1
|
Sharova AA, Tokarevich NK, Baimova RR, Freylikhman OA, Karmokov IA, Riabiko EG, Lunina GA, Buzinov RV, Sokolova OV, Buts LV, Bespyatova LA, Bubnova LA, Safonova OS, Kalinina EL, Stankevich AI, Vikse R, Andreassen AK, Gladkikh AS, Forghani M, Gritseva AS, Popova MR, Ramsay ES, Dedkov VG. Prevalence and genetic diversity of tick-borne encephalitis virus in ixodid ticks from specific regions of northwestern Russia. PLoS One 2025; 20:e0314385. [PMID: 39883660 PMCID: PMC11781730 DOI: 10.1371/journal.pone.0314385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/08/2024] [Indexed: 02/01/2025] Open
Abstract
Russia is a country with a high incidence of tick-borne encephalitis (TBE). In northwestern regions of Russia, 110 TBE cases were registered in 2021. The largest numbers of TBE cases were registered in the Arkhangelsk region and St. Petersburg. TBEV seropositivity among healthy individuals, including the unvaccinated population in northwestern Russia, was found in 12.2% of studied samples, indicating active TBEV circulation. The prevalence of TBEV is 2.4% in the two tick species most common in northwestern regions of Russia, Ixodes ricinus and Ixodes persulcatus. However, there is still no comprehensive data on the molecular characterization and phylogenetic analysis of the circulating TBEV strains. The purpose of the study was to determine the prevalence of TBEV and to identify its subtypes in ixodid ticks collected in specific areas of northwestern Russian regions. Phylogenetic analysis of E protein sequences of ten obtained strains showed that they all belong to the Siberian subtype, which were clustered into two groups: the most numerous Baltic group, clusteron 3D; and the Vasilchenko group. However, some unique isolates may form new clusterons.
Collapse
Affiliation(s)
| | | | | | | | - Islam A. Karmokov
- Saint Petersburg Pasteur Institute, St. Petersburg, Russia
- North-Western State Medical University named after I. I. Mechnikov, St. Petersburg, Russia
| | - Ekaterina G. Riabiko
- Saint Petersburg Pasteur Institute, St. Petersburg, Russia
- North-Western State Medical University named after I. I. Mechnikov, St. Petersburg, Russia
| | | | - Roman V. Buzinov
- North-West Public Health Research Center, St. Petersburg, Russia
| | - Olga V. Sokolova
- Federal Service for the Oversight of Consumer Protection and Welfare Arkhangelsk Oblast, Arkhangelsk, Russia
| | - Lidia V. Buts
- Federal Service for the Oversight of Consumer Protection and Welfare Leningrad Oblast, St. Petersburg, Russia
| | - Lubov A. Bespyatova
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - Liliya A. Bubnova
- Center for Hygiene and Epidemiology, Republic of Karelia, Petrozavodsk, Russia
| | - Olga S. Safonova
- Center for Hygiene and Epidemiology, Republic of Karelia, Petrozavodsk, Russia
| | - Elena L. Kalinina
- Federal Service for the Oversight of Consumer Protection and Welfare Pskov Oblast, Pskov, Russia
| | | | - Rose Vikse
- Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Majid Forghani
- Saint Petersburg Pasteur Institute, St. Petersburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | | | | | | | - Vladimir G. Dedkov
- Saint Petersburg Pasteur Institute, St. Petersburg, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
2
|
Cody SG, Adam A, Siniavin A, Kang SS, Wang T. Flaviviruses-Induced Neurological Sequelae. Pathogens 2024; 14:22. [PMID: 39860983 PMCID: PMC11768111 DOI: 10.3390/pathogens14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses, a group of single-stranded RNA viruses spread by mosquitoes or ticks, include several significant neurotropic viruses, such as West Nile virus (WNV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Zika virus (ZIKV). These viruses can cause a range of neurological diseases during acute infection, from mild, flu-like symptoms to severe and fatal encephalitis. A total of 20-50% of patients who recovered from acute flavivirus infections experienced long-term cognitive issues. Here, we discuss these major neurotropic flaviviruses-induced clinical diseases in humans and the recent findings in animal models and provide insights into the underlying disease mechanisms.
