veterinary Medicine, General Directorate of Military Health, Tunis, Tunisia
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Lilia Messadi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| |
Collapse
|
4
|
Teo EJM, Evasco KL, Barker D, Levin ML, Barker SC. The geographic limits and life history of the tropical brown dog tick, Rhipicephalus linnaei (Audouin, 1826), in Australia with notes on the spread of Ehrlichia canis. Int J Parasitol 2024; 54:453-462. [PMID: 38609074 DOI: 10.1016/j.ijpara.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The tropical brown dog tick, Rhipicephalus linnaei, is a tick of much medical, veterinary, and zoonotic importance. This tick has a nearly world-wide distribution due to its ability to survive and propagate in kennels and houses. Rhipicephalus linnaei is the vector of Ehrlichia canis, the causative agent of canine monocytic ehrlichiosis, an often debilitating disease of canids and, occasionally, humans. To prevent incursion of E. canis into Australia, dogs entering Australia have been required to have a negative immunofluorescence antibody test for E. canis. In May 2020 however, E. canis was detected in Western Australia. The detection of E. canis in Australia prompted disease investigation and concerted surveillance for R. linnaei and E. canis in regions across Australia. These investigations revealed that R. linnaei was established far beyond the previously recognised geographic range limits of this tick. In the present paper, using records from various collections, published data, and data from our network of veterinarian collaborators and colleagues, we update the current geographic range of R. linnaei in Australia. Our analyses revealed that the geographic range of R. linnaei in Australia is much wider than was previously supposed, particularly in Western Australia, and in South Australia. We also map, for the first time, where E. canis has been detected in Australia. Last, we discuss the possible routes of incursion and subsequently the factors which may have aided the spread of E. canis in Australia which led to the establishment of this pathogen in Australia.
Collapse
Affiliation(s)
- Ernest J M Teo
- Department of Parasitology, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kimberly L Evasco
- Medical Entomology, Environmental Health Directorate, Western Australian Department of Health, East Perth, Western Australia 6004, Australia
| | - Dayana Barker
- Department of Parasitology, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - M L Levin
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Stephen C Barker
- Department of Parasitology, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Facile V, Sabetti MC, Balboni A, Urbani L, Tirolo A, Magliocca M, Lunetta F, Dondi F, Battilani M. Detection of Anaplasma spp. and Ehrlichia spp. in dogs from a veterinary teaching hospital in Italy: a retrospective study 2012-2020. Vet Res Commun 2024; 48:1727-1740. [PMID: 38536514 PMCID: PMC11147850 DOI: 10.1007/s11259-024-10358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 06/04/2024]
Abstract
Anaplasma phagocytophilum, Anaplasma platys and Ehrlichia canis, responsible of diseases in dogs, are tick-borne pathogens with a proven or potential zoonotic role that have shown increasing prevalence worldwide. The aims of this retrospective study were to assess the frequency of Anaplasma spp. and Ehrlichia spp. exposure in dogs tested in a veterinary teaching hospital in Italy over a 9-year period, to compare the performance of the diagnostic tests used, to evaluate correlations with clinical data, and to genetically analyse the identified bacteria. During the study period, 1322 dogs tested by at least one of the rapid immunoenzymatic test, indirect immunofluorescent antibody test or end-point PCR assay for Anaplasmataceae detection were included. Dogs were tested if they had clinical signs or clinicopathological alteration or risk factors related to infection, and if they were potential blood-donor animals. Ninety-four of 1322 (7.1%) dogs tested positive for at least one pathogen: 53 (4.3%) for A. phagocytophilum, one (0.1%) for A. platys and 63 (4.6%) for E. canis. The number of dogs tested increased and the positivity rate progressively declined over the years. Comparison of tests showed a near-perfect agreement between serological tests and a poor agreement between PCR and indirect assays. A breed predisposition has been highlighted for A. phagocytophilum infection in hunting breed dogs and for E. canis infection in mixed breed dogs. Phylogeny confirmed potential zoonotic implications for A. phagocytophilum and showed no correlation of the identified bacteria with the geographical origin. Our study provides new insights into possible risk factors in dogs and evidenced discordant results between different tests, suggesting that a combination of serological and molecular assays is preferable for a correct diagnosis.