Collapse
Affiliation(s)
- Samantha Gabrielle Cody
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrei Siniavin
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
| | - Sam S. Kang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Kartashov MY, Krivosheina EI, Kurushina VY, Moshkin AB, Khankhareev SS, Biche-Ool CR, Pelevina ON, Popov NV, Bogomazova OL, Ternovoi VA. [Prevalence and genetic diversity of the Alongshan virus (Flaviviridae) circulating in ticks in the south of Eastern Siberia]. Vopr Virusol 2024; 69:151-161. [PMID: 38843021 DOI: 10.36233/0507-4088-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Tick-borne infections are of great importance for many regions of Russia, including Eastern Siberia. This unfavorable epidemiological situation can be characterized not only by the circulation of well-known tick-borne infections, but also by the identification of new pathogens, the role of which remains little or generally unexplored. Multicomponent flavi-like viruses can cause infectious diseases in humans and pose a threat to public health. The purpose of the study was the identification and molecular genetic characterization of the Alongshanvirus (Flaviviridae, ALSV) isolates, transmitted by ticks in the south of Eastern Siberia. MATERIALS AND METHODS Total 1060 ticks were collected and analyzed from the territory of the Republics of Khakassia, Tuva, Buryatia, Irkutsk Region and Transbaikal Territory (Zabaykalsky Krai) in the spring-summer period 2023. ALSV RNA was detected by RT-PCR followed by nucleotide sequence determination and phylogenetic analysis for each segment of the genome. RESULTS The ALSV infection rate in Ixodespersulcatus ticks collected in the Republic of Khakassia was 3.3% (95% CI: 1.4-7.5); in Irkutsk Oblast - 1.0% (95% CI: 0.3-3.7); in the Republic of Tuva - 0.9% (95% CI: 0.3-3.4) and in Transbaikal Krai - 0.7% (95% CI: 0.2-3.6). Sequences of all four segments of ALSV genetic variants circulating in I. persulcatus ticks in the south of Eastern Siberia are grouped with sequences found in China and clustered into the Asian subgroup transmitted by taiga ticks. The level of difference in the nucleotide sequences of genome fragments among the identified genetic variants of ALSV ranged from 2 to 3%. CONCLUSION The article shows the widespread distribution of ALSV in I. persulcatus ticks in the Republics of Khakassia and Tyva, Irkutsk Oblast and Transbaikal Territory. The obtained data actualize monitoring of changes in the area of distribution of potentially dangerous for humans flavi-like viruses and their vectors.
Collapse
Affiliation(s)
- M Y Kartashov
- State Research Center of Virology and Biotechnology «Vector»
| | - E I Krivosheina
- State Research Center of Virology and Biotechnology «Vector»
| | - V Y Kurushina
- State Research Center of Virology and Biotechnology «Vector»
| | | | - S S Khankhareev
- Department of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare of the Republic of Buryatia
| | - C R Biche-Ool
- Center of Hygiene and Epidemiology in the Republic of Tuva
| | - O N Pelevina
- Center for Hygiene and Epidemiology in the Republic of Khakassia
| | - N V Popov
- Center for Hygiene and Epidemiology in the Irkutsk region
| | - O L Bogomazova
- Center for Hygiene and Epidemiology in the Irkutsk region
| | - V A Ternovoi
- State Research Center of Virology and Biotechnology «Vector»
| |
Collapse
|
4
|
Bugmyrin SV, Bespyatova LA. Seasonal Activity of Adult Ticks Ixodes persulcatus (Acari, Ixodidae) in the North-West of the Distribution Area. Animals (Basel) 2023; 13:3834. [PMID: 38136871 PMCID: PMC10740895 DOI: 10.3390/ani13243834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The taiga tick Ixodes persulcatus (Schulze, 1930) (Acari, Ixodidae) is the main vector of the tick-borne encephalitis virus and one of the most widespread species of ixodid ticks in the Palaearctic. In this paper, we present long-term data on the seasonal activity of adult ticks in the north-west of their distribution. The seasonal activity of Ixodes persulcatus was studied from 1982 to 1990 and from 2012 to 2023 in the middle taiga subzone of Karelia (N62.0697, E33.961). In the study area, adult ticks I. persulcatus demonstrate a pronounced spring-summer activity with a unimodal curve of abundance change. A comparison of the monitoring data from the 1980s and the 2010s showed a significant increase in the abundance of I. persulcatus in the study area. A tendency towards an earlier start of the tick activity, as compared to the 1980s, is now being observed.