Collapse
Affiliation(s)
- Veronica Facile
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Maria Chiara Sabetti
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, Parma, 43126, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Alessandro Tirolo
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, Parma, 43126, Italy
| | - Martina Magliocca
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Francesco Lunetta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy.
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| |
Collapse
|
6
|
Ghodrati S, Lesiczka PM, Zurek L, Szekely F, Modrý D. Rhipicephalus sanguineus from Hungarian dogs: Tick identification and detection of tick-borne pathogens. Vet Parasitol Reg Stud Reports 2024; 50:101007. [PMID: 38644036 DOI: 10.1016/j.vprsr.2024.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024]
Abstract
The brown dog tick, Rhipicephalus sanguineus is a complex of tick species with an unsettled species concept. In Europe, R. sanguineus is considered mainly a Mediterranean tick with sporadic findings in central and northern Europe. R. sanguineus is known as a vector of a range of pathogens of medical and veterinary importance, most of which not yet reported as autochthonous in Hungary. A total of 1839 ticks collected by veterinarians from dogs and cats were obtained in Hungary. The study aims at precise determination of ticks identified as R. sanguineus and detection of pathogens in collected ticks. All ticks were morphologically determined and 169 individuals were identified as R. sanguineus. A subset of 15 ticks was selected for molecular analysis (16S rDNA, 12S rDNA, COI). Phylogenetic analyses invariably placed sequences of all three markers into a single haplotype identified as R. sanguineus sensu stricto. All 169 brown dog ticks were tested for the presence of A. platys, E. canis, R. conorii, B. vogeli and H. canis. None of the investigated ticks was positive for the screened pathogens, though A. phagocytophilum sequence was detected in a single tick.
Collapse
Affiliation(s)
- Sajjad Ghodrati
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic.
| | - Paulina Maria Lesiczka
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, Prague, Czech Republic
| | - Ludek Zurek
- CEITEC, University of Veterinary Sciences, Palackého třída 1946/1, Brno, Czech Republic; Department of Microbiology, Nutrition and Dietetics/CINeZ, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Czech Republic
| | | | - David Modrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, Prague, Czech Republic
| |
Collapse
|
7
|
Zhang J, Wang J, Wang C. Whole Genome Sequencing and Comparative Analysis of the First Ehrlichia canis Isolate in China. Microorganisms 2024; 12:125. [PMID: 38257951 PMCID: PMC10820421 DOI: 10.3390/microorganisms12010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Ehrlichia canis, a prominent tick-borne pathogen causing canine monocytic ehrlichiosis (CME), is one of the six recognized Ehrlichia species worldwide. Despite its widespread presence in ticks and host dogs in China, comprehensive genomic information about this pathogen remains limited. This study focuses on an in-depth analysis of E. canis YZ-1, isolated and cultured from an infected dog in China. The complete genome of E. canis YZ-1 was sequenced (1,314,789 bp, 1022 genes, 29% GC content, and 73% coding bases), systematically characterizing its genomic elements and functions. Comparative analysis with representative genomes of Ehrlichia species, including E. canis strain Jake, E. chaffeensis, Ehrlichia spp., E. muris, E. ruminantium, and E. minasensis, revealed conserved genes, indicating potential evolutionary connections with E. ruminantium. The observed reduction in virulence-associated genes, coupled with a type IV secretion system (T4SS), suggests an intricate balance between pathogenicity and host adaptation. The close relationship with E. canis Jake and E. chaffeensis, alongside nuanced genomic variations with E. ruminantium and E. mineirensis, underscores the need to explore emerging strains and advancements in sequencing technologies continuously. This genetic insight opens avenues for innovative medications, studies on probiotic resistance, development of new detection markers, and progress in vaccine development for ehrlichiosis. Further investigations into the functional significance of identified genes and their role in host-pathogen interactions will contribute to a more holistic comprehension of Ehrlichia's biology and its implications for pathogenicity and transmission.
Collapse
Affiliation(s)
- Jilei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jiawei Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Chengming Wang
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Zhang J, Wang J, Kelly PJ, Zhang Y, Li M, Li J, Zhang R, Wang Y, Huang K, You J, Qiu H, Zheng X, Wang X, Li J, Dong J, Yang Y, Wang C. Experimental infection and co-infection with Chinese strains of Ehrlichia canis and Babesia vogeli in intact and splenectomized dogs: Insights on clinical, hematologic and treatment responses. Vet Parasitol 2023; 323:110032. [PMID: 37783174 DOI: 10.1016/j.vetpar.2023.110032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Animal infection models are crucial for studying various aspects of Ehrlichia canis infections. To understand the pathogenesis of the first Chinese isolate of E. canis and simulate the natural progression of canine ehrlichiosis, we developed a model with 18 Beagle dogs that consisted of E. canis initial infection (days 0-17), treatment with doxycycline or rifampicin (days 18-32), recovery (days 33-66), E. canis reinfection (days 67-91), and Babesia vogeli superinfection (days 92-116). We measured body weight and rectal temperature every other day, drew blood every 4 days for routine hematology and biochemistry tests, and for quantification of E. canis and B. vogeli by quantitative PCRs. In this study, the first isolate of E. canis from China was used to experimentally infect dogs, and the infected dogs exhibited clinical signs of acute severe ehrlichiosis, including high fever, loss of appetite, dehydration, and body weight loss, confirming the similar pathogenicity of E. canis in China as compared to isolates from other regions. Infection with E. canis and B. vogeli led to reduced body weight and fever in dogs. Doxycycline treatment led to absence of E. canis DNA in infected dogs, while rifampicin treatment lowered the blood E. canis copy number up to 1.5 folds. E. canis-free infected dogs after doxycycline treatment were successfully re-infected with E. canis, indicating dogs with antibodies are still at risk of re-infection. Super-infection with B. vogeli resulted in higher fever, more severe anemia, and a reduced number of platelets. Splenectomized dogs showed significantly higher E. canis numbers during recovery and re-infection than intact dogs. The histological changes were observed in brain, lung, kidney, liver and spleen of the infected dogs. The findings in this study provide insights into clinical and hematologic responses, as well as effective treatment options, for dogs infected with the first Chinese isolate of E. canis, and may contribute to our understanding of the diagnosis and prevention of tick-borne diseases in dogs, including canine monocytic ehrlichiosis.
Collapse
Affiliation(s)
- Jilei Zhang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China; College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jiawei Wang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | | | - Yuanyuan Zhang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Min Li
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Jing Li
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Rong Zhang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Yaoyao Wang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Ke Huang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Jinfeng You
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Haixiang Qiu
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Xiaofeng Zheng
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Xiaobo Wang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Jianji Li
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Junsheng Dong
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Yi Yang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China.
| | - Chengming Wang
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
9
|
Pereira ME, Canei DH, Carvalho MR, Dias ÁFDLR, de Almeida ADBPF, Nakazato L, Sousa VRF. Molecular prevalence and factors associated with Ehrlichia canis infection in dogs from the North Pantanal wetland, Brazil. Vet World 2023; 16:1209-1213. [PMID: 37577206 PMCID: PMC10421559 DOI: 10.14202/vetworld.2023.1209-1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/09/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Canine monocytic ehrlichiosis is a vector-borne disease caused by the obligatory intracellular bacterium Ehrlichia canis, which is distributed across tropical and subtropical regions worldwide. Its prevalence within dog populations is high in municipalities located across the Pantanal biome, but it remains unknown in Barão de Melgaço, Mato Grosso, Brazil. This study aimed to determine the molecular prevalence and factors associated with E. canis infection in dogs domiciled in Barão de Melgaço. Materials and Methods A cross-sectional study was carried out to investigate the prevalence of E. canis infection in 369 dogs from urban and rural areas in Barão de Melgaço, North Pantanal wetland, Brazil. Initially, the dogs were examined, and, through a questionnaire, the risk factors were investigated. Blood samples were subjected to DNA extraction and PCR was performed to estimate the prevalence of E. canis infection. Results The molecular prevalence of E. canis infection in dogs was 42.5% and none of the studied variables were significantly associated with polymerase chain reaction (PCR) positivity (p > 0.05). Conclusion The high molecular prevalence demonstrates an increased transmission of the agent across the city. This also indicates that attention needs to be paid to E. canis infection and control measures should be introduced to prevent its transmission. The demographic and clinical risk factors commonly associated with E. canis infection in this study were not associated with PCR positivity.