Collapse
Affiliation(s)
- Sergey V. Bugmyrin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 185910 Petrozavodsk, Russia;
| | | |
Collapse
|
5
|
Litov AG, Okhezin EV, Kholodilov IS, Polienko AE, Karganova GG. Quantitative Polymerase Chain Reaction System for Alongshan Virus Detection. Methods Protoc 2023; 6:79. [PMID: 37736962 PMCID: PMC10514782 DOI: 10.3390/mps6050079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
The recently discovered Jingmenvirus group includes viruses with a segmented genome, RNA of a positive polarity, and several proteins with distant homology to the proteins of the members of the genus Orthoflavivirus. Some Jingmenvirus group members, namely the Alongshan virus (ALSV) and Jingmen tick virus, are reported to be tick-borne human pathogens that can cause a wide variety of symptoms. The ALSV is widely distributed in Eurasia, yet no reliable assay that can detect it exists. We describe a qPCR system for ALSV detection. Our data showed that this system can detect as little as 104 copies of the ALSV in a sample. The system showed no amplification of the common tick-borne viruses circulating in Eurasia, i.e., the Yanggou tick virus-which is another Jingmenvirus group member-or some known members of the genus Orthoflavivirus. The qPCR system was tested and had no nonspecific signal for the Ixodes ricinus, I. persulcatus, Dermacentor reticulatus, D. marginatus, Haemaphysalis concinna, and H. japonica ticks. The qPCR system had no nonspecific signal for human and sheep serum as well. Overall, the qPCR system described here can be used for reliable and quantitative ALSV detection.
Collapse
Affiliation(s)
- Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Egor V. Okhezin
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| |
Collapse
|
6
|
Kholodilov IS, Belova OA, Ivannikova AY, Gadzhikurbanov MN, Makenov MT, Yakovlev AS, Polienko AE, Dereventsova AV, Litov AG, Gmyl LV, Okhezin EV, Luchinina SV, Klimentov AS, Karganova GG. Distribution and Characterisation of Tick-Borne Flavi-, Flavi-like, and Phenuiviruses in the Chelyabinsk Region of Russia. Viruses 2022; 14:v14122699. [PMID: 36560703 PMCID: PMC9780909 DOI: 10.3390/v14122699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, we presented data from a two-year study of flavi-, flavi-like, and phenuiviruses circulation in the population of ixodid ticks in the Chelyabinsk region. We isolated three tick-borne encephalitis virus (TBEV) strains from I. persulcatus, which was not detected in the ticks of the genus Dermacentor. The virus prevalence ranged from 0.66% to 2.28%. The Yanggou tick virus (YGTV) is widespread in steppe and forest-steppe zones and is mainly associated with ticks of the genus Dermacentor. We isolated 26 strains from D. reticulatus, D. marginatus, and I. persulcatus ticks in the HAE/CTVM8 tick cell line. The virus prevalence ranged from 1.58% to 4.18% in D. reticulatus, ranged from 0.78% to 3.93% in D. marginatus, and was 0.66% in I. persulcatus. There was combined focus of TBEV and YGTV in the territory of the Chelyabinsk region. The Alongshan virus (ALSV) was found to be associated with I. persulcatus ticks and is spread in forest zone. We detected 12 amplicons and isolated 7 strains of ALSV in tick cells. The virus prevalence ranged from 1.13% to 6.00%. The phlebovirus Gomselga and unclassified phenuivirus Stavropol were associated with I. persulcatus and D. reticulatus ticks, respectively. Virus prevalence of the unclassified phenuivirus Stavropol in the Chelyabinsk region is lower than that in neighbouring regions.
Collapse
Affiliation(s)
- Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Magomed N. Gadzhikurbanov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Marat T. Makenov
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Alexander S. Yakovlev
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alena V. Dereventsova
- Laboratory of Biochemistry, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Larissa V. Gmyl
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Egor V. Okhezin
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Alexander S. Klimentov
- Laboratory of Biochemistry, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Correspondence:
| |
Collapse
|