Collapse
Affiliation(s)
- Mariana Elisa Pereira
- Postgraduate Program in Veterinary Science, Faculty of Veterinary Medicine, Federal University of Mato Grosso, Avenue Fernando Correa da Costa, Boa Esperança, Cuiabá, Mato Grosso, Brazil
| | - Darlan Henrique Canei
- Postgraduate Program in Veterinary Science, Faculty of Veterinary Medicine, Federal University of Mato Grosso, Avenue Fernando Correa da Costa, Boa Esperança, Cuiabá, Mato Grosso, Brazil
| | - Matheus Roberto Carvalho
- Postgraduate Program in Veterinary Science, Faculty of Veterinary Medicine, Federal University of Mato Grosso, Avenue Fernando Correa da Costa, Boa Esperança, Cuiabá, Mato Grosso, Brazil
| | - Álvaro Felipe de Lima Ruy Dias
- Postgraduate Program in Veterinary Science, Faculty of Veterinary Medicine, Federal University of Mato Grosso, Avenue Fernando Correa da Costa, Boa Esperança, Cuiabá, Mato Grosso, Brazil
| | | | - Luciano Nakazato
- Faculty of Veterinary Medicine, Federal University of Mato Grosso, Avenue Fernando Correa da Costa, Boa Esperança, Cuiabá, Mato Grosso, Brazil
| | - Valéria Régia Franco Sousa
- Faculty of Veterinary Medicine, Federal University of Mato Grosso, Avenue Fernando Correa da Costa, Boa Esperança, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|
10
|
Gallego MM, Triana-Chávez O, Mejia-Jaramillo AM, Jaimes-Dueñez J. Molecular characterization of Ehrlichia canis and Babesia vogeli reveals multiple genogroups associated with clinical traits in dogs from urban areas of Colombia. Ticks Tick Borne Dis 2023; 14:102111. [PMID: 36574738 DOI: 10.1016/j.ttbdis.2022.102111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Ehrlichia canis and Babesia vogeli are vector-borne pathogens that infect blood cells and produce the diseases Canine Monocytic Ehrlichiosis (CME) and Babesiosis in dogs. Considering the lack of studies on these pathogens in Colombia, this study aims to determine the molecular prevalence and genetic characterization of E. canis and Babesia spp., in dogs from the Metropolitan Area of Bucaramanga (MAB), Santander, a region with one of the greatest pet densities in Colombia. One hundred eighty-five dogs were surveyed and analyzed through molecular, clinical, and hematological approaches. The molecular detection of E. canis and Babesia spp., was performed by conventional PCR targeting the dsb and 18S rRNA genes, respectively. To identify genogroups, E. canis positive samples underwent a hemi-nested PCR of the trp36 gene, and the PCR products were subsequently sequenced. Molecular analyses showed a prevalence of 13% (24/185; CI 95%, 8.1 - 18.0%) and 1.09% (2/185; CI 95,% -0.43 - 2.6%) for E. canis and B. vogeli respectively, as well as the presence of the genogroups US (USA), BR (Brazil), and CR (Costa Rica), in 62.5, 16.6, and 16.6% of E. canis positive samples, respectively. Values of hematocrit, hemoglobin, platelets, erythrocytes, white blood cell (WBC) count, lymphocytes, and eosinophils showed significant differences between animals infected with the different genogroups of E. canis (p< 0.05). In contrast, hematocrit values, hemoglobin, platelets, red blood cells, and creatine kinase MB isoenzyme (CK-MB) were lower in B. vogeli positive animals. Statistical analysis indicated that E. canis infection was associated with specific socioeconomic sectors as well as with some household features (p< 0.05). In conclusion, our results present evidence of the circulation of multiple genogroups of E. canis in the MAB, which is associated with different geographical origins and clinical traits. Epidemiological analyses suggest a need to increase molecular surveillance and prevention campaigns especially in lower socioeconomic sectors.
Collapse
Affiliation(s)
- Mariana Marin Gallego
- Grupo Biología y Control de Enfermedades Infecciosas - BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas - BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Ana Maria Mejia-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas - BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Jeiczon Jaimes-Dueñez
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Calle 30 No. 33-51, Bucaramanga, Santander, Colombia.
| |
Collapse
|
11
|
Huggins LG, Koehler AV, Gasser RB, Traub RJ. Advanced approaches for the diagnosis and chemoprevention of canine vector-borne pathogens and parasites-Implications for the Asia-Pacific region and beyond. ADVANCES IN PARASITOLOGY 2023; 120:1-85. [PMID: 36948727 DOI: 10.1016/bs.apar.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vector-borne pathogens (VBPs) of canines are a diverse range of infectious agents, including viruses, bacteria, protozoa and multicellular parasites, that are pernicious and potentially lethal to their hosts. Dogs across the globe are afflicted by canine VBPs, but the range of different ectoparasites and the VBPs that they transmit predominate in tropical regions. Countries within the Asia-Pacific have had limited prior research dedicated to exploring the epidemiology of canine VBPs, whilst the few studies that have been conducted show VBP prevalence to be high, with significant impacts on dog health. Moreover, such impacts are not restricted to dogs, as some canine VBPs are zoonotic. We reviewed the status of canine VBPs in the Asia-Pacific, with particular focus on nations in the tropics, whilst also investigating the history of VBP diagnosis and examining recent progress in the field, including advanced molecular methods, such as next-generation sequencing (NGS). These tools are rapidly changing the way parasites are detected and discovered, demonstrating a sensitivity equal to, or exceeding that of, conventional molecular diagnostics. We also provide a background to the armoury of chemopreventive products available for protecting dogs from VBP. Here, field-based research within high VBP pressure environments has underscored the importance of ectoparasiticide mode of action on their overall efficacy. The future of canine VBP diagnosis and prevention at a global level is also explored, highlighting how evolving portable sequencing technologies may permit diagnosis at point-of-care, whilst further research into chemopreventives will be essential if VBP transmission is to be effectively controlled.
Collapse
Affiliation(s)
- Lucas G Huggins
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia.
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Rebecca J Traub
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Human social conditions predict the risk of exposure to zoonotic parasites in companion animals in East and Southeast Asia. COMMUNICATIONS MEDICINE 2022; 2:144. [PMID: 36380151 PMCID: PMC9666534 DOI: 10.1038/s43856-022-00210-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background A recent dramatic surge in pet ownership has been observed across metropolitan areas in Asia. To date, there is a dearth of information on the risk associated with pet ownership for the transmission of parasites on a large scale in Asia, despite this continent giving rise to the largest burden of zoonotic infections worldwide. Methods We explored the nature and extent of zoonotic internal (endo-) and external (ecto-) parasites and arthropod-borne pathogens in 2381 client-owned dogs and cats living in metropolitan areas of eight countries in East and Southeast Asia using reliable diagnostic tests and then undertook extensive statistical analyses to define predictors of exposure to zoonotic pathogens. Results The estimated ORs for overall parasite infections are 1.35 [95% CIs 1.07;1.71] in young animals and 4.10 [1.50;11.2] in the animal group older than 15 years as compared with adult animals, 0.61 [0.48;0.77] in neutered animals as compared to unneutered animals, 0.36 [0.26;0.50] in animals living in urban areas as compared with rural areas, 1.14 [1.08;1.21] for each 1 °C increase of annual mean temperature which varies from 12.0 to 28.0 °C, and 0.86 [0.78;0.95] for each year of life expectancy which varies from 70.9 to 83.3 years. Conclusions Here we highlight the influence of human life expectancy and the neutering status of the animals, which reflect increased living standards through access to education and human and veterinary health care, to be both strongly associated with exposure to zoonotic parasites. An integrated approach of local and international authorities to implement and manage educational programs will be crucial for the control of zoonotic infections of companion animals in Asia. Parasites live on or inside animals or humans and can cause disease. Companion animals (pets) with parasites present a potential risk to the health of their owners, as certain kinds of parasites (known as zoonotic parasites) can affect both animal and human health. Here, we investigated whether human social conditions are associated with zoonotic parasite infections in companion animals in East and Southeast Asia. We found that higher human life expectancy and neutering of the companion animals were associated with fewer zoonotic parasite infections in the animals. These findings highlight the need for an enhanced commitment of local authorities to establish prevention campaigns, including education programs, against zoonotic pathogens. These measures will play a crucial role in alleviating the impact of these diseases in companion animals and humans in Asia. Colella, Wongnak et al. test pet dogs and cats from metropolitan areas of eight countries in East and Southeast Asia for zoonotic parasites. The authors identify factors associated with potential exposure to zoonotic parasites, including animal characteristics and human living conditions.
Collapse
|
13
|
Chaber A, Easther R, Cumming B, Irving R, Keyburn AL, Smart C, O'Handley R, Lignereux L. Ehrlichia canis rapid spread and possible enzooty in northern South Australia and distribution of its vector Rhipicephalus linnaei. Aust Vet J 2022; 100:533-538. [PMID: 36053779 PMCID: PMC9804231 DOI: 10.1111/avj.13201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/24/2022] [Accepted: 07/31/2022] [Indexed: 01/05/2023]
Abstract
Recent concerns have arisen in Australia regarding detections of the exotic bacterium Ehrlichia canis which has resulted in ehrlichiosis outbreaks. In Australia, it is spread by the tropical brown dog tick Rhipicephalus linnaei, formerly Rhipicephalus sanguineus sensu lato tropical lineage. Previously, the tick has been recorded in South Australia in the Coober Pedy and the Oodnadatta areas. This study, which includes historical specimens data held in historical Australian arthropod collections, along with 10 sampled remote communities, confirms the wide distribution range of this species within the State. E. canis was detected by PCR in the ticks. The percentage of dogs hosting PCR-positive ticks increased from 2.8% (95% confidence interval [CI]: 0.3 to 9.7) in November-December 2020 to 62.9% (95% CI: 44.9 to 78.5) end of February 2021, initially in two then in seven Anangu Pitjantjatjara Yankunytjatjara lands communities in the far northern regions of South Australia. Our results suggest a rapid spread of the pathogen. No evidence of E. canis was found in nine regional communities. The extended tropical brown dog tick distribution indicates a greater area where E. canis may occur and may require management to minimise the impacts of ehrlichiosis outbreaks. Without the implementation of effective detection and control programs, this extended distribution of R. linnaei is likely to result in the spread of the bacterium to other regions.
Collapse
Affiliation(s)
- A‐L Chaber
- School of Animal and Veterinary Sciences, Roseworthy CampusThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - R Easther
- School of Animal and Veterinary Sciences, Roseworthy CampusThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - B Cumming
- Animal Management in Rural and Remote Indigenous Communities (AMRRIC)4/41 Sadgroves Crescent, Winnellie, Larrakia CountryNorthern Territory0820Australia
| | - R Irving
- Animal Management in Rural and Remote Indigenous Communities (AMRRIC)4/41 Sadgroves Crescent, Winnellie, Larrakia CountryNorthern Territory0820Australia,Adelaide Northern Veterinary Group854 North East Road, ModburySouth Australia5092Australia
| | - AL Keyburn
- Bioassay Research and Development TeamCommonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease PreparednessPrivate Bag 24, GeelongVictoria3220Australia
| | - C Smart
- Animal Management in Rural and Remote Indigenous Communities (AMRRIC)4/41 Sadgroves Crescent, Winnellie, Larrakia CountryNorthern Territory0820Australia
| | - R O'Handley
- School of Animal and Veterinary Sciences, Roseworthy CampusThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - L Lignereux
- School of Animal and Veterinary Sciences, Roseworthy CampusThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
14
|
Šlapeta J, Halliday B, Chandra S, Alanazi AD, Abdel-Shafy S. Rhipicephalus linnaei (Audouin, 1826) recognised as the "tropical lineage" of the brown dog tick Rhipicephalus sanguineus sensu lato: Neotype designation, redescription, and establishment of morphological and molecular reference. Ticks Tick Borne Dis 2022; 13:102024. [PMID: 36063755 DOI: 10.1016/j.ttbdis.2022.102024] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
Abstract
We re-describe the adult stages of Rhipicephalus linnaei (Audouin, 1826), and characterise its diagnostic molecular traits. A male R. linnaei collected in Esna City, Luxor Governorate, Egypt is designated as the neotype. Rhipicephalus linnaei is re-established as a valid tick name and removed from the synonymy list of Rhipicephalus sanguineus (Latreille, 1806). Rhipicephalus linnaei is most similar to R. sanguineus and Rhipicephalus camicasi Morel, Mouchet & Rodhain, 1976 because they share similar elongated comma-like spiracula that are narrowly visible dorsally, and the dorsal prolongation is narrower than the width of the adjacent festoon. The male of R. camicasi is distinguished from R. linnaei by the non-tapering caudal widening of the spiracula. The male of R. sanguineus is distinguished from R. linnaei by shorter extension that does not taper into a long narrow extension of the spiracula. The genital pore atrium of female R. linnaei is broadly U-shaped, while it is a narrower U-shape in R. sanguineus. The remaining species within the R. sanguineus species complex - Rhipicephalus sulcatus Neumann, 1908, Rhipicephalus turanicus Pomerantsev, 1940, Rhipicephalus guilhoni Morel & Vassilades, 1963, Rhipicephalus secundus Feldman-Muhsam, 1952 and Rhipicephalus afranicus Bakkes, 2020, all exhibit spiracula with the dorsal prolongation as wide as the adjacent festoon. The DNA sequence of R. linnaei is most closely related to R. guilhoni. The phylogenetic analysis of mitogenome (mtDNA) sequences including assembled mtDNA from whole genome sequencing of the neotype supports R. linnaei as a well-defined taxon when compared with DNA sequences of other species of the R. sanguineus species complex, in particular: R. sanguineus, R. turanicus, R. secundus and R. camicasi. Molecularly, R. linnaei belongs to the so-called R. sanguineus s.l. "tropical lineage" distributed globally including the Americas, Africa, Europe, Asia and is the only species from R. sanguineus species complex in Australia.
Collapse
Affiliation(s)
- Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Bruce Halliday
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Shona Chandra
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| | - Sobhy Abdel-Shafy
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
15
|
Lu M, Meng C, Gao X, Sun Y, Zhang J, Tang G, Li Y, Li M, Zhou G, Wang W, Li K. Diversity of Rickettsiales in Rhipicephalus microplus Ticks Collected in Domestic Ruminants in Guizhou Province, China. Pathogens 2022; 11:pathogens11101108. [PMID: 36297165 PMCID: PMC9607482 DOI: 10.3390/pathogens11101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Rhipicephalus microplus ticks are vectors for multiple pathogens infecting animals and humans. Although the medical importance of R. microplus has been well-recognized and studied in most areas of China, the occurrence of tick-borne Rickettsiales has seldom been investigated in Guizhou Province, Southwest China. In this study, we collected 276 R. microplus ticks from cattle (209 ticks) and goats (67 ticks) in three locations of Guizhou Province. The Rickettsia, Anaplasma, and Ehrlichia were detected by targeting the 16S rRNA gene and were further characterized by amplifying the key genes. One Rickettsia (Ca. Rickettsia jingxinensis), three Ehrlichia (E. canis, E. minasensis, Ehrlichia sp.), and four Anaplasma (A. capra, A. ovis, A. marginale, Ca. Anaplasma boleense) species were detected, and their gltA and groEL genes were recovered. Candidatus Rickettsia jingxinensis, a spotted fever group of Rickettsia, was detected in a high proportion of the tested ticks (88.89%, 100%, and 100% in ticks from the three locations, respectively), suggesting the possibility that animals may be exposed to this type of Rickettsia. All the 16S, gltA, groEL, and ompA sequences of these strains are 100% identical to strains reported in Ngawa, Sichuan Province. E. minasensis, A. marginale, and Candidatus Anaplasma boleense are known to infect livestock such as cattle. The potential effects on local husbandry should be considered. Notably, E. canis, A. ovis, and A. capra have been reported to infect humans. The relatively high positive rates in Qianxinan (20.99%, 9.88%, and 4.94%, respectively) may indicate the potential risk to local populations. Furthermore, the genetic analysis indicated that the E. minasensis strains in this study may represent a variant or recombinant. Our results indicated the extensive diversity of Rickettsiales in R. microplus ticks from Guizhou Province. The possible occurrence of rickettsiosis, ehrlichiosis, and anaplasmosis in humans and domestic animals in this area should be further considered and investigated.
Collapse
Affiliation(s)
- Miao Lu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Chao Meng
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Xiang Gao
- Tongzhou Center for Disease Control and Prevention, Tongzhou District, Beijing 101100, China
| | - Yue Sun
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Jun Zhang
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China
| | - Guangpeng Tang
- Liuzhi Center for Disease Control and Prevention, Liupanshui 553400, China
| | - Yilin Li
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Mengyao Li
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Guangyi Zhou
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Wen Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Kun Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
- Tianjin Key Laboratory of Food and Biotechnology, Tianjin University of Commerce, Beichen District, Tianjin 300134, China
- Correspondence:
| |
Collapse
|
16
|
Jaensch SM, Hayward DA, Boyd SP. Clinicopathologic and immunophenotypic features in dogs with presumptive large granular lymphocyte leukaemia. Aust Vet J 2022; 100:527-532. [DOI: 10.1111/avj.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Affiliation(s)
- SM Jaensch
- Vetnostics 60 Waterloo Road, North Ryde New South Wales 2113 Australia
| | - DA Hayward
- Vetnostics 60 Waterloo Road, North Ryde New South Wales 2113 Australia
| | - SP Boyd
- QML Vetnostics 11 Riverview Place, Metroplex on Gateway, Murarrie Queensland 4172 Australia
| |
Collapse
|
17
|
Assembly and Comparison of Ca. Neoehrlichia mikurensis Genomes. Microorganisms 2022; 10:microorganisms10061134. [PMID: 35744652 PMCID: PMC9227406 DOI: 10.3390/microorganisms10061134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ca. Neoehrlichia mikurensis is widely prevalent in I. ricinus across Europe and has been associated with human disease. However, diagnostic modalities are limited, and much is still unknown about its biology. Here, we present the first complete Ca. Neoehrlichia mikurensis genomes directly derived from wildlife reservoir host tissues, using both long- and short-read sequencing technologies. This pragmatic approach provides an alternative to obtaining sufficient material from clinical cases, a difficult task for emerging infectious diseases, and to expensive and challenging bacterial isolation and culture methods. Both genomes exhibit a larger chromosome than the currently available Ca. Neoehrlichia mikurensis genomes and expand the ability to find new targets for the development of supportive laboratory diagnostics in the future. Moreover, this method could be utilized for other tick-borne pathogens that are difficult to culture.
Collapse
|